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Infinite-range exterior complex scaling as a perfect absorber in time-dependent problems
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We introduce infinite range exterior complex scaling (irECS) which provides for complete absorption of
outgoing flux in numerical solutions of the time-dependent Schrödinger equation with strong infrared fields. This
is demonstrated by computing high harmonic spectra and wave-function overlaps with the exact solution for a
one-dimensional model system and by three-dimensional calculations for the H atom and an Ne atom model. We
lay out the key ingredients for correct implementation and identify criteria for efficient discretization.
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I. INTRODUCTION

The absorption of outgoing parts of the wave function
at the boundaries of a finite volume is a key problem
for any efficient numerical solution of the time-dependent
Schrödinger equation (TDSE) and it has been amply dealt
with also in recent literature (see, e.g., [1] and references
therein). This interest has been renewed in the context of
intense laser-matter interactions: speaking in terms of physics,
strong fields lead to large ionization and therefore large fluxes
out of a central region. For strong-field-induced electronic
and nuclear dynamics in atoms and molecules and high
harmonic generation, electrons far from the system play no
role and can be disregarded. When solving the TDSE for
these processes, one can therefore identify an inner region (a
finite volume) where an exact solution is of interest. Outside
that region one must, by some means, truncate the solution
without compromising the inner region. This is particularly
important for higher-dimensional problems involving two or
more electrons to control the size of the discretization. Out of
the large number of approaches toward that goal the majority
of computations of strong laser-matter interactions employed
one of the following methods: absorbing masks [2], complex
absorbing potentials (CAP’s) [3], and exterior complex scaling
(ECS) [4,5].

None of these methods appeared to be completely satisfac-
tory: absorbing masks and the closely related CAP’s require
careful adaptation to a given problem and a comparatively large
absorption range, but still do not allow perfect absorption.
As to ECS, the two recent numerical studies have cast
doubt on the efficiency [5] and maybe even the fundamental
correctness the method in numerical practice [4]: rather
poor accuracies, problems with numerical stability, apparent
fundamental limitations of long-range absorption, and also
poor efficiency were reported.

Here we present infinite range ECS (irECS) which turns
ECS into a perfect absorber: Instead of applying ECS on a finite
discretization range, the absorbing part of the wave functions
is discretized by a finite number of basis functions with
infinite extension. We will show that with this comparatively
simple modification absorption to full computational accuracy
(14 digits) using only a small fraction of the total discretization
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points is achieved. The method far outperforms conventional
ECS and the commonly used monomial CAP’s. In addition,
irECS is not just an absorber: Ideally, it keeps a record of
the dynamics in the outer region, which, in principle, can
be recovered. We will provide numerical evidence for this
behavior that was conjectured based on formal arguments in
Ref. [6].

After giving a brief review of general ECS theory, we will
present with some care our discretization method, as it plays
an important role in irECS. The general characterization of
irECS and a comparison with ECS and CAP’s is done using
a one-dimensional model system, and finally we will present
results in three dimensions for the H atom and a single-electron
model of Ne.

II. TDSE WITH A LASER FIELD

We want to solve the TDSE of the general form

i
d

dt
�(�x,t) =

[
−1

2
��x + i �A(t) · �∇�x + V (�x)

]
�(�x,t), (1)

where �x will be either a single x or three x,y,z spatial
coordinates. ��x, �∇�x then denote ∂2

∂x2 ,
∂
∂x

and the Laplace and
Nabla operators, respectively. V (�x) is a system-dependent
binding potential and �A(t) is the vector potential of the laser
field. Here we have chosen the velocity gauge and removed
the term A(t)2/2 by a time-dependent unitary transform.
Here and throughout the paper we use atomic units (a.u.)
e2 = h̄ = me = 1 unless indicated otherwise. As the initial
state we use the lowest-energy eigenfunction of the field-free
Hamiltonian operator − 1

2� + V . We use vector potentials
with finite duration

�A(t) = �A0 cos2

(
πt

2nT

)
sin

(
2πt

T

)
, (2)

in the time interval [−nT ,nT ] with n = 1,5,10. The peak
vector potential is �A0 = A0 and �A0 = (A0,0,0) in one and
three dimensions, respectively. Such pulses with a single or a
few oscillations of the electric field, linear polarization, and
peak field amplitude at t = 0 are frequently used as models in
numerical studies.

The complete information of the system inside some inner
region |�x| � R0 is contained in the wave-function amplitude.
For characterizing the accuracy of our results by a single
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number, we use the overlap between an “exact” solution
�ex obtained from a calculation in a very large box and the
approximate solution �

E2[B] = 1 − |〈�ex|�〉B |2
||�ex||2B ||�||2B

. (3)

The scalar product is restricted to the inner region or a
subregion of the inner region B ⊂ {|�x| � R0}

〈�ex|�〉B =
∫

B

dx(d)�∗
ex(�x)�(�x), (4)

and || · ||B is the corresponding L2 norm.
A quantity of immediate physical interest is the intensity

spectrum of the harmonic response given by the Fourier
transform of the “acceleration of the dipole”

S� (ω) =
{
F

[
〈�(�x,t)|∂V

∂x
|�(�x,t)〉B

]}2

. (5)

For the comparison, integrals are restricted to the inner region
B. In general, S(ω) is a highly oscillatory quantity varying by
several orders of magnitude. The local error of the spectrum
relative to an “exact” spectrum is

D(ω) = δω[S� (ω) − S�ex (ω)]∫ ω+δω

ω−δω
dωS� (ω)

. (6)

Local averaging in the denominator suppresses spurious spikes
due to the near-zeros of the spectrum.

III. OUTLINE OF GENERAL ECS THEORY

There is a large volume of literature available on complex
scaling in general (see, e.g., [7–9]) and on exterior complex
scaling in particular (see, e.g., [10–12], and references therein).
We restrict our summary to communicating the basic idea
and to emphasizing the points that are essential for correct
numerical implementation. For this we closely follow the
earlier work found in Ref. [13]. In one dimension, exterior
complex scaling consists in continuing the coordinate outside
a “scaling radius” R0 into the complex plane

x → zθR0 (x)=
{
x for |x| < R0

eiθ (x ± R0) ∓ R0 for ∓ x > R0.
(7)

The effect of the transformation on plane waves at values
x > R0 is

e±ipx → e±ipR0e±ip cos θ(x−R0)e∓p sin θ(x−R0). (8)

For positive p—outgoing waves to the right side—the func-
tions become exponentially damped with increasing x, while
for negative p they grow exponentially. The corresponding
situation with reversed signs arises for x < −R0. By complex
scaling we can distinguish incoming from outgoing waves
simply by their normalizibility without the need to analyze the
asymptotic phase. In a typical discretization we implicitly or
explicitly use only square-integrable functions, by which we
exclude incoming waves from a complex-scaled calculation.
This is the key to complex scaling as a perfect absorber:
in a well-defined region we have a simple instrument to
systematically suppress incoming waves by just requiring

that our solution remain square integrable. A more elaborate
version of this reasoning can be found in the Appendix of
Ref. [14].

The mathematically rigorous theory of complex scaling
often uses the alternative point of view that not the wave
functions, but rather the operator itself is scaled, while it
remains an operator acting on an ordinary Hilbert space of
square-integrable functions. We follow this line of reasoning
for pointing out a fact of immediate computational relevance.
We only give here plausibility arguments and refer the reader
to Ref. [13] for a more extensive discussion and references to
mathematical literature.

One starts from real scaling, that is, replacing iθ in Eq. (7)
with a real number λ and observes that the transformation

(UλR0�)(x)=
{
�(x) for x <R0

eλ/2�(eλ(x∓R0)∓R0) for ∓ x > R0,
(9)

is unitary. The scaling factor eλ/2 is essential to ensure unitarity.
Formally, this transform can just as well be applied to the
Hamiltonian by defining

HλR0 := UλR0HU ∗
λR0

. (10)

It is important to note that if H is defined on differentiable
functions �, the transformed operator is defined on the
discontinuous functions �λR0 = UλR0� and its action on these
functions is given by

HλR0�λR0 = UλR0HU ∗
λR0

�λR0 = UλR0H�. (11)

As a unitary transform UλR0 leaves the operator’s spectrum
unchanged and the scaled dynamics are in a one-to-one relation
to the unscaled. Now the hard part of the mathematical theory
sets in: For a certain class of “dilation analytic” potentials,
the operators HλR0 can be analytically continued to complex
values λ → iθ without changes in the bound-state spectrum
[9]. The continuous spectrum is rotated around the continuum
threshold into the lower complex energy plane by the angle 2θ .
This is trivial to see for the free particle and the case R0 = 0
where the spectrum σ (−�) transforms as

σ (−�) = [0,∞) → σ (−e−2iθ�) = [0,e−2iθ∞). (12)

This property of the continuous spectrum persists when
dilation analytic potentials are added and for R0 > 0: the
complex-scaled Hamiltonian retains a distinct “memory” of
the unscaled Hamiltonian. Proof of dilation analyticity can be
difficult to find. Beyond some large R0, where most physical
potentials have simple decaying tails, the expected properties
of ECS can be confirmed by the numerical experiment.

One can now write an exterior complex-scaled TDSE

i
d

dt
�θR0 (x,t)

= HθR0 (t)�θR0 (x,t)

=
[
−1

2
�θR0 + i �A(t) · �∇θR0 +VθR0 (x)

]
�θR0 (x,t). (13)

Here it is assumed that the potential can be analytically
continued to complex values VθR0 (x) = V [zθR0 (x)]. One may
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hope that the dynamics generated by (13) are related to the
original dynamics and that for |x| < R0 the solution is identical
to the unscaled solution �θR0 (�x) = �(�x). We will demonstrate
in the following that this expectation can be confirmed by
numerical experiment to the level of full machine precision.

The main purpose of this brief discussion of ECS theory is
to stress the importance of the correct discontinuity in the wave
function for defining differential operators. The discontinuity
at R0 is intimately linked to the unitarity of the real-scaled
problem, which in turn secures the conservation of spectral
properties of the scaled operator. For given R0 and θ it has the
explicit form

�θR0 (R0 − 0) = eiθ/2�θR0 (R0 + 0), (14)

� ′
θR0

(R0 − 0) = ei3θ/2� ′
θR0

(R0 + 0). (15)

The discontinuity condition (15) on the derivative arises from
transforming the continuous first derivatives of the original
functions. On such functions, one can define the complex-
scaled Laplacian in analogy to Eq. (11) by “back-scaling” the
scaled function �θR0 (x) → �θR0 (e−iθ (x ∓ R0) ± R0), apply-
ing the ordinary Laplacian, and forward-scaling the result

(�θR0�θR0 )(x)=
{
��θR0 (x) for |x|<R0

e−2iθ��θR0 (x) for |x|>R0.
(16)

The factor e−2iθ appears, as the derivative ∂2/∂x2 is applied to
the back-scaled function rather than to �θR0 (x). On continuous
functions the scaled Laplacian (and any derivative) is not
defined as an operator in the Hilbert space, just as an ordinary
Laplacian is not defined on discontinuous functions.

Finally, we want to point to the fact that the adjoint oper-
ator (�[0,θ])† = �[0,−θ] requires functions with the complex
conjugate condition of Eqs. (14) and (15). This means that for
our discretization by a basis set the discontinuities must not be
conjugated when going from ket to bra vectors. We will show
in what follows how this can be easily implemented in a finite
element basis.

IV. DISCRETIZATION OF IRECS

For the discretization three points are crucial: (i) the correct
implementation of the discontinuity, (ii) the use of infinite
range functions, and (iii) good approximation of analyticity.
All can be most conveniently accommodated in a finite element
discretization of high rank.

We follow the implementation strategy laid out in Ref. [13]:
each coordinate axis is divided into N elements [xn−1,xn],
n = 1, . . . ,N . On each element with number n, we choose
a set of pn linearly independent functions f

(n)
i ,i = 1, . . . ,pn

that can be transformed such that all functions are equal to
zero at xn−1 and xn, except for the first and last functions,
which have values equal to one at the lower and upper element
boundaries, respectively,

f
(n)
i (xn−1) = f

(n)
i (xn) = 0,

except f
(n)
1 (xn−1) = f (n)

pn
(xn) = 1.

(17)

We will call pn the “rank” of the finite element. In principle,
any set of functions that obeys (17) can be used in a finite

element scheme. In practice we use real-valued polynomials
which, for enhancing numerical stability, we transform to∫ xn

xn−1
f

(n)
i (x)f (n)

j (x)dx = m
(n)
i δij ∀ij �= 1pn,pn1, (18)

with normalization constants m
(n)
i . A brief technical discussion

of the transformations needed to arrive at Eq. (18) is given in
the Appendix.

For the element functions (17), Dirichlet boundary condi-
tions are implemented by omitting the first and last functions
f

(1)
1 and f (N)

pN
on the first and last elements of the simulation

box, respectively. Alternatively, on the leftmost and rightmost
intervals we use polynomials times an exponential e±αx with
+ and − signs on the intervals (−∞,x1] and [xN−1,∞),
respectively. The conditions on the end-element functions are

f
(1)
i (x1) = 0 except f (1)

p1
(x1) = 1,

f
(N)
i (xN−1) = 0 except f

(N)
1 (xN−1) = 1.

(19)

The exponent α can be adjusted for best performance, but its
exact value was found to be uncritical for irECS.

The finite-element ansatz for the total wave function is as
usual

�(x,t) =
N∑

n=1

pn∑
i=1

c
(n)
i (t)f (n)

i (x). (20)

By construction of the f
(n)
i , Eq. (17), continuity across element

boundaries is assured by demanding

c(n−1)
pn−1

= c
(n)
1 , n = 2, . . . ,N. (21)

Elementwise overlap and Hamiltonian matrices are

S
(n)
ij =

∫ xn

xn−1

J (x)
[
f

(n)
i (x)

]∗
f

(n)
j (x)dx, (22)

H
(n)
ij =

∫ xn

xn−1

J (x)
[
f

(n)
i (x)

]∗
H (t)f (n)

j (x)dx, (23)

where J (x) denotes the Jacobian function for integration
over x. The elementwise matrices are added into the overall
discretized matrices Ĥ and Ŝ such that the last row and
column of each elementwise matrix overlaps with the first
row and column of the following element (see Fig. 1), which
is equivalent to setting the corresponding coefficients equal,
Eq. (21). As always in finite element methods, continuity of
the first derivative does not need to be imposed (see Ref. [13]
for a more detailed discussion). Ĥ and Ŝ are M × M matrices
with

M =
{∑N

n=1 pn − N − 1 for all |xn| < ∞∑N
n=1 pn − N + 1 for |x0| = |xN | = ∞.

(24)

For irECS we choose the scaling radii to coincide with
the element boundaries xn± = ±R0. The scaled elementwise
Hamiltonian matrices are evaluated by substituting in (23)
the Jacobian J (x) and the operator H (t) with their ECS
equivalents

H
(n)
θR0,ij

=
{∫ xn

xn−1
dxJf

(n)
i Hf

(n)
j |x| < R0

eiθ
∫ xn

xn−1
dxJθR0f

(n)
i HθR0f

(n)
j |x| > R0.

(25)
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FIG. 1. Placement of the elementwise block H
(n)
ij in the overall

Hamiltonian matrix Ĥ .

As we use real functions f
(n)
i , we can omit the complex

conjugation and the resulting matrices are complex symmetric
[i.e., H (n)

θR0,ij
= H

(n)
θR0,j i]. The discontinuity (14) is brought into

the system by the factor eiθ for the integrals |x| > R0: it
amounts to multiplying all functions f

(n)
i outside the scaling

radius by eiθ/2 and as the discontinuity does not get complex
conjugated, the bra and ket discontinuity factors do not cancel
but multiply to eiθ . As in the unscaled case, the continuity
condition on the first derivative (15) does not need to be
imposed for finite elements. The procedure for constructing
the overall matrix ĤθR0 is identical to the unscaled case.
Replacing H (t) by 1 results in the correct (non-Hermitian)
overlap matrix ŜθR0 for the discretized problem. In practice, the
matrices ĤθR0 and ŜθR0 are rarely set up explicitly, as applying
the elementwise matrices to the corresponding sections of the
coefficient vectors is far more efficient.

There are no specific issues for time propagating the
discretized system

ŜθR0

d

dt
�c = ĤθR0 (t)�c, (26)

except maybe that very high accuracy was needed for our
comparisons. If anything, irECS mitigates the well-known
stiffness problems for explicit time integrators, as high kinetic
energy are also associated with large imaginary parts and decay
rapidly. We use Runge-Kutta schemes with self-adaptive step
size and self-adaptive order up to order 7. Robust error control
is achieved by single-to-double-step comparisons. We obtain
significant speedups of the propagation by removing states
with very high eigenvalues of the field-free Hamiltonian from
the simulation space by explicit projection.

V. IRECS FOR A ONE-DIMENSIONAL PROBLEM

We first investigate irECS for the one-dimensional “hydro-
gen atom” with the model potential

V (x) = − 1√
2 + x2

, (27)

which gives the ground-state energy −1/2. Here and in the
following we use the peak vector potential |A0| = 1.26 and the
optical period T = 104.8. If interpreted as atomic units, these

parameters correspond to peak intensity 2 × 1014 W/cm2 and
wave length 760 nm. We will show results for the full width
at half maximum (FWHM) of the amplitude of n = 1, 5, and
10 optical cycles and total pulse durations of 2, 10, and 20
optical cycles, see Eq. (2). The classical quiver amplitude of
an electron in this field is A0 × T/2π = 21 atomic units. At
the end of a single cycle pulse with this intensity around 20%
and after a five cycle pulse more than 80% of the electron
probability have left the range [−40,40].

Within the framework of this model system we will answer
the following questions: Can irECS be considered a perfect
absorber? Can the scaling radius be put inside the range
of the quiver motion (i.e., R0 < 21)? Does irECS work for
long pulses? Which parameters determine the efficiency of
irECS? How does it compare to conventional ECS? How
many discretization coefficients are needed? How does irECS
perform compared to monomial CAP’s? Does irECS work for
length gauge?

A. irECS is a perfect absorber

We call an absorber perfect if the error E[−R0,R0] defined
in Eq. (3) is on the level of machine precision. For the
comparison we need an “exact” result �ex, which is obtained
from an unscaled calculation on a large box [x2,xN−1] =
[−1180,1180] with a total of M = 4801 discretization co-
efficients distributed over 120 elements with constant rank
pn ≡ 41. The elements are equidistant except for the infinite
end elements x0 = −∞ and xN = ∞ with exponent α = 0.5,
Eq. (19).

For irECS we use the parameters θ = 0.5 and R0 = 40 and
finite elements that up to R0 are the same as in the unscaled
calculation. In the scaled ranges on either end of the axis we use
infinite elements (∞, −R0] and [R0,∞) with p1 = pN = 41
and exponent α = 0.5. At this point, no attempt was made to
minimize the number of coefficients used for absorption by op-
timizing the scaling parameters. Indeed, with the given param-
eters we obtain for theL2 errors at the end of the pulses t = nT

E[−R0,R0] =
{

2 × 10−15 for n = 1
3 × 10−14 for n = 5.

(28)

The error of the wave-function amplitude is about the square
root of these values and it remains constant after the initial
rise, see Fig. 2. The error level is constant through the whole
range [−R0,R0] and there is a sharp edge to the scaled region,
where the wave function is not directly related to the unscaled
one. The errors indicate the accuracy limits of our numerical
integration scheme and are not determined by irECS. It is
therefore fair to say that, at least for the present model, irECS
acts as a perfect absorber.

B. Element rank and comparison to finite range ECS

The choice of conspicuously high element rank for these
very accurate calculations is not by coincidence. Complex
scaling depends on analyticity properties of the Hamiltonian. It
is therefore not surprising that we observe a strong dependency
of the accuracy on the degree to which our discretization
can approximate analytic functions. Any localized basis, such
as finite elements or B-splines is not analytic by definition
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FIG. 2. (Color online) Evolution of the relative error |�(x) −
�ex(x)|/|�(x)| during a five-cycle pulse. The denominator is aver-
aged over five grid points to avoid spurious spikes. For the pulse
parameters and discretization see text. The sharp rise of error marks
the boundaries of the inner region. A plane is drawn at error level
10−7 (blue); only a few error peaks in the inner region are above
10−6. Away from the center, relative errors are enhanced initially as
the wave function is nearly zero.

because of the finite support of the basis functions. However,
with increasing polynomial degree, loosely speaking, one gets
closer to analytic functions. Table I lists the error of the wave
function in the range [−35,35] for increasing element rank.
As ±R0 must fall onto element boundaries, we had to choose
slightly different values R0 for the different element ranks. The
irECS absorption range is discretized with between 36 and 45
exponentially damped functions with α = 0.4 such that the
sum of coefficients in the scaled and unscaled regions was
M = 241 for all calculations. For the error estimates at each
pn a large box real calculation was performed with the same
pn and the same number of points as for irECS in |x| < R0.
From Table I we see that, depending on the desired accuracy,
it is advisable to use polynomial degrees 8 or higher.

For practical purposes, we want to mention that the variation
of an irECS calculation with θ and box size is not a safe
indicator of its accuracy. We found irECS calculations with
fixed R0, element rank, and element sizes to be far more
consistent among each other than their error relative to the

TABLE I. Dependence of the final wave-function error on the
element rank pn. All ECS calculations are for a single-cycle pulse
and a total of M = 241 discrete coefficients.

pn,n �= 1,N p1 = pN R0 E[−35,35]

4 41 40 4 × 10−8

5 41 40 1 × 10−7

6 41 40 3 × 10−10

7 43 39 1 × 10−9

9 41 40 5 × 10−12

11 41 40 9 × 10−12

13 37 42 2 × 10−13

15 46 38 7 × 10−14

21 41 40 2 × 10−15

TABLE II. Error of ECS calculations with infinite and finite
absorption ranges. In all calculations we use a single-cycle pulse, rank
pn = 21, and 160 discretization points in [−R0,R0] = [−40,40]. The
length of the absorption range is A = −R0 − x1 = xN − R0 and MA

is the number of coefficients for absorption at each side.

A MA E[−40,40]

∞ 21 2 × 10−15

10 20 4 × 10−4

20 40 3 × 10−6

30 60 2 × 10−11

40 80 1 × 10−15

unscaled result. For reliable accuracy estimates one must vary
the scaling radius R0.

The use of infinite elements at the ends of the simulation box
is the key to the high efficiency of irECS. Table II compares
a few finite-box calculations with a calculation using infinite
end elements with only 21 discretization points. Only at rather
large finite boxes and a larger number of discretization points
does one reach the infinite element result.

The explanation for this may be as follows: It was noticed
in Ref. [5] that long wave lengths cannot be accommodated in
a finite ECS region and deteriorate absorption by reflections.
Such long wave lengths have very little structure and should be
easily parameterizable. It seems that the exponential tail of our
irECS functions is sufficient to accommodate slowly varying
long wave-length parts of the ECS wave function.

C. Choice of R0 and back-scaling

We find that the quality of the wave function in the unscaled
region is not affected by the choice of the ECS radius R0.
Table III shows the errors E[−R0,R0] for R0 = 5, 10, 20, and
40. The general error level in these calculations is slightly
higher as we used a lower element rank of pn = 11 to be
able to make the two elements of the inner region small. The
density of discretization points was kept constant through all
calculations. We see that the error level is independent of
whether the ECS radius is chosen inside R0 = 5,10,20 or
outside R0 = 40 the classical quiver amplitude of α0 = 21.
Errors only start to rise when the total size of the box indicated
by the number of discretization points M becomes too small.
This may not be surprising, if we assume that the spatial range
of the dynamics remains essentially unchanged by complex
scaling: if the box, be it scaled or unscaled, cannot let a

TABLE III. Dependence of the final wave-function error on ECS
radius R0 and on the total number of discretization points M .

M R0 E[−R0,R0]

241 40 1.0 × 10−11

201 20 5.6 × 10−12

160 10 2.9 × 10−12

160 5 1.5 × 10−12

100 10 1.8 × 10−12

80 10 1.2 × 10−6

60 5 3.6 × 10−2

053845-5



ARMIN SCRINZI PHYSICAL REVIEW A 81, 053845 (2010)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

-1 -0.5  0  0.5  1

P
ro

ba
bi

lit
y 

in
 [-

5,
5]

Time (opt. cycles)

FIG. 3. (Color online) Probability of finding the electron in the
interval [−5,5] for the parameters used in Table III. At several times
a few percent probability returns into the region.

particle go the full distance and then return without reflections,
distortions must occur.

One can draw an interesting conclusion from the fact that
the R0 can be chosen inside the classical quiver amplitude:
There is nonnegligible probability for up to a few percent for
the electron to return from the scaled region (e.g., x > R0 = 5)
into the unscaled region (see Fig. 3). At the same time the wave
function in the unscaled region never deviates from the exact
wave function beyond the level of E[−5,5] < 10−11. This
means that flux moves into the scaled region and then back out
without corrupting the unscaled part of the wave function and
that also in the scaled region the TDSE dynamics are encoded
correctly, although in a different way. Our numerical results are
a striking corroboration of this conjecture that was made early
on in ECS theory [6]. In principle, one may hope to recover
the unscaled wave function by analytic continuation. This
hope for back-scaling, in fact, was the original motivation for
introducing the analytic form of functions on the end elements,
as an ordinary finite element function cannot be unambigu-
ously analytically continued. We have not further pursued
this possibility for two reasons. First, with larger pN = p1

and larger scaling angles θ we encountered severe numerical
problems, as the back-scaled basis functions become highly
oscillatory and cancellation errors destroy the reconstruction
of the unscaled wave function. The second reason is the striking
success of irECS with just a few points needed for absorption.
It is safer and simpler to just discard the small absorption range
and use the inner region directly for the evaluation of physical
quantities. Yet, if for one reason or another, one wishes to
back-scale a time-dependent irECS wave function, our results
indicate that such a procedure can be successful. One may, in
that case, use a representation of the scaled region that is less
plagued by numerical problems than our exponential basis.

D. Choice of scaling angle θ and exponent α

Although with a sufficiently large absorption range one can
always obtain perfect absorption independent of scaling angle
θ and damping exponent α, optimizing these parameters in a
given situation allows one to obtain good absorption with very
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FIG. 4. (Color online) Error E[−40,40] as a function of scaling
angle θ and exponent α for n = 1 and n = 5-cycle pulses. For the
five-cycle pulse, longer wavelengths reach the boundaries; the optimal
exponent and scaling angles are smaller and a longer (20 point)
absorption range significantly increases accuracy.

few absorption points. Figure 4 shows the error E[−40,40]
for n = 1 and n = 5 cycle calculations with MA = 10 and 20
absorption points on either end of the interval. The exact choice
of the parameters is not critical for the MA = 20 calculations,
where full accuracy is reached for rather large parameter
ranges. As is to be expected, the five-cycle calculation with
MA = 10 is most sensitive to θ and α, but still in a range
of θ = θ0 ± 0.1 and α = α0 ± 0.1 around the optimal values
α0,θ0 ≈ 0.3,0.6 accuracy deteriorates only by two orders of
magnitude to the still-acceptable value of 10−8. There is a
clear anticorrelation between θ and α, which may be explained
looking at the oscillatory behavior of the back-scaled exponen-
tial Im exp[−αre−iθ ] = sin[α sin θr]. We conjecture that the
effective back-scaled wave number γ = α sin θ is the relevant
parameter for efficient absorption. The correlation between the
parameter γ and θ nearly vanishes and optimization can safely
be performed for each parameter independently.

E. Comparison to complex absorbing potentials

A popular and comparatively straightforward way of
absorbing outgoing flux are complex absorbing potentials
(CAP’s). The basic idea is to add at the end of the simulation
box a potential with a negative imaginary part, which leads
to exponential damping of the wave function. In this simplest
form, the method can be considered a differential form of
absorption by mask functions, where at preset intervals a
certain part of the wave function is removed. A fundamental
limitation of these methods is that they—even in principle—
cannot be strictly reflectionless. The attempt to obtain minimal
reflections has led to a range of models, partially including
real parts into the potential and adjusting to specific physical
situations (see, e.g., [16]).

It is beyond the scope of the present work to perform a
comprehensive study of CAP for the present type of problems.
Rather, we use the simple and well-investigated monomial
CAP’s [3]

W (x) = −iσxq, (29)
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TABLE IV. Accuracy of irECS, ECS, and CAP for different
absorption ranges A and a number of absorption coefficients MA.
Scaling angle θ and absorption strength σ for ECS and CAP,
respectively, were optimized. The errors are calculated at the end
of a single-cycle pulse.

Method MA A θ or σ q E[−R0,R0]

irECS 21 ∞ 0.6 – 2 × 10−15

ECS 20 10 0.6 – 2 × 10−4

ECS 40 20 0.5 – 1 × 10−7

CAP 20 10 10−4 4 3 × 10−3

CAP 20 10 2 × 10−6 6 4 × 10−3

CAP 40 20 4 × 10−6 4 3 × 10−4

CAP 60 30 6 × 10−7 4 1 × 10−5

for polynomial degrees q = 4,6 with optimized σ in each
calculation. The criterion for our comparison with irECS is
the number of discretization points needed for a given level of
absorption.

Results are shown in Table IV. With a finite absorption
range, conventional ECS outperforms CAP roughly by one or
two orders of magnitude. With irECS using only 21 absorption
points, we can reach absorption to machine precision. We could
not find a similar adjustment for CAP.

F. High harmonic spectra

Although the error E is a meaningful measure for wave-
function accuracy, it cannot be directly related to the error of
a given observable. Figure 5 shows the accuracy of ECS high
harmonic spectra of one-cycle and five-cycle pulses relative
to a real calculation. We find errors on the level between
10−4 and 10−3 and we could not get much better agreement
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FIG. 5. (Color online) High harmonic power spectrum for a
five-cycle pulse (upper panel). Lower panel: Accuracy D(ω) of the
high harmonic spectrum with different irECS parameters and dis-
cretizations. Curve A is the error for (R0,MA,θ,α) = (40,20,0.7,0.7)
relative to a fully converged real calculation. The choice of R0 has the
largest influence on accuracy: curve B, the difference between two
calculations with R0 = 40 and R0 = 50 closely follows the overall
error curve A. At fixed R0 the influence of the other irECS parameters
and discretization is small: curve C compares calculations using
(R0,MA,θ,α) = (40,20,0.7,0.7) and finite element rank pn = 21
with (40,40,0.5,0.3) and rank 41.
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FIG. 6. (Color online) High harmonic power spectrum from
the H atom for a one-cycle pulse (upper panel). Lower panel:
Error D(ω) with irECS parameters (R0,MA,θ,α) = (40,20,0.5,0.5)
relative to a R0 = 80 calculation (curve A). The relative difference to
a calculation with (40,40,0.4,0.4), curve B, underestimates the error.
The calculation is converged with 20 angular momenta on the given
level of accuracy. More angular momenta do not change the result.
At 15 angular momenta (curve C) accuracy deteriorates.

than this irrespective of discretization and scaling parameters.
Again this error is related to the numerical limits of our
discretization and propagation schemes: the wave-function
error is ∼10−7 and the high frequency signal is suppressed
by 10−4 relative to the fundamental peak, making a relative
error of the suppressed signal of the order 10−3 quite plausible.
Indeed we find similar errors when comparing different, but
equally accurate purely real calculations. More disquieting is
the ∼1% error at the fundamental frequency, which does not
appear in large-box real calculations. We were not able to
locate the origin of this error: It persists through variations
of R0, specific discretizations, different time discretizations,
and also for the three-dimensional H calculation in the
following (cf. Fig. 6). The error appears to be related to an
artificial overall modulation of the signal by the driving field,
possibly related to internal normalizations during propagation.
Note that by construction normalization errors do not appear
in the wave-function accuracy measure E , Eq. (3). We
believe, however, that this error is acceptable for all practical
purposes.

G. irECS fails in length gauge

For field interaction in length gauge

i �A(t) �∇�x → �x d �A
dt

, (30)

irECS completely fails in the time-dependent case. The reason
for this behavior was pointed out in Ref. [6]: When length-
gauge Volkov solutions are complex scaled their asymptotic
behavior becomes dependent on the sign of the field strength
and alternates between damping and growth. The convenient
distinction between incoming and outgoing waves by their
norms is lost. In the language of mathematical theory, �x is not
a dilation analytic potential and severely so: complex scaling
transforms the spectrum of the Stark problem from purely
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TABLE V. Parameters for the Ne model potential Eq. (32).

ai ci

1 −1 0
2 −0.3 0.5
3 −2.05 2
4 1.23 1

continuous into purely discrete and all discrete eigenvalues of
the scaled Stark Hamiltonian have imaginary parts [15]. This
is in sharp contrast to dilation analytic potentials where the
bound-state energies remain unchanged and the continuous
spectrum is only rotated into the lower complex plane.

VI. CALCULATIONS FOR H AND MODEL NE

To demonstrate the applicability of irECS to realistic
problems, we show calculations for the H atom with

V (�x) = − 1

|�x| , (31)

and a single electron model of the Ne atom with the potential

V (�x) =
4∑

i=1

ai

exp[−ci |�x|]
|�x| . (32)

We use the parameters given in Table V, for which our model
reproduces the ground and first few excited state energies of
Ne. We use linearly polarized pulses with the same pulse
shape and peak intensity as in the preceding section and
pulse durations of 1 and 10 optical cycles. The calculations
are done in polar coordinates with a spherical harmonics basis
on the angular coordinates and high-rank finite elements on
the r coordinate. Again, an infinite last element is used.

There are no surprises: Convergence patterns and accuracy
are very similar to the one-dimensional model. Figure 6 shows
the harmonic spectrum for H at one cycle together with errors
for different irECS and discretization parameters. The error
estimate here is by comparison to an R0 = 80 calculation.

No new problems appear due to the more general Ne model
potential (32). Figure 7 shows high harmonic spectra from
an H and Ne for a 10-cycle pulse. Accuracy estimates were
obtained by varying the irECS radius R0.

VII. DISCUSSION

As we find high numerical stability and excellent perfor-
mance of irECS as an absorber, the questions arise as to
what are the reasons for the numerical problems reported
in Refs. [4,5], where ECS was applied to essentially the
same systems. One obvious source of inaccuracies may lie
in possible low-order discretizations. Unfortunately, in neither
publication is an investigation of the dependence of the
observed effects on discretization shown.

We have documented the generally poorer performance of
ECS compared to irECS, but according to Table II with the
very large absorption ranges of 80 Bohr used in Ref. [5],
excellent results should be achievable also in ECS. Note that
this absorption range is twice as large as the unscaled range.
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FIG. 7. (Color online) High harmonic power spectra from the
H and an Ne model with a 10-cycle pulse (upper panel). Relative
accuracies shown in the lower panel are somewhat poorer with the
longer pulse, in particular for Ne where due to the higher ionization
potential the signal is very weak.

A possible source of the observed difficulties may be the
treatment of the overlap matrix. As discussed previously we
replace the ordinary overlap by the pseudo-overlap matrix
ŜθR0 . With this choice, and as we use strictly real finite
element functions, we obtain complex symmetric matrices
(ĤθR0 )T = ĤθR0 for zero field A0 = 0 and (ŜθR0 )T = ŜθR0 .
There are no explicit statements about SθR0 in Refs. [4,5].
Usually, finite-difference methods imply (an approximation
to) the identity operator for overlap. The B-spline method
used in [5] requires a choice for SθR0 and Eq. (20) of Ref. [5]
seems to imply that indeed the identity was used as an overlap
matrix.

The comment on the nonorthogonality of the eigenvectors
of the nonnormal scaled Hamiltonian in [5] also seems to
indicate that the ordinary, unscaled overlap matrix Ŝ was used.
Clearly, the eigenvectors �b(α) of the eigenproblem

ĤθR0
�b(α) = Ŝ �b(α)Eα, (33)

will not be orthogonal in general. However, we find that all
eigenvectors of the complex-scaled generalized eigenproblem

ĤθR0 �c(i) = ŜθR0 �c(i)Ei, (34)

are pseudo-orthogonal and can be normalized in the sense∑
lm

c
(i)
l (ŜθR0 )lmc(j )

m = δij . (35)

Then the matrix ĤθR0 has a diagonal representation

ĤθR0 =
∑

i

�c(i)Ei(�c(i))T , (36)

and the spectral values Ei appear as discrete approximations
to the true irECS spectrum with strictly nonpositive imaginary
parts ImEα � 0. We do not have mathematical proof for this
property of the discrete complex-scaled system, but we find
it valid in all our calculations on the level of computational
accuracy. If, on the other hand, we use the ordinary overlap
matrix Ŝ, we invariably obtain a few eigenvalues Eα with
ImEα > 0 which will cause long-term instability of the
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time propagation. Possibly this is the ultimate reason for the
numerical instabilities observed in Refs. [4,5].

VIII. SUMMARY

We have demonstrated that irECS can serve as a perfect
absorber of outgoing flux in the sense that in the unscaled
inner region it exactly matches a purely real calculation on a
sufficiently large grid. With between only 20 to 40 absorption
points, we were able to push the agreement to relative L2

error of 10−15. The corresponding errors in the wave-function
amplitude are ∼10−7. Both errors are at the limits of our
numerical integration scheme. Furthermore, we have evidence
that irECS does not just act as an absorber, but conserves
dynamical information during excursions into the absorbing
region: Even when the quiver motion takes flux deeply into
the “absorbing” region, the returning flux is identical to the
flux in a purely real calculation. We believe that irECS solves
the absorption problem for the present class of system.

For this, we found the following points essential:
(i) implementation of the correct scaled derivatives, includ-

ing bra functions with unconjugated discontinuity;
(ii) the use of “infinite” absorption ranges, which we

discretized by polynomials times an exponential; and
(iii) the use of high-rank discretization also in the inner

region to reach the highest accuracies.
Point (i) leads to a complex symmetric, in particular, not

a positive-definite discrete overlap matrix which must not be
approximated by a positive-definite matrix.

Following these rules, we encountered no numerical diffi-
culties in the inner region or in the absorbing region, using a
standard explicit Runge-Kutta scheme for time integration. As
a tendency, large scaling angles favor good absorption, in many
cases we used θ = 0.7 ≈ 40◦, which corresponds to an almost
purely imaginary continuous energy spectrum [0,e−2iθ∞). In
our basis we found the scaling angle ultimately to be limited by
numerical instabilities due to the complex symmetric overlap
matrix. As excellent absorption can be achieved with as few as
20 discretization coefficients in the absorbing region, pushing
the scaling angle to the numerical limits is not necessary, in
general, and scaling angles of θ = 0.3 ∼ 0.5 served well for
our purposes. In general, we found the scheme numerically
robust and not very sensitive to the scaling parameters. The
option of back-scaling the solution to θ = 0 was abandoned
due to severe cancellation errors in the related transformations.

When judging the accuracy of an irECS calculation, it is
important to vary the irECS radius R0. Our comparison with
a real calculation indicates the variation of the result with
different R0 gives realistic error estimates. Other parameters
such as rank of the finite elements, length of the absorption
range, or scaling angle are of secondary importance.

Both, ECS and irECS, outperform simple monomial CAP’s.
ECS errors were one or two orders of magnitude smaller
than CAP errors with the same spatial discretization, but the
advantage of irECS can reach 12 orders of magnitude! We are
aware of the fact CAP’s can be greatly improved by a variety of
measures (see, e.g., [16]). However, in general, these require
tuning of the CAP parameters to a given situation. Even with
that, we do not expect to reach comparable accuracies with
CAP’s as we could demonstrate for irECS.

The efficiency and excellent performance of irECS can
serve to dramatically reduce the effort for computing photo-
ionization processes and opens new possibilities for simula-
tion. Short absorption ranges become crucial for few-particle
systems, where overall absorbing volume grows exponentially
with the number of particles. Further, a perfect absorber is
the prerequisite to be able to extract scattering information
from simulations in a small finite volume. Such a scheme was
formulated in Ref. [17] for laser-ionization using CAP’s. An
adaptation to irECS and its extension to few-body dynamics
will be investigated in future work.
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APPENDIX: CONSTRUCTION OF THE BASIS

Here we show explicitly how to construct the finite element
basis sets used in this paper. On a given element [xn−1,xn]
we choose a set of functions h

n)
i (x),i = 1, . . . ,pn. We define

the 2 × pn matrix of boundary values Bbi = h
(n)
i (xn+b−2),b =

1,2. We require that B has at least two linearly independent
columns, let us assume for notational simplicity that these are
the first and last columns. Be C the 2 × 2 matrix of the first
and last columns of B. It is easy to see that the new basis
set g

(n)
i ,i = 1, . . . ,pn

g
(n)
1 (x) = (C−1)11h

(n)
1 (x) + (C−1)12h

(n)
pn

(x), (A1)

g(n)
pn

(x) = (C−1)21h
(n)
1 (x) + (C−1)22h

(n)
pn

(x), (A2)

g
(n)
i (x) = h

(n)
i (x) − B1ig

(n)
1 (x) − B2ig

(n)
pn

(x),
(A3)

i = 2, . . . ,pn − 1,

fulfills the conditions in Eq. (17). Note that the only require-
ment on the original functions is that C is invertible (i.e., the
boundary value matrix has at least two linearly independent
columns).

We transform to the form of Eq. (18) by first obtaining
an orthonormal set of inner functions f

(n)
i ,i = 2, . . . ,pn − 1

〈f (n)
i |f (n)

i 〉 = δij from g
(n)
i ,i = 2, . . . ,pn − 1 (e.g., by Schmidt

orthonormalization). We then remove the content of all inner
f

(n)
i from the boundary functions g

(n)
1 and g(n)

pn
by the projection

f
(n)
b = (1 − PI )g(n)

b , b = 1,pn, (A4)

with the projector PI = ∑pn−1
i=2 |f (n)

i 〉〈f (n)
i |. As the inner

functions are equal to zero at the element boundaries, the
boundary conditions in Eq. (17) remain unaffected by these
transformations. All transformations can be performed quickly
and reliably during setup by computing the matrices T

(n)
ij that

directly take the h
(n)
j to f

(n)
i = ∑pn

j=1 T
(n)
ij h

(n)
j . Mathematically

speaking, the spaces spanned by h
(n)
i and f

(n)
i are identical, but
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the latter form is nearly orthogonal and therefore numerically
stable and in addition allows for convenient implementation
of the continuity conditions across boundaries.

The manipulations for the infinite end elements are almost
identical, except that now the boundary matrix B is 1 × pn

and a single nonzero entry in B is sufficient.
As h

(n)
i we choose scaled and shifted Legendre polynomials

h
(n)
i = Pi[yn(x)], where yn maps [xn−1,xn] onto [−1,1]

yn(x) = 2x − xn−1 − xn

xn − xn−1
. (A5)

On the end elements we start from Laguerre polynomials with
arguments scaled by ±2α times the exponentials exp(±αx)
on the lower and upper ends, respectively. Mathematically
speaking, the choice of polynomials is irrelevant as long as
all orders up to pn are included. However, for monomials

h(n)(x) = (x − xn−1)i , the transformations will breakdown
for numerical reasons already at ranks pn ∼ 10. Starting
from orthogonal polynomials eliminates all ill-conditioning
problems in the various transformations.

With this, the basis sets are completely defined up to a
numerically irrelevant orthogonal transformation among the
inner functions, if the element boundaries xn, the rank pn,
and, where applicable, the exponent α is given. In the one-
dimensional calculations we used constant size elements. For
the Coulomb problem, the element sizes started from x1 −
x0 = 0.3pn and then increased linearly up to the radius 15.
Beyond that the element size was kept constant. We obtain the
first few H bound states to machine accuracy. What mainly
determines the good accuracy is the high pn used. The use of
a variable size element is routine to our implementation, but
not relevant for the findings.
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