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Thermalization of coupled atom-light states in the presence of optical collisions
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The interaction of a two-level atomic ensemble with a quantized single-mode electromagnetic field in the
presence of optical collisions is investigated both theoretically and experimentally. The main focus is on achieving
thermal equilibrium for coupled atom-light states (in particular dressed states). We propose a model of atomic
dressed-state thermalization that accounts for the evolution of the pseudo-spin Bloch vector components and
characterize the essential role of the spontaneous emission rate in the thermalization process. Our model shows
that the time of thermalization of the coupled atom-light states depends strictly on the ratio of the detuning to
the resonant Rabi frequency. The predicted time of thermalization is in the nanosecond domain at full optical
power and about 10 times shorter than the natural lifetime in our experiment. Experimentally we investigate the
interaction of the optical field with rubidium atoms in an ultrahigh-pressure buffer gas cell under the conditions
of large atom-field detuning comparable to the thermal energy in frequency units. In particular, an observed
asymmetry of the saturated lineshape is interpreted as evidence of thermal equilibrium of coupled atom-light
states.
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I. INTRODUCTION

Present remarkable achievements with coherent manipu-
lation of coupled matter-field states evoke great interest in
the investigation of phase transitions in such systems; see,
for example, [1–3]. The key role in the behavior of coupled
states under consideration is played by so-called dark and
bright polaritons, that is, bosonic quasiparticles representing a
linear superposition of photons in an external (probe) field and
the macroscopic (coherent) polarization of a two-level atomic
system or excitons localized in quantum wells.

The critical temperature of a phase transition for polaritons
can be high enough due to their small effective mass, which is
many orders of magnitude smaller than the free mass of atoms
(or electrons). Although evidence of Bose-Einstein condensa-
tion (BEC) of polaritons in semiconductor microstructures has
recently been reported by several groups (see [1], [2], and [4])
observation of the high-temperature phase transition remains
an unsolved problem. In this sense atomic systems seem to be
more attractive and experimentally feasible for polariton BEC
purposes [5–8].

The main difficulty with polariton condensate observation
is connected with the problem of achieving true thermal
equilibrium for coupled matter-field states, which is a primary
step in studying phase transitions in the systems under
consideration. Roughly speaking, the polaritonic system for
the current experiments with semiconductor microcavities is
in nonequilibrium (or quasiequilibrium) (see, e.g., [9]). One
mechanism for achieving thermal equilibrium of low-branch
polaritons with the host lattice is to cool them with a phonon
bath [10]. The thermalization time must be shorter than the
polariton lifetime in this case. For the current experiments
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the lifetime of polaritons is in the picosecond regime and
comparable to the thermalization time.

In the area of atomic physics, extremely long lifetimes
of excitations are readily achieved at present. In this paper
we show that the atomic polariton lifetime is limited by the
lifetime of the two-level atomic transition τspont only, that is,
by spontaneous emission. Since the value of τspont is in the
nanosecond regime, the thermalization time can be longer
compared with that of polaritons formed in semiconductor
devices. Therefore polaritons in an atomic physics system
could be preferable for observation of BEC, because of the
long coherence times achieved.

Progress toward the achievement of thermal equilibrium in
coupled atom-field states was made by some of us in [11].
In particular, the ability to thermalize coupled atom-light
(dressed) states due to frequent collisions of rubidium atoms
with buffer gas atoms in the presence of optical irradiation
has been demonstrated experimentally. In the literature this
process is called optical collision (OC) (see, e.g., [12]). We
note that redistribution in OCs has also recently allowed laser
cooling of ultradense atomic gases [13].

In general atomic collisions in the presence of a laser field
can be considered as a scattering (inelastic) process when
both the internal (or kinetic) energy of the particles and the
energy of the scattered light are changed. Physically this
leads to dephasing of the atomic polarization that determines
the broadening of the fluorescence spectrum and introduces
an additional (collisional) phase shift. Notably, a closed
representation to understand the effect of atomic collisions on
the resulting width and shape of spectral lines was performed
by Weisskopf in his famous paper [14]. Thereafter collisional
broadening has been a subject of intensive investigation both
in theory and in experiment (see, e.g., [15–18]). Various
aspects and approaches to line shape description, phase shift,
and intensity due to nonresonant atomic collisions have been
studied and summarized in [19]. Notably, important properties
of spectral line shift, width, and asymmetry for a wide range
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of foreign (buffer) atomic gas densities in connection with the
so-called impact limit of atomic collisions have been discussed
by A. Royer in [18] (see also [17]).

A statistical approach to the OC problem was proposed
in [20], based on the cross section of collisionally aided
radiative excitation (or emission) for two-level atoms coupled
to a thermostat of buffer gas. Subsequently, in [21] the authors
established a simple theory of OC based on the dressed-state
approach in the Schrödinger picture. It has been shown that
collisions with buffer gas particles reduce to a transfer between
different dressed states of the atom. Spectral redistribution of
quasiresonant radiation occurring due to collisional relaxation
has been a subject of experimental investigations as well
(see, e.g., [22–24]). The OC spectral line shape is essentially
non-Lorentzian, that is, asymmetric. From a molecular point
of view, such an asymmetry can be understood by taking into
account modifications of interaction potential curves [22,25].

Although the main features of OCs have been investigated
for a long time, the thermodynamic properties of coupled
atom-light systems have not yet been studied fully. It is pointed
out in [12] that, in the limit of a low Rabi splitting energy h̄�R ,
that is, for h̄�R � kBT (T is the temperature of the two-level
atomic ensemble), the OCs reduce to equalizing dressed-state
populations under the secular approximation. The deviations
from the Einstein coefficients for absorption and stimulated
emission induced by OCs are discussed in [26]. However,
the problem of thermalization of coupled atom-field states
has not been studied. Standard theoretical approaches in this
case are based on the rate equations for the population of
dressed states only, completely ignoring coupling between
population and atomic coherences at the same time (see,
e.g., [11], [12], and [26]). Such an approach seems unsuitable if
we keep in mind the problem of observation of polariton BEC.
Actually spontaneous polarization buildup occurs in this case
and polariton coherences become important (cf. [9]). Thus, the
role of the secular approximation in the thermalization process
of coupled atom-light states should be clarified.

The aim of this report is a fundamental theoretical and
experimental investigation of the thermalization of coupled
atom-field states, taking into account spontaneous emission
processes beyond the approximations typically used.

In Sec. II we establish the model of interaction of two-level
atoms with a quantized optical field in the presence of OCs.
Realistic (experimentally accessible) conditions for OC of
rubidium atoms with high-pressure buffer (argon or helium)
gas atoms are discussed. In Sec. III the Bloch-like equations for
density matrix elements in the dressed-state basis are derived.
Analysis of the steady-state solutions of these equations is
performed in Sec. IV. We define the time of thermalization and
specify necessary conditions to achieve thermal equilibrium
for dressed atom-light states. In Sec. V we derive the properties
of intensities of spectral components for an atomic system
in the presence of OC under the atom-field thermalization
process. Thermalization of coupled atom-light states in an
ultrahigh-pressure buffer gas environment is experimentally
investigated in Sec. VI. The spectrum of fluorescence obtained
from rubidium atoms is analyzed. We give an explanation
for the observed resonance fluorescence signal and necessary
estimations of the time of thermalization according to the
theoretical approach developed here. In Sec. VII we summarize

our results and discuss further prospects for the experiment
and the corresponding theory. In particular, the possibility of
polariton condensation is discussed.

II. MASTER EQUATION APPROACH TO ATOM-FIELD
INTERACTION IN THE PRESENCE OF OPTICAL

COLLISIONS

Atomic collision in the presence of a nonresonant radiation
field can be considered as the elementary process of a collision
between an isolated two-level atom A and a foreign (buffer)
gas atom of sort B; that is,

A(a) + B + h̄ωL ←→ A(b) + B, (1)

which occurs with simultaneous emission (or absorption) of
a photon with frequency ωL. The collision is called an OC
when the frequency of the optical field ωL is near resonant to
an atomic transition in A. In Fig. 1 schemes of nonresonant
absorption of light with frequency ωL during collision with
a buffer gas atom are shown. The case of collisionally aided
excitation of level |b〉 of the atom for negative atom-light
detuning, δ = ωL − ω0, is illustrated in Fig. 1(a). For positive
detuning δ > 0 (ωL > ω0), the atom has some energy excess
h̄δ, which is transferred to the kinetic energy of the atoms after
the collision [Fig. 1(b)]. Note that for both cases excitation of
the upper level |b〉 is impossible due to atomic collision only.

Our description of thermalization of atom-field (dressed)
states developed here is based on the approach to OC presented
in [12] and generalizes their treatment to detuning of δ values
comparable to or higher than the thermal energy kBT . The
master equation for the density matrix σ in the presence of
both OCs and radiative (spontaneous) relaxation processes can
be written as follows:

dσ

dt
= − i

h̄
[H,σ ] +

{
dσ

dt

}
rad

+
{

dσ

dt

}
coll

, (2)

where the last two terms account for spontaneous emission and
collisions with buffer gas atoms. The Hamiltonian H describes
atom-field interaction under the rotating wave approximation
and has the form

H = h̄ωLf †f + h̄ω0|b〉〈b| + h̄g(S+f + S−f †), (3)

(a)

coll

L

(b)

coll

L

a a

 b  b

FIG. 1. (Color online) Schematic representation of collisionally
aided absorption in a two-level atom with frequency ωL for
(a) negative atom-field detuning, δ < 0, and (b) positive atom-field
detuning, that is, δ > 0. The decay � is the spontaneous emission
rate.
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where f (f †) is the annihilation (creation) operator for the
photons absorbed (or emitted) due to atomic collisions, g =√

|dab|2ωL/2h̄ε0V is the atom-field interaction constant, which
we take to be identical for all atoms, dab is the atomic
dipole matrix element, and V is the interaction volume. In
expression (3) S− = |a〉〈b| and S+ = S

†
− ≡ |b〉〈a| represent

atomic transition operators. The term{
dσ

dt

}
rad

= −�

2
(S+S−σ + σS+S−) + �S−σS+ (4)

characterizes the contribution of spontaneous processes in
Eq. (2); � ≡ 1/τspont is the spontaneous emission rate (τspont is
the natural lifetime of the atomic transition). The last term in
Eq. (2) describes the atomic collisions and can be established
as {

dσ

dt

}
coll

= −γ

2
σ + 2γ szσ sz − iη [sz,σ ] , (5)

where sz = 1
2 (|b〉〈b| − |a〉〈a|) is the atomic population in-

version operator obeying conditions sz|a〉 = − 1
2 |a〉 and

sz|b〉 = 1
2 |b〉.

In (5) parameter γ characterizes the collisional relax-
ation rate (collisional broadening) in the presence of a
monochromatic laser field; η determines the average phase
shift appearing due to collisions. In connection with the theory
of OC parameters, γ and η can be represented as (cf. [12])

γ = 〈1 − cos φ〉coll, (6a)

η = 〈sin φ〉coll, (6b)

where φ = ∫ +∞
−∞ [ωba(t) − ω0] dt is the phase shift that accu-

mulates during the collision.
More rigorous expressions for collisional broadening γ

can be found using a full quantum mechanical (microscopic)
approach (see, e.g., [25]). In general, γ implicitly depends on
the atom-field detuning δ and, thus, on the molecular potentials
for a compound system. For δ = 0 the magnitude of γ can be
inferred from the expression

γ � πρ2
0 vTNB, (7)

where ρ0 is the Weisskopf radius, depending on the molecular
level variation (shifting) due to atomic collisions, vT =√

2kBT /mat is the thermal atomic velocity, and NB is the
number density of the buffer gas.

In particular, in the experiment described in Sec. VI, we
use rubidium atoms with mass mat � 1.46 × 10−25 kg under
the temperature T = 530 K and a buffer gas of density
NB � 1021 cm−3. Taking into account typical values of the
Weisskopf radius ρ0 � 10−3 µm for the collisional broadening
rate (7), one can obtain a value of a few terahertz. The
average collisional shift η can be expressed via molecular
level variation under the quantum mechanical description as
well. Practically, η in (6b) has the same order of magnitude
as a collisional broadening γ . In the current experiment we
used argon as the buffer gas (γ /2π ≡ γAr/2π � 7.2 GHz/bar,
η/2π ≡ ηAr/2π � −6 GHz/bar) at 500 bar (50 MPa) pres-
sure and helium as the buffer gas (γHe/2π � 2.8 GHz/bar,
ηHe/2π � 1.6 GHz/bar) at 400 bar (40 MPa), respectively.

The spontaneous emission rate for experimentally utilized
rubidium atom D lines is � � 2π × 6 MHz (τspont = 27 ns)
(see, e.g., [27]). Thus, condition γ � η 
 � is held in
the experiment under discussion. Nevertheless, as we will
see, spontaneous emission plays an essential role in the
thermalization process of coupled atom-light states due to its
ability to change the population of the excited atomic level.

Note that the Doppler effect is not important for the problem
under consideration. First, the motion of the atoms cannot
change the population of atomic levels and, thus, cannot restrict
the thermalization process. Second, Doppler broadening (of
the order of a gigahertz) is significantly smaller than the
collisional broadening in the experiment, thus neglecting the
Doppler broadening in our calculations is justified.

Let us now consider the situation when each collision
happens in a short enough time span τcoll. In this case two
collisions are well separated in time; that is, we have

τcoll � Tcoll, (8)

where Tcoll is the time interval separating two collisions. Here
we neglect temporal correlations between the spontaneous
emission process and the collisional one. Loosely speaking,
spontaneous emission and OC processes are well separated
in time as well. Further, Eq. (2) is valid under the so-called
impact limit of OCs (see, e.g., [12]). The applicability of our
model in this case is discussed later.

III. BLOCH-LIKE EQUATIONS UNDER THE
DRESSED-STATE REPRESENTATION

In the absence of collisions with buffer gas atoms,
Hamiltonian (3) for atom-light interaction explicitly has two
eigenstates, called dressed states, defined as

|1(N )〉 = sin θ |a,N + 1〉 + cos θ |b,N〉, (9a)
|2(N )〉 = cos θ |a,N + 1〉 − sin θ |b,N〉, (9b)

where N is the total photon number, and |a,N + 1〉 and
|b,N〉 are bare atom-light states. The mixing angle θ ≡ θ (δ)
is defined by

tan 2θ = −�0

δ
, 0 � 2θ < π, (10)

where �0 � 2g
√

N denotes the resonant Rabi frequency. In
general, the parameters sin θ and cos θ can be represented
as [11]

sin θ = 1√
2

√
1 + δ

�R

, (11a)

cos θ = 1√
2

√
1 − δ

�R

, (11b)

where �R =
√
δ2 + �2

0 is the Rabi splitting frequency. It is
important to emphasize that state |2(N )〉 is always located
below state |1(N )〉.

In Fig. 2 the dependence of dressed-atom-state energies as
a function of light frequency ωL is presented schematically.
The frequency gap between dressed states |1(N )〉 and |2(N )〉
is the Rabi splitting frequency �R . The gap is minimal and
equal to the Rabi frequency �R,min = �0 under the atom-light
resonance condition (δ = 0). In this paper we mostly focus on
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FIG. 2. (Color online) Dispersion relation for coupled atom-light
states versus ωL; h̄�0 is the resonant Rabi splitting energy. The upper
branch corresponds to the |1(N )〉 dressed state, and the lower branch
describes the |2(N )〉 state. The dashed horizontal line corresponds
to the uncoupled level |b,N〉, that is, to the atomic transition energy
h̄ω0. The experimentally observed coupled states are states (2) and
(3), for which condition (13) is satisfied.

the case for which the Rabi splitting energy is comparable to
or higher than the thermal energy; that is,

h̄�R � kBT . (12)

For the current experiment (see Sec. VI) we are limited
to Rabi frequencies �0/2π by the value of 0.1 THz, which
corresponds to full optical power P0 � 300 mW. At the same
time the thermal energy (kBT ) for rubidium atoms at ambient
temperatures (T = 530 K) corresponds to a frequency of
11 THz. In this case, we need to have large detuning δ values
(|δ|/2π � 11 THz) to fulfill relation (12). In other words, in
this paper we are practically interested in the perturbative limit
when

�0 � |δ|. (13)

Physically condition (13) means that we deal with dressed
states situated far from the region of resonant atom-field
interaction. In Fig. 2 this situation is labeled (2) and (3)
respectively.

We solve the master Eq. (2) in the basis of dressed states
|1(N )〉 and |2(N )〉. The density matrix elements in the dressed-
state representation (9) traced over the photon number N are
defined as

σ11 =
∑
N

〈1(N )|σ |1(N )〉, (14a)

σ22 =
∑
N

〈2(N )|σ |2(N )〉, (14b)

σ21 = σ ∗
12 =

∑
N

〈2(N )|σ |1(N )〉. (14c)

The matrix elements σ11 and σ22 describe the populations
of the dressed states |1(N )〉 and |2(N )〉, respectively. The
nondiagonal elements σ12 (σ21) characterize dressed-state
coherences and correspond to population transfer between
dressed-state levels. Notably, the total population of dressed
states (14) is conserved for OC processes; that is, we have
d(σ11 + σ22)/dt = 0.

We now consider the properties of the real components
Sx,y,z of the pseudospin (Bloch) vector �S combined from
matrix elements (14) as follows:

Sx = σ12 + σ21, (15a)
Sy = i (σ12 − σ21) , (15b)

Sz = σ11 − σ22. (15c)

With the help of (2)–(5) it is possible to get Bloch-like
equations for pseudospin components Sx,y,z,

dSx

dt
= −(�coh + ς )Sx − �̃RSy − 2(α − �12)

×
(

Sz − 2wS
(eq)
z

(2w + �+)

)
+ � sin(2θ ), (16a)

dSy

dt
= −

(
�

2
+ γ

)
Sy + �̃RSx

+ 2U

(
Sz − 2wS

(eq)
z

(2w + �+)

)
, (16b)

dSz

dt
= −2w

[(
1 + �+

2w

)
Sz − S(eq)

z

]
− 2 (α − �12) Sx − 2USy + �−, (16c)

where the following notations are introduced:

α = γ sin(4θ )

4
, w = γ sin2(2θ )

2
,

ς = γ cos2(2θ ), U = η sin(2θ )

2
, (17a)

�coh = �

2
[1 + sin2(2θ )],

�± = �[sin4(θ ) ± cos4(θ )], �12 = � sin(4θ )

8
. (17b)

In Eqs. (16), �̃R = �R − δη/�R is a modified Rabi
splitting that takes into account the average phase shift η

arising due to collisions with buffer gas atoms. The coeffi-
cients �coh, �±, and �12 in (17b) characterize spontaneous
emission in the dressed-state representation. In general they are
connected with spontaneous emission rates �1→1 = �2→2 =
1
4� sin2(2θ ), �2→1 = � sin4(θ ), and �1→2 = � cos4(θ ) from
dressed-state levels linking neighbor manifolds (see Fig. 3).
U describes the influence of the average phase shift on the
evolution of the system under discussion.

Since we are interested in the conditions for the transition
of coupled atom-light states to thermal equilibrium, we have
introduced in Eqs. (16) the term 2wS

(eq)
z /(2w + �+) for the

evolution of the Bloch vector component Sz. The presence of
such a term in the set of Eqs. (16) is compatible with existing
theories of spin-boson interaction with thermostat particles
(due to collisions in our case) discussed by Leggett et al. in
[28]. In particular, according to our approach in the ideal case,
neglecting spontaneous emission terms in (16), the dressed-
state population imbalance Sz should reach its thermodynami-
cally equilibrium value S

(eq)
z with the rate 2w due to collisions

with buffer gas atoms [see (21)], which is in agreement with
experimentally tested approaches to OCs based on the solution
of Boltzmann-like (rate) equations [11,26].
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FIG. 3. (Color online) Energy (population) transfer between
levels of the dressed atom induced by dephasing collisions. I0, I11,
and I22 indicate intensity weights of three-color photon emission.
In addition, spontaneous emission described by the rates �i→j

(i,j = 1,2) causes a transfer between levels of different manifolds.

The dependence of S
(eq)
z on temperature can be easily

understood from the thermodynamic properties of the coupled
atom-light system (cf. [11], [29]). In particular, the population
of the lower dressed state |2(N )〉 should be much larger
[exp(h̄�R/kBT ) times] than that of the upper one in thermal
equilibrium. We suppose

S(eq)
z = − tanh (h̄�R/2kBT ) ≈ − tanh (h̄ |δ| /2kBT ) , (18)

where the latter expression is valid under the perturbative
limit (13). In particular, for a near-resonant atom-field
interaction (when inequality h̄|δ| � h̄�R � kBT is still true),
the equilibrium value of Sz according to Eq. (18) is S

(eq)
z = 0

and we arrive at the well-known result for which collisions
with buffer gas atoms tend to equalize the population of the
dressed states (cf. [12]).

In the opposite limit of large detuning, one can omit the
terms containing collisional broadening γ and spontaneous
emission � from Eqs. (16) and obtain the same results
as in [29], obtained from the Schrödinger representation
for OCs. In particular, without emission the collisions do
not induce transitions between state |a,N + 1〉 and state
|b,N〉. Collisionally aided excitation allows a transfer between
dressed-state components also in the case of large detunings.
The energy difference is balanced by the kinetic energy of the
colliding particles. Since state |2(N )〉 is energetically lower
than state |1(N )〉, energy is taken from the thermal reservoir
of the buffer gas during the transition from |2(N )〉 to |1(N )〉
(Fig. 2). About 103–104 collisions happen during the natural
lifetime τspont of rubidium atoms.

The population transfer between dressed states evokes a
thermalization process of coupled atom-light states which is
characterized by the thermalization rate 2w = γ (�2

0/�2
R) ≈

γ (�2
0/δ

2) in Eq. (16c) for the dressed-state population im-
balance Sz. Notably, 2w depends on the collisional rate γ as
well as on the ratio �0/δ, which characterizes the atom-field
interaction. The dependence of 2w on the laser intensity is in
agreement with present theories on OCs (see, e.g., [25]), whose
validity in the yet unexplored high-pressure buffer gas regime
with a high multiparticle collisional rate, however, remains to
be tested.

IV. THERMALIZATION OF COUPLED ATOM-LIGHT
STATES

Our goal in this section is to find stationary solutions
of Eqs. (16) which are close to the thermodynamically true
equilibrium state S

(eq)
z of the coupled atom-field system. The

full set of Eqs. (16) yields steady-state solutions:

S(st)
x = − 1

D

[
−� sin 2θ

(
�

2
+ γ

)
+ 2

[
U�̃R + (α − �12)

(
�

2
+ γ

)] (
S(st)

z − 2wS
(eq)
z

2w + �+

)]
, (19a)

S(st)
y = 1

D

[
2[U (�coh + ς ) − �̃R(α − �12)]

(
S(st)

z − 2wS
(eq)
z

2w + �+

)
+ �̃R� sin 2θ

]
, (19b)

S(st)
z = 2wS

(eq)
z

2w + �+
+ D�− − 2� sin 2θ

[
(α − �12)

(
�
2 + γ

) + U�̃R

]
(2w + �+)D − 4

[
2U�̃R(α − �12) + (α − �12)2

(
�
2 + γ

) − U 2(�coh + ς )
] , (19c)

where we made the denotation D ≡ �̃2
R + (�coh + ς )[(�/2) +

γ ].
First, we examine the role of atomic collisions in the

thermalization process, completely neglecting spontaneous
emission within the so-called secular approximation:

� � γ, η � �R. (20)

In this case from expressions (19) one can assume that

S(st)
x ≈ S(st)

y ≈ 0, (21a)

S(st)
z ≈ S(eq)

z . (21b)

The inequalities (20) represent the necessary condition for
achieving a thermodynamically true equilibrium (21b) for the
dressed-state population. The coupling between dressed-state
coherences σ12 (σ21) and populations σ11,σ22 can be completely
neglected in this case; see (21a) (cf. [11]).

The thermodynamically full equilibrium behavior of the
dressed-state population imbalance S

(eq)
z is represented by the

dotted (red) curve in Fig. 4. It is important to emphasize that
the atomic ensemble under discussion indicates a two-level
system without inversion under the perturbative limit (13) for
negative atom-field detuning δ only. Actually in this limit from
dressed-state definitions (9), we have sin θ � 0,cos θ � 1,
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FIG. 4. (Color online) Dependence of dressed-state population
imbalance Sz as a function of detuning δ/2π for 500-bar argon gas
collisional broadening γ /2π = 3.6 THz; collisional shift η/2π =
−3 THz. The resonant Rabi splitting frequency �0/2π is infinite
for the dotted (red) curve, 0.1 THz for the solid (black) curve, and
0.03 THz for the dashed (blue) curve. In all cases the gas temperature
is T = 530 K and the spontaneous emission rate is � � 37 MHz.

and the lower dressed state |2(N )〉, which is macroscopically
occupied, corresponds to the bare state |a,N + 1〉, which
describes atoms in the ground state.

For large positive atom-light field detuning δ > 0 under
condition (13), we can put sin θ � 1, cos θ � 0, in Eqs. (9),
which implies that the lower dressed state |2(N )〉 corresponds
to the excited atomic level |b,N〉, which is much more
populated. In this case we achieve inversion in the two-level
atomic system under thermal equilibrium (cf. [29]).

The decay of atomic upper level |b〉 with the rate � leads
to nonequilibrium processes in the dressed-state population
behavior. Taking into account (16c) spontaneous emission
under the assumption (21a), we get a steady-state solution
for the dressed-state population imbalance Sz:

Sz = 2w(θ )S(eq)
z + �−(θ )

2w(θ ) + �+(θ )
. (22)

In Fig. 4 the dependence of the dressed-state population
imbalance Sz in the steady state (22) on the atom-field detuning
δ is plotted. The full thermalization of the atom-light state
(dotted curve in Fig. 4) is approached at infinite Rabi frequency
(i.e., for infinite input laser power) only. The same result
can be obtained from Boltzmann-like (rate) equations for
dressed-state populations if the contribution from spontaneous
emission to the thermalization of the atom-field states is
completely neglected (cf. [11]). The asymptotic behavior of
population imbalance presented in Fig. 4 for large values of
atom-field detuning δ can be easily analyzed in the perturbative
limit (13) under condition (12). In particular, from (22) one
can obtain

Sz ≈ S(eq)
z +

�4
0

8δ4 − 2e−h̄|δ|/kBT

1 + γ�2
0

�δ2

for δ < 0, (23a)

Sz ≈ S(eq)
z + 2

1 + γ�2
0

�δ2

for δ > 0. (23b)

The terms containing � in (22) and (23) characterize
the influence of spontaneous emission on the thermalization
process. The decay of the dressed-state population imbalance
in (22) due to spontaneous emission is described by �+. To
minimize this effect we require the rate of thermalization of
atom-field dressed state 2w to be much higher than the effective
rate of spontaneous emission �+; that is, the inequality

2w 
 �+ (24)

should be satisfied.
With the help of definitions (17) and (24), one can obtain

�

γ
� �2

0

δ2
� 1. (25)

Relation (25) is one of the main results of the paper and a
characterizing condition for reaching true thermal equilibrium
of coupled atom-field (dressed) states. Such an equilibration
is achieved at the far detuned tails of dressed-state population
imbalance Sz in Fig. 4, for which, with condition (23), we have

Sz ≈ S
(eq)
z .

The suppression of the thermalization process due to
spontaneous emission leads to the formation of thermodynam-
ically quasiequilibrium of coupled atom-light states for which
condition (25) is violated. Indeed, for

�2
0

δ2
� �

γ
� 1, (26)

from (23) we get

Sz ≈ S(eq)
z + �4

0

8δ4
− 2e−h̄|δ|/kBT for δ < 0, (27a)

Sz ≈ S(eq)
z + 2 for δ > 0. (27b)

For highly nonequilibrium coupled atom-light states Sz ≈ 1
[see (27b) and Fig. 4] and spontaneous emission decay drives
the dressed-state system out of equilibrium for large positive
detuning δ. In conclusion, Eqs. (16) yield a stationary solution
only.

Conditions (24) and (25) can be represented in some other
form introducing the time of thermalization Ttherm of coupled
atom-field states as follows:

Ttherm ≡ 2π

2w
= 2π

γ

(
1 + δ2

�2
0

)
. (28)

According to this definition the minimal time of thermal-
ization T

(min)
therm � 2π/γ occurs for a near-resonant atom-field

interaction (|δ| � �0) representing state (1) in Fig. 2. The
time T

(min)
therm is in the picosecond regime for experimentally

accessible collisional broadening γ .
For large atom-light detuning in the perturbative limit (13),

the time of thermalization Ttherm increases and approaches

Ttherm ≈ 2πδ2

γ�2
0

� 2πk2
BT 2

γh̄2�2
0

. (29)

Notably, the quantity Ttherm is inversely proportional to
�2

0, that is, to the incident optical power P0. Taking into
account definition (28), we can express condition (24) for
thermalization of atom-field coupled states as

Ttherm � τspont. (30)
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FIG. 5. (Color online) Dependences of (a) dressed-state pseudospin components Sx,y and (b) population imbalance Sz as a function of
reduced time γ t . Parameters are γ /2π = 3.6 THz, η/2π = −3 THz, � � 37 MHz, δ/2π = −11 THz, and T = 530 K. The resonant Rabi
splitting frequency �0/2π is 0.1 THz for curves (1) and 0.03 THz for curves (2). Initial conditions are Sx,y(0) = 0 and Sz(0) = −1. The vertical
line corresponds to the time Ttherm of thermalization of coupled atom-light states for �0/2π = 0.1 THz.

Thereby, at appropriate time scales the thermalization time
Ttherm of the atom-field dressed states must be faster than
the atomic transition lifetime τspont. In particular, for our
experiment the minimal achievable time of thermalization at
full optical power is about 3.37 ns for argon buffer gas and
10.8 ns for helium (see Sec. VI).

Now let us examine nonequilibrium properties of the atom-
light states. The value of detuning δ is of the order of the
collisional broadening γ in our experiment. In fact, we are
working beyond the secular approximation limit established
by (20). In this case the Bloch components Sx and Sy can be
adiabatically eliminated from Eqs. (16) and we can obtain the
following solution for the dressed-state population imbalance
Sz:

Sz(t) = S(st)
z + [

Sz(0) − S(st)
z

]
e−(2w+�+)t , (31)

where Sz(0) is the initial value of the pseudospin component
Sz at t = 0, and S(st)

z is determined by Eq. (19c).
The numerical solution of the full set of Eqs. (16) revealing

the quasiequilibrium dynamics of the coupled atom-light
system for 500-bar argon buffer gas is presented in Fig. 5. We
suppose that all atoms initially occupy the lower dressed-state
level |2(N )〉; that is, Sz(t = 0) = −1. Figure 5(a) demonstrates
the decreasing atomic polarization described by dressed-state
coherences, the Bloch vector components Sx and Sy , respec-
tively. In particular, in the steady-state Sx,y tend to the values
S(st)

x,y according to Eqs. (19a) and (19b). They clearly exhibit the
presence of some small (residual) polarization of the atomic
medium which depends on the vital parameter �+/w. The
dressed-state coherences Sx and Sy are relatively large for
nonequilibrium states when �+ 
 w. On the contrary, we can
use Eq. (21a) and ignore the dressed-state polarization at full
thermal equilibrium under the secular approximation (20).

The transient regime of thermalization of coupled atom-
light states for the experiment described in Sec. VI is presented
in Fig. 5(b). The dependences based on a numerical solution
of full Eqs. (16) are represented by solid curves in Fig. 5(b).

Dashed curves correspond to expression (31). The steady-state
levels for various resonant Rabi frequencies �0/2π are shown
by horizontal (magenta) lines. These levels are determined
by the magnitude of population imbalance Sz for a detuning
|δ| = kBT /h̄ that corresponds to a frequency of about 11 THz.
From Fig. 5(b) it follows that for sufficiently long time
scales such as t 
 1/(2w + �+), the dressed-state population
imbalance Sz(t) reaches its steady-state value S(st)

z (for a given
Rabi frequency �0/2π ) as determined by expression (19c).

V. INTENSITIES OF SPECTRAL COMPONENTS

Here we discuss the modification of the intensities of the
fluorescence spectrum components under the thermalization
of atomic dressed states. In general the fluorescence triplet
consists of a central line of frequency ωL and two sidebands
centered at ωL ± �R (see Fig. 3). These lines have intensities
with weights

I11 ≡ I (ωL + �R) = σ11�1→2

= � cos4(θ )
w(θ )

[
1 + S

(eq)
z

] + � sin4 θ

2w(θ ) + �+(θ )
, (32a)

I22 ≡ I (ωL − �R) = σ22�2→1

= � sin4(θ )
w(θ )

[
1 − S

(eq)
z

] + � cos4 θ

2w(θ ) + �+(θ )
, (32b)

I0 ≡ I (ωL) = � sin2(θ ) cos2(θ ). (32c)

Following (32c) the I0 intensity component weight is still
unchanged during the thermalization process because it does
not depend on temperature. In other words, thermalization
of coupled atom-light states reduces to redistribution of
intensities between the I11 and the I22 components.

To be more specific, we examine Eqs. (32) in the perturba-
tive limit (13) for negative detuning δ < 0. In this case we
can assume that sin2(θ ) ≈ �2

0/4δ2, cos2(θ ) ≈ 1 [see (11)].
At the same time in this limit we have |1(N )〉 ∼ |b,N〉
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and |2(N − 1)〉 ∼ |a,N〉 for dressed levels of one manifold.
Physically this means that I11 approximately corresponds to
the transition from the upper to the lower state (see Fig. 3).

Let us now analyze Eqs. (32) in the limit where thermal-
ization does not occur, that is, when condition (26) is fulfilled
for coupled atom-light states. From (32) we get

I11 ≈ w
(
1 + S(eq)

z

) ≈ γ�2
0e

−h̄|δ|/kBT

δ2
, (33a)

I22 ≈ ��4
0

16δ4
, (33b)

I0 = ��2
0

4δ2
. (33c)

In expressions (33) we arrive at familiar results (see, e.g.,
[12]) in the limit of near-resonant atom-field interaction when
h̄|δ| � kBT and I11 ≈ 2I0γ /� 
 I0. However, in the general
case, from (33) we obtain

I11

I0
≈ 4γ e−h̄|δ|/kBT

�
. (34)

For large detuning δ, one can have I11 � I0 under the
condition h̄|δ| 
 kBT ln[4γ /�]. However, such a condition
is not realized for the experimentally accessible range of
detuning δ and temperatures T – cf. (12).

We can show that in the presence of thermal equilibrium,
under conditions (24) and (25) the I11 intensity component
changes essentially, and from (32a) we obtain

I
(therm)
11 ≈ �e−h̄|δ|/kBT . (35)

At the same time the other intensity weights, I22 and I0, still
remain unchanged [see Eqs. (33b) and (33c)]. From (33a) and
(35) it is easy to see that

I11 � I
(therm)
11 , (36)

which implies a significant increase in I11 under the thermal-
ization process.

Now let us turn our attention to positive-valued large atom-
field detuning, that is, to δ > 0. Without thermalization (2w �
�), from (32a) and (32b) we get [cf. (33a) and (33b)]:

I11 ≈ ��4
0

16δ4
, (37a)

I22 ≈ γ�2
0

δ2
. (37b)

On the contrary, Eqs. (32a) and (32b) approach

I
(therm)
11 ≈ ��4

0

16δ4
e−h̄|δ|/kBT , (38a)

I
(therm)
22 ≈ �, (38b)

under the fulfillment of conditions (24) and (25).
Thus, thermalization of coupled atom-light states for

positive detuning δ is mostly due to the dramatic increase
in the I22 intensity weight component and suppression of the
I11 component simultaneously.

It is also fruitful to introduce the total intensity weight of
fluorescence (absorption) I as a sum of all intensity weights
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FIG. 6. (Color online) The reduced intensity of fluorescence I

versus atom-field detuning δ/2π for 500-bar argon buffer gas at
different values of the resonant Rabi frequency �0/2π .

represented in (32); that is, I = I11 + I22 + I0. With the help
of definitions (9) and (14), from (32) we get

I = σbb� = �

2

(
1 − � cos2(2θ )

2w + �+

)
+ �w cos(2θ ) S

(eq)
z

2w + �+
,

(39)

where σbb = 〈b,N |σ |b,N〉 is the population of the upper
(excited) atomic state.

The thermalization of the atom-light field states is de-
termined by the last term in (39) (cf. [12]). In Fig. 6 the
dependence of the reduced intensity weight I/� (excited
atomic-state population σbb) is presented as a function of
atom-light field detuning δ. The asymmetry of the behavior
of I in Fig. 6 can be easily understood by introducing the
difference �I between positive (far blue wing)- and negative
(far red wing)-valued detuning intensities for which, from (39),
we obtain

�I ≡ I (δ > 0) − I (δ < 0) ≈ 2�w tanh (h̄ |δ| /2kBT )

2w + �+
.

(40)

For complete thermalization of the atom-field states [dotted
(red) curve in Fig. 6], under condition (25) the intensity weight
of fluorescence I can be approximated by a Fermi-Dirac
distribution function as

I � �

1 + e−h̄δ/kBT
. (41)

In this limit the maximal intensity weight is I (therm) ≈ � (for
δ > 0) and �I approaches

�I (therm) � � tanh (h̄ |δ| /2kBT ) ≈ �. (42)

On the contrary, for small Rabi frequencies (curves describ-
ing nonequilibrium states in Fig. 6), from (40) we have

�I ≈ γ�2
0

δ2
tanh (h̄ |δ| /2kBT ) � �, (43)

which implies fulfillment of condition �I � �I (therm)

[cf. (36)].
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FIG. 7. (Color online) The reduced intensity of fluorescence I

versus the square of the resonant Rabi frequency for 400-bar helium
buffer gas at three different frequencies of the laser field.

In Fig. 7 calculated dependencies of the total normalized
intensity weight I versus the square of the resonant Rabi
frequency (as a measure of the intensity) are presented.
Physically, they reflect the fact that the population of the
atomic ground state |a〉 decreases, while that of the upper
level (population σbb) increases, with increases in the incident
optical power, that is proportional to the square of resonant
Rabi frequency �0 [cf. (39)].

To end the theoretical part of the paper, let us briefly discuss
the boundaries of applicability of our theoretical model for
OCs. It is necessary to accentuate the impact limit (�Rτcoll �
1) of OCs when the processes of Rabi oscillations, spontaneous
emission, and atomic collisions are mutually uncorrelated.
Only in this case is the master Eq. (2) used in this paper valid. In
our experiment the impact limit is not completely fulfilled (see
Sec. VI). In particular, only inequality �0 � τ−1

coll takes place
in our case. At the same time the experimentally accessible
atom-light detuning δ is of the order of the inverse time of
collisions τ−1

coll.
Further, we do not take into account the influence of

the Franck-Condon factor (overlapping integral) in electric
dipole operators, which characterizes overlapping between
the (quasi-) molecular wave functions for initial and final
states during the collision (see, e.g., [30]). Obviously, this
factor becomes more important when the impact limit breaks
down (for detuning δ such as |δ|τcoll 
 1) and a full quantum
mechanical approach to OCs and line profile description
become necessary (cf. [18], [31], [32]). Nevertheless, as we
will see, the dependences in Figs. 6 and 7, obtained under
the proposed theoretical approach, are qualitatively in good
agreement with obtained experimental results.

VI. EXPERIMENT: THERMAL EQUILIBRIUM FOR
COUPLED ATOM-LIGHT STATES

We now proceed to experimental work, in which we have
investigated rubidium atoms under an extraordinarily high
buffer gas pressure driven by tunable laser radiation. The
aim of our work presently is to reach thermal equilibrium

Ti:sapphire - laser

polarizing
beam splitter

focus

achromat

pressure
cel

Rb-
reservoir

vacuum pump

valve

buffer gas
container

pinholes

FIG. 8. Experimental setup.

of coupled atom-light states. Clearly, thermal equilibrium is
a prerequisite for observation of a Bose-Einstein-like phase
transition for polaritons. The large collisional broadening in
our system interpolates between the usual atomic gas phase
and the solid or liquid phase condition.

A. Experimental setup

A scheme of our experimental setup used to investigate
atom-light interaction at ultrahigh buffer gas pressures and
intense laser radiation is shown in Fig. 8. A stainless-steel
high-pressure cell filled with atomic rubidium is used, which
is connected by a valve to a buffer gas reservoir. Alternatively
helium or argon buffer gas at pressures up to 230 bar is filled
into the cell at room temperature. By heating the sealed cell
up to 530 K, a buffer gas pressure of 500 bar for argon
and a rubidium density of 1016 cm−3 are reached. Tunable
laser radiation derived from a titanium-sapphire laser tuned
to the rubidium D lines is focused on the cell to a waist size
of 3 µm. The focus is placed directly behind the window
to suppress propagation effects. To detect fluorescence light
selectively from the focal region, where high laser intensities,
up to 109 mW/cm2, for an optical power of 300 mW are
reached, both the incident beam and the outgoing fluorescence
are spatially filtered with pinholes in a confocal geometry.

B. Excited-state lifetime measurements

In initial experiments, we have measured the lifetime
of the rubidium 5P excited state in the presence of high
buffer gas pressures. The lifetime of excited states is a major
limitation of the coherence time in semiconductor polariton
BEC experiments, which is here typically close to 1 ps [1].
For the excited-state lifetime measurement in our rubidium
high-pressure buffer gas system, we have chopped the exiting
Ti:sapphire laser beam with an acousto-optical modulator
(not shown in Fig. 8) and measured the fluorescence in the
backward direction with a photomultiplier. Measurements of
the 5P-5S fluorescence decay time for various buffer gas
pressures of argon and helium are shown in Fig. 9. For
low pressures the decay time is significantly longer than the
natural 5P lifetime of 27 ns [27]. We ascribe the slow decay
of the fluorescence signal to energy pooling [33], where in
excited-atom/excited-atom collisions two Rb atoms pool their
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FIG. 9. Observed fluorescence decay time of the 5P rubidium
excited state versus buffer gas pressure. Data recorded for argon
(squares) and helium (circles) gas, together with exponential decay
curves fitted to the data for helium (dashed line) and for argon (solid
line).

internal energy to produce one ground-state atom and one
in a higher excited state. A highly excited atom with a long
lifetime can subsequently decay into the 5P state. Therefore
energy pooling yields a reoccupation process of the 5P state
that increases the observed 5P-5S fluorescence decay time. For
higher buffer gas pressures the observed decay time is reduced
and tends to approach the expected 5P natural lifetime. We
attribute this to a decline in the energy pooling process that
involves highly excited rubidium states at high buffer gas
pressures, which reduces the efficiency of the repopulation
process at high pressure values. This interpretation of the
measured decay times is supported by the observed strong
blue fluorescence near 420 nm, which gives clear evidence of
the presence of energy pooling, at low buffer gas pressures.
Further, with increasing pressure the intensity of the blue
fluorescence decreases considerably.

To guide the eye, exponential decay curves have been fitted
to the lifetime measurement data. The graphs approach a decay
time of 28.3 ± 1.9 ns for helium and 29.6 ± 2.2 ns for argon
at high pressure values. These values would coincide with the
natural lifetime within our experimental accuracy.

No evidence of a decline in the 5P lifetime, possibly to
quenching, was observed within our present measurement
accuracy up to the quoted pressure value of 200 bar, which
was the maximum available buffer gas pressure in these data
sets. In future, we plan to extend these lifetime measurements
toward higher buffer gas pressures.

C. Measurements indicating thermal quasiequilibrium
of atom-light states

In subsequent measurements we have recorded spectra
of the rubidium D lines at ultrahigh buffer gas pressures.
Typical fluorescence spectra recorded at 530 K and 400 bar
helium buffer gas pressure for variable optical powers are
shown in Fig. 10(a). Since the fluorescence is measured in the
experiment, the population of dressed states and population of
excited atomic level σbb [see (39)] are of interest as well.
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FIG. 10. (a) Rubidium fluorescence signal and (b) results of
extrapolation of measurement data to infinite laser intensity as a
function of the incident frequency: both for helium buffer gas. Error
bars were obtained from extrapolation fits. Data were fitted with
a Fermi-Dirac distribution, assuming thermal equilibrium of the
two-level dressed-state system [cf. (41)].

At a moderate optical power (P = 25 mW) the usual
pressure-broadened rubidium D1 and D2 lines are visible.
The resonant Rabi frequency �0/2π is about 0.03 THz
in this case, and we deal with state (3), which is placed
far from the region of the resonant atom-field interaction
(see Fig. 2). For atom-field detuning δ/2π = −11 THz and
for collisional broadening γAr/2π � 3.6 THz, the minimal
thermalization time occurs for a 500-bar argon buffer gas
pressure and Ttherm ≈ 37.4 ns in this case, which is of the
order of spontaneous emission lifetime τspont = 27 ns. Thus,
we have not yet reached thermal equilibrium for such a state,
represented by dashed (blue) curves in Figs. 4 and 5.

In particular, at the experimentally achieved maximal power
P � 300 mW, the resonant Rabi frequency is �0/2π �
0.1 THz and the time of thermalization Ttherm approaches
10.8 ns (for 400-bar helium buffer gas pressure) and 3.37 ns
(for 500-bar argon buffer gas pressure). The latter value is
essentially shorter than the spontaneous emission lifetime
τspont. In this sense we can speak about achieving equilibrium
for coupled atom-light states [state (2) in Fig. 2] in the
experiment (see Fig. 5).
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FIG. 11. Fluorescence signal at 400-bar helium buffer gas as
a function of input laser power for three different values of laser
frequency.

Further diminishment of the thermalization time is possible
by increasing the incident optical power. Notably, full thermal-
ization of the coupled atom-light state is achieved for infinite
laser power (cf. Fig. 4) or full line saturation (see Fig. 11).

For the purpose of comparison the expected fluorescence
signal at full saturation versus frequency is shown in Fig. 10(b).
It was derived at each frequency point by extrapolating the
observed fluorescence to infinite laser intensity. Interestingly,
this spectrum of the extrapolated fluorescence can be fitted
well by a Fermi-Dirac function I (δ) (solid line) [see (41)].
We interpret these measurements as evidence for approach of
dressed-state thermal equilibrium at high drive laser powers
(cf. Fig. 6). Strictly speaking, only in this case does the Franck-
Condon factor (overlapping of quasimolecular wave functions)
not matter.

Figure 11 shows the experimentally observed fluorescence
versus optical power for three different laser frequencies for
the helium buffer gas data. Near a line center (crosses) the
curve has already saturated at a relatively low power level to
an intermediate fluorescence level. For significant detuning,
the optical power at which saturation is achieved is higher,
as visible for both blue (open circles) and red (filled dots)
detunings.

Interestingly, the saturation level of fluorescence is clearly
different in both cases, with the blue (red) detuning leading
to the largest (smallest) values. At full saturation, where
spontaneous processes are negligible compared to stimulated
processes, we expect the dressed-state populations to be in full
thermal equilibrium (cf. Figs. 4 and 7).

During the course of the experiments, we found that the
results of the spectral measurements were critically dependent
on the purity of the buffer gas used and presumably, also,
the decomposition of residual impurities. The measurements
shown in Fig. 10 were carried out using the buffer gas
argon/helium 5.0 (supplier, Air Liquide). In contrast, we
did not observe significant saturation of the fluorescence at
high laser powers for buffer gas from a different supplier
(argon/helium 5.0; supplier, Praxair). We attribute this to
different residual impurity compositions. In a pure inert buffer
gas system this perturbation apparently does not occur at
a significant rate, which reveals the remarkable elasticity

of alkali gas atoms in collisions with inert gas atoms. To
experimentally reach full thermal equilibrium also at very large
laser detuning, it is necessary to enlarge the coupling in the
atom-light system. This can be achieved by use of a higher
laser power or a cavity-based system.

D. Toward thermalization of atom-light states with
a continuum of modes

Up to now thermal equilibrium of a coupled atom-light
system has been investigated for the case of a two-level
dressed-state system. The observation of a Bose-Einstein-like
phase transition from a thermal state to an ordered polariton
state, however, requires a continuum of modes (see, e.g.,
[34–36]), as, for example, provided by the transverse modes
of an optical cavity. Alternatively, a suitable optical waveguide
could be used. To allow accumulation of polariton modes at
the lowest available energy, it is clear that a process must
exist that allows a continuous change of photon wavelengths
toward lower energies, at least in the region around the lowest
available photon energy of the optical resonator.

In our rubidium high-pressure buffer gas system, we have
tested for the presence of such frequency shifting processes.
For this experiment, we spectrally analyzed the radiation
detected at the cell output in the forward direction behind
a second window of the cell (see Fig. 8). Note that in this
forward-direction measurement, because of the comparatively
long optical path through the cell (5 cm), the confocal
parameter used (�70 µm) is much shorter than the interaction
length, so that the beam diameter increases considerably at the
end of the cell and the optical intensity there is comparatively
low. Due to the long interaction length, we also expect
propagation effects to play a role. Typical spectra, measured
with a grating spectrometer, are shown in Fig. 12 for various
cell temperatures. The incident laser wavelength here was
790 nm, that is, between the rubidium D1 and the rubidium
D2 lines. At moderate temperatures (200◦C) the observed
fluorescence spectrum covers the spectral range from 750 to
950 nm, with clear dips near the rubidium D lines, which we
attribute to the greater absorption there. At higher temperatures
and therefore higher Rb densities, the cell becomes optically
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FIG. 12. Relative optical intensity measured in the forward di-
rection after the cell versus frequency for different cell temperatures.
The value of the incident laser wavelength (790 nm) is indicated by
the dashed vertical line.

053843-11



I. YU. CHESTNOV et al. PHYSICAL REVIEW A 81, 053843 (2010)

thick over a large spectral range near the rubidium resonances,
and in this wavelength range little transmitted optical power is
observed. The spectra show a broad fluorescence peak with a
maximum wavelength exceeding 900 nm. The fluorescence
signal observed at the cell output has maximum spectral
intensity on the red side of the rubidium spectrum; that is,
Stokes scattering is clearly stronger than anti-Stokes processes.
We interpret the results of these measurements as evidence
that processes exist which could support thermalization of
photonic modes also in the case of a continuous mode
spectrum, as required for experimental observation of a BEC-
like phase transition of polaritons. Clearly, the efficiency of
these wavelength shifting processes, and also thermalization
of polariton modes, needs to be studied in detail in future
work. For the rubidium buffer gas system, a reasonable choice
of wavelength for the lowest-cavity mode seems to be between
800 and 900 nm, where optical modes are populated by Stokes
scattering. The presence of the phase transition would change
the broad fluorescence signal in the forward direction to a
sharp peak located at the frequency of the lowest mode.

VII. CONCLUSIONS AND OUTLOOK

In this paper have we studied the thermalization of
coupled atom-light states under the influence of OCs. We
found that thermal equilibrium is possible by controlling the
resonant Rabi frequency and the atom-light detuning. We
have shown that a nonvanishing macroscopic polarization of
the atomic medium occurs when the problem is described
without the secular approximation, which is typically used
in the problem under discussion. Experimentally we find
evidence for a thermalization of the dressed atom-light states
in an ultrahigh-pressure buffer gas environment. The observed
intensity-dependent asymmetry of the spectra is interpreted

as partial thermal equilibrium of dressed atom-light states,
when the driving-field detuning is chosen as |δ| � kBT /h̄. The
thermalization process results in significant energy redistribu-
tion within the two sideband intensity components. We have
observed Stokes scattering and characterized the lifetime of
excitations in the presence of the buffer gas.

In future, it will be important to add a spatial confinement
to allow dispersion of the coupled atom-light eigenstates with
a low-frequency cutoff, suitable for BEC. This can be imple-
mented using either a resonator or a a waveguide structure.
This also yields an enhancement of the field amplitude, which
can allow full thermalization of coupled atom-light states in the
high-pressure buffer gas system. When the rubidium density
is increased, a strong coupling limit should be achievable in
the buffer gas system, making polaritons relevant atom-light
excitations. On the theoretical side it will be important to
extend the treatment of coupled atom-light state (polariton)
thermalization in the presence of OCs, as done in the present
work.

We conclude that the ultrahigh-pressure buffer gas approach
is a promising candidate for possible realization of a BEC-
like phase transition of polaritons in an atomic physics
system.
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