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Real-time analysis of two-photon excitation by correlated photons: Pulse-width
dependence of excitation efficiency
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We theoretically investigate the dynamics of two-photon excitation by correlated photons with energy
anticorrelation in terms of how the excitation efficiency depends on incident pulse width. A three-level atomic
system having an intermediate state is used to evaluate the efficiency of two-photon excitation. It is shown that for
shorter pulses closer to a monocycle pulse the excitation efficiency by correlated photons is enhanced to become
100 times as large as that by uncorrelated photons.
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I. INTRODUCTION

Two-photon (or multiphoton) excitation is a well known
nonlinear optical process and has attracted attention because it
has a wide field of application, such as two-photon excitation
microscope [1], multiphoton ionization [2], and coherent
quantum control [3] in chemical and biochemical fields. The
point of two-photon excitation is the coincidence in absorption
of photons, and this can be achieved by spatiotemporally
controlling light: Light pulsing in the time domain and light
focusing in the space domain. Consequently, the photon
density interacting with atoms or molecules increases and the
efficiency of two-photon excitation is enhanced. In this control
method, phase and amplitude play an important role in terms
of the degrees of freedom of light.

In a fully quantum-mechanical treatment of light, however,
photons exhibit an additional feature, called quantum correla-
tion. Using quantum correlation, we can create a photon pair
having inherent coincidence, referred to as squeezed light or
quantum-correlated photons. In the field of quantum optics,
two-photon excitation by squeezed light has been extensively
investigated, and the enhancement of the transition rate has
been theoretically predicted [4,5] and experimentally observed
[6,7]. A central topic in these early studies is the difference
between the intensity dependencies of the transition rate for
classical and squeezed light; namely, though the transition
rate for classical light has a quadratic dependence on intensity,
the transition rate for squeezed light becomes linear at low
intensities. Squeezed light is thus essentially different from
classical light and behaves as one photon in two-photon
excitation at low intensities.

At high intensities, however, the above difference disap-
pears because classical correlation dominates the quantum
correlation between the photons constituting squeezed light.
In general, the optical nonlinearity requires high intensity
owing to its low efficiency. Therefore, if we maximally utilize
the quantum nature of light, the efficiency of two-photon
excitation at low intensities must be further enhanced. To
achieve this, short-pulsed squeezed light at low intensities,
ultimately a monocycle pulse composed of two correlated
photons, is desired.
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In this study, we analyze in detail two-photon excitation
exactly by two photons, in terms of how the excitation
efficiency depends on incident pulse width. In particular,
using a fully quantum-mechanical treatment of light-matter
interaction, we investigate the dynamics of two-photon ex-
citation by correlated photons in real time and evaluate
the enhancement rate by directly comparing the populations
excited by uncorrelated and correlated photons. We show
that in the two-photon excitation by correlated photons the
simultaneous absorption of two photons effectively takes
place and the transition via a virtual state is well suppressed
in contrast to classical light input. Furthermore, we show
that for shorter pulses close to a monocycle pulse, 100-fold
enhancement of excitation efficiency can be realized.

The rest of this paper is organized as follows. In Sec. II,
a theoretical model of the atom-cavity system is introduced
and the formulation of correlated-photon pairs is given. In
Sec. III, we analyze in detail the quantum dynamics of atomic
states driven by correlated-photon pairs and the dependence of
excitation efficiency on pulse width. In Sec. IV, we summarize
and discuss our results.

II. MODEL

A. One-dimensional atom model

As a model system, we consider a one-dimensional photon
field interacting with an atom-cavity system, as depicted in
Fig. 1(a). An incident two-photon pulse propagates parallel
to the r axis and penetrates into a one-sided microcavity (at
dumping rate κ). The photons interact with an atom inside
the cavity through a cavity field (at coupling rate g) and then
turn back to the initial photon field. The atomic system inside
the cavity consists of three levels: the ground state |g〉, the
intermediate state |m〉, and the excited state |e〉. Their corre-
sponding energies are denoted by ωm and ωe (in units of h̄).
The central energy of incident photons is set to k0 = ωe/2
so that |e〉 can be resonantly excited. ωm is far off-resonant
with k0.

In the bad cavity regime of κ � g, photons inside the
cavity are emitted so rapidly from the cavity that the cavity
field can be adiabatically eliminated. In this case, the atom-
photon interaction can be characterized by a single effective
emission rate � ≡ g2/κ . If � � γ , where γ is the spontaneous
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FIG. 1. (a) Schematic of two-photon excitation geometry.
(b) One-dimensional atom model.

emission rate of the atomic system into free space (noncavity
modes), the system can be reduced to a one-dimensional
input-output system with negligible losses [Fig. 1(b)], called
the one-dimensional atom model [8]. For simplicity, we ignore
nonradiative relaxation losses, such as thermal relaxation.

B. Hamiltonian and quantum dynamics

Setting natural units of h̄ = c = 1, the Hamiltonian of the
whole system is given by

Ĥ =
∫

dk kâ
†
kâk + ωe|e〉〈e| + ωm|m〉〈m|

+
∫

dk
√

�m/π (|m〉〈g|âk + â
†
k|g〉〈m|)

+
∫

dk
√

�e/π (|e〉〈m|âk + â
†
k|m〉〈e|), (1)

where âk(â†
k) is the annihilation (creation) operator of a photon

with energy k. In this study, we ignore direct transition between
the states |g〉 and |e〉.

The dynamics of the whole system can be calculated from
the Schrödinger equation,

|�(t)〉 = exp(−iĤ t)|�(0)〉, (2)

where |�(0)〉 is the initial state of the whole system, given by

|�(0)〉 = 1√
2

∫
dk

∫
dk′ψ2p(k,k′)â†

kâ
†
k′ |0〉|g〉, (3)

where ψ2p is the two-photon joint amplitude of the incident
pulse. The whole wave function is normalized to be 〈�|�〉 =
1. Populations of atomic intermediate and excited states
are described by 〈e〉 = |〈e|�(t)〉|2 and 〈m〉 = |〈m|�(t)〉|2,
respectively.

C. Quantum-correlated photon pair

For comparison, we consider two photon pairs: an uncorre-
lated photon pair, corresponding to classical light, given by

ψ2p(k,k′) = ψ(k)ψ(k′)e−ikr0e−ik′r0 , (4)

FIG. 2. |ψ2p|2 for (a) uncorrelated and (b) correlated photons.
σ ≈ 78λ, where λ = 2π/k0.

and a correlated-photon pair with energy anticorrelation,
given by

ψ2p(k,k′) = ψ(k)δ(k + k′ − ωe)e−ikr0e−ik′r0 , (5)

where ψ(k) is the one-photon pulse and r0 is the spatial
center position of the wave packet at t = 0. The correlated
photons described by Eq. (5) are referred to as the twin-beam
state and can be obtained from spontaneous parametric down-
conversion in a beta-barium borate (BBO) crystal [9]. δ(k +
k′ − ωe) indicates energy anticorrelation of two photons: one
photon with energy k0 − �k is accompanied by another photon
with energy k0 + �k, conserving the total energy of ωe = 2k0.
By Fourier transforming to the time region, this property
implies that the photon pair has time coincidence, as has been
measured in the famous Hong-Ou-Mandel experiment [10].

According to the spatiotemporal pulse dynamics theory, we
define ψ(k) by the Fourier transformation of the space domain
and choose ψ(k) having a Gaussian shape,

ψ(k)e−ikr0 = 1√
2π

∫ ∞

−∞
drψ(r) exp(−ikr), (6)

with

ψ(r) ∝ exp[−(r − r0)2/σ 2 + ik0(r − r0)], (7)

where σ is the coherent length of the wave packet. The
two-photon joint spectra |ψ2p|2 for uncorrelated and correlated
photons are shown in Fig. 2. Intriguingly, spectra of the
correlated photon pairs are classically identical to those of
the uncorrelated photon pair. Thus, the only difference is
the quantum correlation, which can be controlled only by
quantizing light fields.

III. RESULTS

The dynamics of atomic states induced by quantum-
correlated photons can now be calculated by solving Eq. (2).
In the actual calculation, we omit the degrees of freedom
of polarization by assuming linearly polarized light and
numerically solve Eq. (2) by discretizing the photon fields.
Further, we approximate the δ function in Eq. (5) by a Gaussian
function having a width σ/8, corresponding to a typical value
of correlated photons obtained from a BBO crystal. As a model
of the atomic system, we adopt energies of a Cs atom and
choose the energy levels of ωeA = 2k0 and ωmA = 0.86k0 for
|e〉 and |m〉, respectively. For simplicity, we choose the same
value of �e = �m ≈ 0.003k0 in each level.
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FIG. 3. 〈e〉 and 〈m〉 as a function of r for (a) uncorrelated photons
and (b) correlated photons.

Figure 3 shows the population dynamics induced by
uncorrelated and correlated photons. The parameters are the
same as those in Fig. 2. The horizontal axis is the spatial
center position r of the incident pulse, normalized by σ ,
and the vertical axis is the population of the atomic system,
where the solid and dashed curves represent 〈e〉 and 〈m〉,
respectively. For uncorrelated photons (a), when an incident
pulse reaches r = 0, the atomic system absorbs one photon and
〈m〉 is excited first. Then 〈e〉 is excited by absorbing another
photon and 〈m〉 disappears. This process is the well known
two-photon excitation via a virtual state. The efficiency of two-
photon excitation becomes large only when the subsequent
photon comes to the atomic system while the virtual state
survives. Therefore, photon coincidence is crucial in the
two-photon excitation. For correlated photons (b), however,
the virtual state 〈m〉 is hardly excited. Instead, 〈e〉 absorbs two
photons simultaneously and is drastically enhanced. In the
present parameters, the enhancement of 〈e〉 is about 15-fold
greater compared to uncorrelated photons. Thus, owing to the
coincidence of photons originating from quantum correlation,
the enhancement of two-photon excitation is achieved.

Of particular interest is that simultaneous absorption of two
photons effectively occurs despite no interaction terms such as
|e〉〈g|âkâk′ + â

†
kâ

†
k′ |g〉〈e| in Eq. (1). This is because photons

constituting a correlated-photon pair are inseparable as one
quantum state. As can be seen in Eq. (5), correlated photons
cannot be divided into the product of one-photon states as in
Eq. (4), and hence excitation of 〈m〉 hardly takes place. As a
result, efficient two-photon excitation is achieved.

Figure 4 shows the dependence of enhancement β on σ

normalized by the central wavelength λ of the incident pulse.
The parameters are the same as those in Fig. 2 except σ .
β is defined by the ratio of 〈e〉corr./〈e〉uncorr., where 〈e〉corr.

FIG. 4. β as a function of σ .

and 〈e〉uncorr. are the populations excited by correlated and
uncorrelated photons, respectively, and are obtained after an
incident photon pulse completely passes through an atomic
system. In the excitation exactly by two photons, the efficiency
by correlated photons always dominates that by uncorrelated
photons. For large σ (long pulse), β is small because of little
quantum correlation. As σ increases, however, β increases
owing to the increase of coincidence of two photons. In
the present parameters, β reaches ∼100. Although we only
calculate up to σ/λ ≈ 10 because of the difficulty in the
calculation due to discretization of the photon field, β will
increase for further decreases in σ . In particular, for a
monocycle pulse (σ/λ ≈ 1), large β can be expected so that
efficient two-photon excitation could be achieved by one
photon pair.

IV. CONCLUSION AND DISCUSSION

We have theoretically investigated the dynamics of two-
photon excitation by correlated photons using a fully quantum-
mechanical treatment, in terms of the dependence of excitation
efficiency on incident pulse width. We have shown that in the
excitation exactly by two photons the excitation efficiency
by correlated photons is always enhanced compared to
uncorrelated photons and the enhancement rate becomes more
prominent for shorter pulses.

Throughout this work, we have barely mentioned the
generating methods of correlated photons. Here we discuss
two candidates of real systems, as examples, in which required
photon pairs with small σ could be achieved. One is parametric
down-conversion utilizing the quasiphase matching condition
(QPMC). In general, in nonlinear crystals, such as a BBO
crystal, σ is noncontrollable. However, a QPMC system can
control the two-photon state by artificially designing the
material. In fact, correlated photons with small σ ∼ 10 fs
have already been reported [11,12]. Another is to utilize
cavity quantum electrodynamics (QED) effects realizable in an
exciton system confined in a semiconductor microcavity. The
QED system can also control the two-photon state by exciton-
cavity designing, and correlated photons can be efficiently
generated (e.g., by utilizing a biexciton state [13–15]).

Finally, we discuss a possibility of further enhancement
of excitation efficiency and a correlated photon pair with
time delay. In this study, we have replaced the δ function in
Eq. (5) by the Gaussian function. By squeezing the Gaussian
shape closer to the δ function (to smaller width), enhancement
of efficiency and highly selective excitation can be achieved
[16]. If the present results are combined with the method in
Ref. [16], a huge enhancement of excitation efficiency more
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than 1000 times can be expected. Further, by introducing
a time delay between two photons, the calculation method
presented in this work can be directly applied to an analysis of
up-conversion by entangled photons as reported in Ref. [17].

We hope that the results of this study facilitate applications
of correlated photons to optical devices based on two-photon
excitation.
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