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Resonances in the optical response of a slab with time-periodic dielectric function ε(t)
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We demonstrate that the optical response of a periodically modulated dynamic slab exhibits infinite resonances
for frequencies ω = (�/2)(2l + 1), namely, odd multiples of one-half of the modulating frequency � of the
dielectric function ε(t). These frequencies coincide partially with the usual condition of parametric amplification.
However, the resonances occur only for certain normalized slab thicknesses LR . These resonances follow from
detailed numerical studies based on our recent paper [Zurita-Sánchez, Halevi, and Cervantes-González, Phys.
Rev. A 79, 053821 (2009)]. As the thickness L nearly matches a resonance thickness LR , the amplitudes of
counterpropagating modes in the slab obey a condition implying that both have the same modulus and their
phases match a condition related to LR and the bulk wave vectors. When this condition is met, the electric field
profile inside the slab is a superposition of standing waves with odd and even symmetries, and the reflection and
transmission coefficients can reach great values and become infinite at exact resonance. Numerical simulations of
the optical response are shown for a sinusoidal ε(t) with either moderate or strong modulation. As expected, as the
modulation strength increases, higher-order harmonics ω − n� (n = 0, ± 1, ± 2, . . .) become more noticeable,
and short-wavelength bulk modes contribute significantly. However, we found that, regardless of the excitation
frequency ω = (�/2)(2l + 1), the dominant spectral component of the generated fields is �/2. Also, as the
excitation frequency increases, the parity of the standing waves is conserved.
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I. INTRODUCTION

In a previous paper [1], we developed a general theory of the
electromagnetic response of a monochromatic wave incident
at a dynamic slab with a time-periodic dielectric function
ε(t) = ε(t + T ) (T being the period). As a consequence of
the modulation of ε(t) that is realized by an (unspecified)
external agent, the reflected and transmitted fields result
in a superposition of waves with harmonics ω0 − �n (ω0

is the excitation frequency, � ≡ 2π/T , and n = 0, ± 1, ±
2, . . .). In this paper, we apply the aforementioned theory to
frequencies of incidence ω0 that are odd multiples of �/2.
This condition requires special attention because ω0 = l�/2
(l being an odd integer) corresponds to odd frequencies of
parametric excitation. Our system is driven by an external
source (the incident wave), and the slab thickness is an
important parameter. Our aim is to study the conditions for
and features of resonant amplification of an electromagnetic
wave when incident at a periodically modulated dynamic slab.

Pioneering studies with time-dependent ε(t) date back
about half a century, as reviewed in Ref. [1]. In particular, it was
noted that dynamic media could have engineering applications
as amplifiers [2]. However, the first theoretical analysis of
such amplification in a periodically modulated dynamic slab
was realized by Holberg and Kunz [3]. These authors restricted
themselves to the case of a specific variation ε(t) that gives rise
to Mathieu functions for the field, and to a weakly modulated
slab.

On the other hand, an effect closely related to ours is the
resonant response for photon generation from vacuum in a
cavity when the mirrors oscillate at a frequency that is twice
an eigenfrequency of the unperturbed cavity (dynamic Casimir
effect); see, for example, Ref. [4]. Finally, we mention that
interaction of electromagnetic fields with dynamic media has
recently become an active topic of research, and applications
for controlling energy transport are promising (see Ref. [1]

and references therein). We supplement the list of references
contained in our previous work [1] with the following recent
studies. In Ref. [5], a theory of radiation produced by currents
embedded in time-varying media is presented. The coupling
between modes of a cavity is achieved by the temporal change
of the refractive index [6,7].

Next we present the organization of the paper. In Sec. II,
we recapitulate the essential aspects of our theory in
Ref. [1]. Section III states the conditions for the occurrence
of resonances in a dynamic slab. Numerical simulations for
particular cases are described in Sec. IV. The first part analyzes
the transmitted field; the second part deals in detail with the
approach to a resonance (the Appendix complements this part);
and the third part concerns the field profiles inside the slab.
Finally, the conclusions are presented in Sec. V.

II. RECAPITULATION OF THEORY

A slab occupies the region 0 < y < L and has a time-
periodic dielectric function [ε(t) = ε(t + T ), T being the
period]. The medium outside the slab is vacuum (ε = 1).
We assume that a plane wave coming from y < −∞, with
angular frequency ω0, is incident normally at the surface
y = 0. Without loss of generality, the electric (magnetic) field
has only a z (x) component.

The electric field of the incident wave is

Einc(y,t) = E0e
i[k0(ω0)y−ω0t]. (1)

Here, k0(ω0) ≡ ω0/c (c being the velocity of light) and E0 is
the amplitude of the plane wave. The reflected and transmitted
electric fields are superpositions of waves with the frequency
harmonics ω0 − n� generated in the dynamic slab, that is,

Er (y,t) =
∞∑

n=−∞
Er

ne
−i[kn(ω0)y+(ω0−�n)t], (2)
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Et (y,t) =
∞∑

n=−∞
Et

ne
i[kn(ω0)(y−L)−(ω0−�n)t]. (3)

Here kn(ω0) = (ω0 − �n)/c is the wave vector for each of the
reflected (transmitted) harmonics. The electric field Eslab(y,t)
inside the slab is

Eslab(y,t) =
∞∑

n=−∞
Es

n(y)e−i(ω0−n�)t , (4)

where

Es
n(y) =

∞∑
p=1

(Apeikp(ω0)y + Bpe−ikp(ω0)y)epn(ω0). (5)

This field is a superposition of p modes of the corresponding
bulk dynamic medium that propagate in the left and right
directions. Each (bulk) p mode is given by the sum of partial
harmonics n with amplitude epn(ω0), wave vector kp(ω0), and
frequency ω0 − n�. Of course, Apepn(ω0) [Bpepn(ω0)] is the
amplitude of a plane wave propagating in the slab to the right
[left] with wave vector kp(ωo) and frequency ω0 − n�.

The coefficients Er
n, Et

n, Ap, and Bp are obtained by solving
the linear system

E0δn0 + Er
n =

∑
p

epn(ω0)(Ap + Bp), (6)

E0δn0 − Er
n =

∑
p

epn(ω0)kp(ω0)c

ω0 − n�
(Ap − Bp), (7)

Et
n =

∑
p

epn(ω0)(Apeikp(ω0)L + Bpe−ikp(ω0)L), (8)

Et
n =

∑
p

epn(ω0)kp(ω0)c

ω0 − n�
(Apeikp(ω0)L − Bpe−ikp(ω0)L). (9)

This linear system arises from the boundary conditions that
the electromagnetic fields must satisfy at the interfaces y =
0 and L. These equations are valid if ω0/� is not an integer.
This condition is obeyed in the present paper.

III. RESONANCES

Performing numerical simulations beyond those reported in
Ref. [1], we have found that the amplitudes of the reflected and
transmitted harmonics can be many orders of magnitude larger
than the amplitude of the incoming wave. Next we discuss
under what circumstances this happens.

We have encountered that a necessary condition for this
effect to occur is that the frequency of the incident wave be

ω0 = �(2l + 1)/2, l = 0,1,2, . . . (10)

These frequencies coincide with the odd resonant frequencies
of parametric amplification; see, for example, Ref. [8].
However, this condition is not sufficient. In addition, these
resonances are realized only for certain slab thicknesses
(geometric condition). Importantly, the large amplifications
of the reflected and transmitted fields appear for thicknesses
L lying in quite a small interval around certain resonant
thicknesses LR for which, presumably, the stability of the
dynamic system is broken owing to the divergence of the fields.

Within an extremely small interval centered at a resonant
thickness LR , we find numerically that

Bp ≈ ±ApeikpL. (11)

The condition (11) implies that (i) the magnitudes of the
amplitudes Ap and Bp [see Eq. (5)] are almost equal, namely,

|Ap| ≈ |Bp| ≡ Dp, (12)

and (ii) the phases of Ap and Bp, φA(B)
p = Arg[A(B)p] (−π <

φA(B)
p � π ), satisfy

φB
p − φA

p ≈ kpL − mpπ, p = 1,2, . . . , (13)

where mp is an integer. We have restricted the range to −π <

φA(B)
p � π only for convenience in the following numerical

analysis.
Using the conditions (12) and (13) in Eq. (5), the electric

field distribution inside the slab becomes

Es
n(y) =

∞∑
p=1

2Dpei(kpL/2+φA
p )epn(ω0)

×
{

cos[kp(y − L/2)], mp even,

i sin[kp(y − L/2)], mp odd.
(14)

By substituting Eq. (14) into Eq. (4), we can see that the spatial
and temporal oscillations of Re[Eslab(y,t)] have become
independent of each other. That is, the field distribution Es

n(y)
[Eq. (14)] describes a superposition of stationary waves.
Moreover, this distribution exhibits a simple even or odd
symmetry with respect to the center of the slab (y = L/2).

The frequencies �(2l + 1)/2 (l = 0,1,2, . . .) are the bor-
ders of the temporal Brillouin zones. For these frequencies,
the wave vectors kp (p being a positive integer) are either the
lower or the upper limits of a forbidden wave-vector band gap.
When the frequency ω0 is set to such a Brillouin zone edge, a
strong mixing of modes takes place, resulting in the forbidden
k band gaps. However, “pure” stationary waves are obtained
when the amplitudes Ap and Bp satisfy condition (11).

In the next section, we will demonstrate numerically that the
conditions (10) and (11) indeed lead to resonant amplification
of the reflection and transmission amplitudes.

IV. NUMERICAL SIMULATIONS

We consider that the dielectric function is modulated
sinusoidally as

ε(t) = ε0 + �ε sin(�t), (15)

where � = 2π/T . For a consistent comparison with our
previous work, the values for ε0 and �ε are the same that
were chosen in Ref. [1]. Hereafter ε0 = 5.25, while �ε = 0.85
(moderate modulation) or �ε = 3.4 (strong modulation). We
have solved Eqs. (6)–(9) for the transmission coefficients Et

n

(Sec. IV A below) and for the amplitudes Ap and Bp that lead
to the electric field profiles in the slab (Sec. IV C).
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FIG. 1. (Color online) Transmission coefficients Et
n as functions

of the normalized thickness LN . (a) ω0 = �/2, �ε = 0.85 (moder-
ate modulation), and n = −2,−1, . . . , 3. (b) ω0 = �/2, �ε = 3.4
(strong modulation), and n = −4,−3, . . . , 5. (c) ω0 = 3�/2, �ε =
3.4 (strong modulation), and n = −4,−3, . . . , 5.

A. Transmission

We consider the case ω0 = �/2. In Figs. 1(a) and 1(b), we
plot the magnitudes of the transmission coefficients Et

n/E0

for the first harmonics as functions of the normalized slab
thickness,

LN = L
√

ε0�/c, (16)

for �ε = 0.85 and 3.4. These figures show that reso-
nances arise for certain slab thicknesses. For the moderate-
modulation case, the resonances (beyond 40) show up
for LN ≈ 43.48,45.08,49.20 [see Fig. 1(a)], while for the
strong-modulation case (beyond 10) they appear for LN ≈
12.38,16.79,17.39 [see Fig. 1(b)]. As a consequence, as the

modulation strength �ε increases, the first resonance occurs
for a smaller normalized thickness LN . Also, we notice
that higher-order harmonics become more appreciable as the
strength �ε increases. At a resonance, for both cases, the
largest (and equal) magnitudes of the transmission coefficients
Et

n/E0 correspond to the harmonics n = 0,1. These harmon-
ics both oscillate with the frequency |ω0 − n�| = �/2. In
the limit of the empty-lattice model, the dispersion curves
corresponding to branches n = 0,1 intersect at the frequency
�/2. Consequently, a strong coupling between these equally
important harmonics n = 0,1 must take place.

The magnitudes of the transmission coefficients Et
n/E0

for the first harmonics as functions of the normalized slab
thickness LN for ω0 = 3�/2 and �ε = 3.4 (strong mod-
ulation) are depicted in Fig. 1(c). From the comparison of
Figs. 1(b) and 1(c), we recognize that the resonances for both
cases occur at the same thicknesses. However, the magnitude
of the transmission coefficient Et

n/E0 is about one order of
magnitude larger for ω0 = �/2 than for ω0 = 3�/2. Conse-
quently, the magnitudes of the transmission coefficients Et

n/E0

decrease as the number l in Eq. (10) increases. Differently from
the case ω0 = �/2, for ω0 = 3�/2 the largest amplitudes
of the transmission coefficients Et

n/E0 correspond to the
harmonics n = 1,2. In the empty-lattice limit, the dispersion
branches n = 1,2 cross each other at the frequency 3�/2.
This explains that the harmonics n = 1,2 are strongly coupled.
These harmonics actually oscillate with frequency |ω0 −
n�| = �/2. Thus, the dominant spectral component generated
at resonance is the one with frequency �/2, regardless of the
frequency of incidence ω0 (odd multiples of �/2).

We have mentioned that transmission coefficients Et
n/E0

around a resonance thickness can be very large. In addition,
they change abruptly as the thickness is slightly modified. To
illustrate this, let us consider the normalized thickness LN =
45.084 113 79 for the case of Fig. 1(a). If this LN is rounded
to six decimal places (45.084 114) then the transmission
coefficients Et

n/E0 will be reduced by about two orders of
magnitude. For practical reasons arising from this fact, the
“sampling” step used in the plots of Fig. 1 is not small enough
to show a still larger amplification of the fields.

Next we take a closer look at the particular thickness
LN = 45.084 113 79 (LN = 16.788 791 99) for the moderate-
(strong-)modulation case. The transmission coefficients
Et

n/E0 for the first harmonics at an excitation frequency
ω0 = �/2 are plotted in Figs. 2(a) and 2(b). These figures show
that the magnitudes of the transmission coefficients Et

n/E0 can
reach very large values (∼108). We remark that the modulating
external agent of the dynamic slab apparently provides the
energy to amplify the transmitted (and reflected) field. We
already pointed out that, as the modulation strength �ε

increases, higher harmonics become more noticeable. Also,
Figs. 2(a) and 2(b) display clearly the aforementioned feature
that the harmonics n = 0,1 have the largest transmission
coefficient magnitudes.

Now we consider the case LN = 16.788 791 99 and strong
modulation, but the exciting frequency is increased to ω0 =
3�/2. The magnitudes of the the transmission coefficients
Et

n/E0 for the generated harmonics are plotted in Fig. 2(c). The
comparison of Figs. 2(b) and 2(c) shows that the magnitudes of
the transmission coefficients Et

n/E0 for ω0 = �/2 are larger
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FIG. 2. (Color online) Transmission coefficients Et
n for various

harmonics n at a resonance thickness. (a) ω0 = �/2, �ε = 0.85
(moderate modulation), n = −2,−1, . . . ,3, and LN = 45.084 113 79
(b) ω0 = �/2, �ε = 3.4 (strong modulation), n = −4,−3, . . . , 5,
and LN = 16.788 791 99. (c) ω0 = 3�/2, �ε = 3.4 (strong modula-
tion), n = −4,−3, . . . , 5, and LN = 16.788 791 99.

than those for ω0 = 3�/2. Again, as was also noted from
comparison of Figs. 1(b) and 1(c), it is evident from Fig. 2(c)
that the dominant spectral contributions to the transmitted field
arise from the harmonics n = 1,2, which both oscillate at the
frequency �/2.

The magnitudes of the reflection coefficients Er
n/E0 are

the same as the magnitudes of the transmission coefficients
Et

n/E0 when the thickness L almost coincides with a resonant
thickness. Hence, we have omitted the analysis for the reflected
field.

We note that in Figs. 1 and 2 the transmission resonances
always appear as pairs of harmonics (n1,n2), such that
|Et

n1
| = |Et

n2
|. Not surprisingly, the values n1,n2 correspond

to equal frequencies |ω0 − n1�| = |ω0 − n2�|. With the help

of Eq. (10), we readily find that n1 + n2 = 2n + 1. Clearly,
this is satisfied for all the examples in Figs. 1 and 2.

B. A detailed look at a resonance

Previously, we have mentioned that the stability of the
dynamic system is presumably broken at the resonant thickness
LR . Now we examine a resonance numerically.

We solve the linear system Eqs. (6)–(9) by using the
single-value decomposition method [9]. In addition to finding
the solution, this method allows us to estimate how singular is
the coefficient matrixA of our linear system [see Eqs. (6)–(9)].
More about this estimation is found in the Appendix. We
consider that A is a square matrix of order M . We choose
the case �ε = 3.4 (strong modulation) and ω0 = �/2. In
Fig. 3, we plot the coefficient D1/E0 [see Eq. (12)] as a
function of the normalized thickness LN near a resonance for
the matrices A of order M = 188, 228, 268, and 284. In this
plot, the thickness interval is a < LN < a + 5 × 10−10 (a =
16.788 792 025 2). We note from Fig. 3 that D1/E0 increases
by about three orders of magnitude in this tiny interval.
The peak shape looks like a legitimate resonance. However,
the peaks shown have finite heights and slightly different
shapes depending on the matrix order M . Unexpectedly, the
peak height turns out to be the largest (smallest) for the
smallest (second largest) matrix order M = 188 (M = 268).
We attribute these features to numerical artifacts that are
discussed in the Appendix. Thus, according to the numerical
analysis in the aforementioned Appendix, the resonance of the
dynamic slab can be considered indeed legitimate, namely,
as L → LR , the magnitude of the reflection and transmission
coefficients |Er,t

n |/E0 → ∞.
As we pointed out in our previous work [1], we are dealing

with an open system. Hence, the energy balance between the
energy of the incident wave and the energy of the reflected and
transmitted waves is not necessarily conserved. The energy
gained is provided by the external agent that modulates the
dynamic medium. For a nonideal situation, the amplification
enhancement should be limited by the amount of energy
that this external agent can supply and the absorption of the
dynamic medium (herein neglected).

M=188
M=228
M=268
M=284

D
1/

E
o

1010

1013

1012

1011

normalized thickness (LN - 16.7887920252)

2x10-10 4x10-100

FIG. 3. (Color online) Amplitude coefficient D1/E0 as a function
of the normalized thickness LN near a resonance for �ε = 3.4, ω0 =
�/2, and the coefficient matricesA of orders M = 188,228,268,284.
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FIG. 4. (Color online) Electric field profiles in the slab for LN =
45.084 113 79, �ε = 0.85 (moderate modulation), and ω0 = �/2.
(a) Magnitudes of the electric field Es

n(y) for harmonics n =
−1,0,1,2. (b) Phases of the electric field Es

n(y) for harmonics n =
0,1. (c) Phases of the electric field Es

n(y) for harmonics n = −1,2.

C. Electric field profiles in the slab

We stated in Sec. III that a superposition of standing waves
[see Eq. (14)] is created inside the slab when the resonance
conditions (10) and (11) are met. Next we illustrate these
standing waves.

First, we consider the case �ε = 0.85 (moderate modula-
tion), LN = 45.084 113 79, and ω0 = �/2. The magnitudes
of the electric field Es

n(y) for the harmonics n = −1,0,1,2
are plotted in Fig. 4(a). As can be seen, the electric field
distributions inside the slab are the same for the harmonics
n = 0,1 and for the harmonics n = −1,2. The former pair

of harmonics oscillate with frequency �/2, while the latter
oscillate with frequency 3�/2. We note that the magnitudes
of the electric field Es

n(y) for the harmonics n = 0,1 are about
an order of magnitude larger than those for the harmonics
n = −1,2. Thus, the total electric field Eslab(y,t) for the
moderate-modulation case is composed predominantly of the
electric field distribution of the harmonics n = 0,1. Also, we
can recognize that the parity of the standing-wave pattern is
odd since the electric field Es

n(y) vanishes at the center of
the slab (y = L/2) [see Eq. (14)]. The phases of the electric
field Es

n(y) for the harmonics n = −1,0,1,2 are shown in
Figs. 4(b) and 4(c). As seen in Figs. 4(b) and 4(c), there are
phase discontinuities at the center of the slab since the electric
field vanishes there. For odd parity, the phases of the electric
field Es

n(y) for the harmonics m,n (m + n = odd integer) that
oscillate with the same frequency are related to each other by

Arg
[
Es

n(y − L/2)/E0
] + Arg

[
Es

m(−{y − L/2})/E0
] = a,

(17)

where a is a constant. This relation is illustrated in Figs. 4(b)
[4(c)], where the harmonics n = 0 and m = 1 [n = −1 and
m = 2] oscillate with frequency �/2 [3�/2]. The electric
field profile Es

n(y) is a superposition of p modes [see
Eq. (14)]. The amplitudes Dp of the modes for p = 1, . . . , 5
are tabulated in Table I. As seen, for p = 1 and 2 these
amplitudes are at least two orders of magnitude greater than
the others. Also, Table I lists the normalized wave vectors κp,
the phases φA,B

p /π , and mp. These quantities corroborate the
condition (13). The numbers mp are odd integers, in agreement
with the odd symmetry of the profiles Es

n that we discussed.
Next we analyze the case in which the slab is strongly

modulated (�ε = 3.4, LN = 16.788 791 99] and excited with
frequency ω0 = �/2. The magnitudes of the electric field
Es

n(y) inside the slab for the harmonics n = −1,0,1,2 are
plotted in Fig. 5(a). As for the moderate modulation, the
pair of harmonics that oscillate with the same frequency
have the same magnitude. In contrast to the previous case,
the electric field does not vanish at the center of the slab.
Therefore the parity corresponding to this resonance is even
[see Eq. (14)]. For any position y, the magnitude of the electric
field Es

n(y) for the harmonics n = 0,1 (�/2) is considerably
larger than for the other harmonics. This also happens for the
moderate-modulation case. However, now the total electric
field Eslab(y,t) is not due mainly to the harmonics n = 0,1,
but higher-order harmonics must be also taken into account.
Figures 5(b) and 5(c) show the phases of the electric field
Es

n(y) for the harmonics n = −1,0,1,2. We notice that the

TABLE I. κp ≡ kpc/(
√

ε0�), Dp , φA,B
p /π , and mp for p =

1, . . . , 5, ω0 = �/2, LN = 45.084 113 79, and �ε = 0.85 (moderate
modulation).

p κp Dp φA
p /π φB

p /π mp

1 0.477 41 1.5789 × 108 0.922 17 0.773 41 7
2 0.518 04 1.0277 × 108 −0.369 32 0.064 90 7
3 1.492 86 5.4806 × 106 0.635 97 −0.940 39 23
4 1.492 87 3.4656 × 106 −0.364 12 0.059 70 21
5 2.487 77 1.2554 × 105 −0.002 84 0.698 42 35
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FIG. 5. (Color online) Electric field profiles in the slab for
LN = 16.788 791 99, �ε = 3.4 (strong modulation), and ω0 = �/2.
(a) Magnitudes of the electric field Es

n(y) for harmonics n =
−0,1,2,3. (b) Phases of the electric field Es

n(y) for harmonics
n = 1,2. (c) Phases of the electric field Es

n(y) for harmonics n = 0,3.

phase for a given harmonic n is an even function with respect
to the center of the slab y = L/2. Furthermore,

Arg
[
Es

n(y − L/2)/E0
] + Arg

[
Es

m(y − L/2)/E0
] = b, (18)

where b is a constant, and m,n (m + n = odd integer) corre-
spond to the harmonics that oscillate at the same frequency.
Table II shows the values of Dp for p = 1, . . . ,7. Similarly to
what was seen for the moderate-modulation case, the largest
Dp’s correspond to p = 1 and 2. However, while for the
moderate-modulation case Dp for p = 5 is reduced by about

TABLE II. κp ≡ kpc/(
√

ε0�), Dp , φA,B
p /π , and mp for p =

1, . . . ,7, ω0 = �/2, LN = 16.788 791 99, and �ε = 3.4 (strong
modulation).

p κp Dp φA
p /π φB

p /π mp

1 0.370 08 3.7687 × 107 −0.509 62 −0.531 92 2
2 0.543 73 1.5875 × 107 0.526 38 −0.567 92 4
3 1.363 87 8.1281 × 105 0.334 95 −0.376 49 8
4 1.365 03 4.9039 × 106 0.331 84 −0.373 38 8
5 2.267 12 6.4821 × 105 −0.578 57 −0.462 97 12
6 2.267 13 6.1100 × 105 −0.078 59 0.037 06 12
7 3.171 54 3.9146 × 104 0.504 77 −0.546 38 18

three orders of magnitude with respect to the largest Dp, the
same reduction level for the strong-modulation case is reached
for p = 7. Thus, as the modulation strength �ε increases, more
p modes contribute to the electric field Es

n(y). In addition,
Table II contains the values of mp (p = 1, . . . ,7). As seen,
all mp are even numbers, which confirms the even parity of
Es

n(y). Table II comprises the values of the normalized κp and
φA,B

p /π for p = 1, . . . ,7; thus condition (13) can be verified.
Now we set the excitation frequency to ω0 = 3�/2, while

still dealing with the strong-modulation case (�ε = 3.4,
LN = 16.788 791 99). We plot the magnitudes of the electric
field Es

n(y) for the harmonics n = 0,1,2,3 in Fig. 6(a). Again,
the magnitudes of the electric field Es

n(y) for the harmonics
oscillating at the same frequency are equal and are greatest for
the harmonics oscillating with frequency �/2, that is, n = 1,2.
A comparison of Figs. 5(a) and 6(a) shows that they look
very similar. However, the field magnitudes in Fig. 5(a) are
one order of magnitude larger than those in Fig. 6(a). As we
pointed out, the amplification is stronger for ω0 = �/2 than
for ω0 = 3�/2. The corresponding phases of the electric field
Es

n(y) for the harmonics n = 0,1,2,3 are plotted in Figs. 6(b)
and 6(c). We observe that the even parity is maintained, as
for the ω0 = �/2 case. In addition, the curves in Figs. 6(b)
and 6(c) are mirror plots of those in Figs. 5(b) and 5(c) with
respect to the y axis. The values of Dp and mp for p = 1, . . . ,7
appear in Table III. As expected, the magnitudes Dp for the
excitation frequency ω0 = 3�/2 are smaller than those for
ω0 = �/2 (see Tables II and III). As in Table II, the values of
mp are all even. This shows that the parity of Es

n is conserved
as the excitation frequency increases from ω0 = �/2 to 3�/2.

TABLE III. κp ≡ kpc/(
√

ε0�), Dp , φA,B
p /π , and mp for p =

1, . . . ,7, ω0 = 3�/2, LN = 16.788 791 99, and �ε = 3.4 (strong
modulation).

p κp Dp φA
p /π φB

p /π mp

1 0.370 08 4.9222 × 106 0.539 58 0.517 29 2
2 0.543 73 2.0735 × 106 −0.924 41 −0.018 72 2
3 1.363 87 1.0616 × 105 0.384 16 −0.327 29 8
4 1.365 03 6.4050 × 105 0.381 04 −0.324 17 8
5 2.267 12 8.4663 × 104 0.470 64 0.586 23 12
6 2.267 13 7.9802 × 104 0.470 61 0.586 26 12
7 3.171 54 5.1128 × 103 0.554 05 −0.497 11 18
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FIG. 6. (Color online) Electric field profiles in the slab for LN =
16.788 791 99, �ε = 3.4 (strong modulation), and ω0 = 3�/2.
(a) Magnitudes of the electric field Es

n(y) for harmonics n =
−0,1,2,3. (b) Phases of the electric field Es

n(y) for harmonics
n = 1,2. (c) Phases of the electric field Es

n(y) for harmonics n = 0,3.

Again, the condition (13) can be verified for p = 1, . . . ,7, the
values of normalized κp and φA,B

p /π being listed in Table III.
The transmission and reflection coefficients can be related

to the electric field at the surfaces of the slab (y = 0 and L) as

Er
n = Es

n(0) − E0δn0, (19)

Et
n = Es

n(L). (20)

Equations (19) and (20) follow straightforwardly by compar-
ing Eq. (5) with Eqs. (6) and (8). From the field profiles
given by Eq. (14), it turns out that Es

n(0) = Es
n(L) for even

parity, whereas Es
n(0) = −Es

n(L) for odd parity. Consequently,

the magnitudes of Et
n and Er

n are the same for n �= 0.
Moreover, if |Es

0(0)| � |E0| then the last statement is even
valid approximately for n = 0. This justifies our omission of
analysis for the reflected field. Also, Eq. (20) can be verified
by looking at Figs. 2–6.

V. CONCLUSIONS

We have shown that huge resonant amplification of an
incident wave can be achieved in a periodically modulated
dynamic slab surrounded by vacuum. As seen from Fig. 2(a),
transmission amplitudes on the order of 108 can be achieved for
slab thicknesses in the immediate vicinity of a resonant value
LR . This amplification happens for excitation frequencies
equal to odd multiples of one-half the modulation frequency
�, provided that the condition (11) is satisfied. When this
condition is met, the electric field profile inside the slab
is a superposition of standing waves with odd and even
symmetries. We have considered that ε(t) oscillates sinu-
soidally with either strong or moderate modulation and have
performed numerical simulations for these cases. An important
point is that we have realized a numerical analysis near a
resonance and found that the resonances of a dynamic slab
are indeed legitimate, namely, the fields become infinite as the
thickness L approaches a resonant thickness LR . In addition,
the numerical outcomes reveal the following behavior. The
transmission coefficient Et

n/E0 around a resonant thickness
varies extremely rapidly as the thickness is slightly modified.
The transmission coefficient and the electric field profile
magnitudes for a pair of harmonics (n1 and n2) oscillating at
the same frequency (|ω0 − n1�| = |ω0 − n2�|) are the same,
namely, |Et

n1
| = |Et

n2
| and |Es

n1
(y)| = |Es

n2
(y)|. Independently

of the excitation frequency ω0 (odd multiples of �/2), the
dominant spectral components of the reflected and transmitted
fields oscillate with frequency |ω0 − n�| = �/2. Further, as
the excitation frequency ω0 increases, the magnitudes of the
generated fields decrease, their parity being conserved. As the
modulation strength �ε increases, higher-order harmonics be-
come more appreciable and a larger number of wave vectors kp

contribute significantly to the total electric field inside the slab.
The implementation of dynamic metamaterials could pro-

vide suitable experimental conditions for detecting such
resonances.
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APPENDIX: NUMERICAL ANALYSIS NEAR A
RESONANCE

Herein, we analyze meticulously the precision of the
numerical algorithms near a resonance. This precision depends
on the machine ε. This analysis leads us to conclude that the
resonances are legitimate.

As we pointed out in Sec. IV B, the linear system Eqs. (6)–
(9) is solved by using the single-value decomposition method.
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FIG. 7. (Color online) The condition number of A for orders
M = 188 and 228, �ε = 3.4 (strong modulation) and ωo = �/2.

For a square matrix A of coefficients of order M , the
parameters

σ1 � σ2 � · · · � σM � 0,

denominated singular values, are extracted by this method.
The condition number of A can be estimated as

cnd (A) = σ1/σM. (A1)

In principle, the matrix A is singular if cnd(A) → ∞. The
error of the calculated σi from the true σ̂i is [9]

|σi − σ̂i | < b, i = 1, . . . ,M (A2)

where b ≈ σ1εm (εm being the machine ε).
We consider the same resonance discussed in Sec. IV B, that

is, �ε = 3.4 (strong modulation), ω0 = �/2, and a < LN <

a + 5 × 10−10 (a = 16.788 792 025 2). In Fig. 7, we depict
the condition number of the matrix cnd(A) as a function of the
normalized thickness LN for M = 188 and 228. We notice
that, apart from roughly two orders of magnitude difference,
the plots of D1/E0 (Fig. 3) and cnd (A) (Fig. 7) look similar.
Consequently, the heights of the peaks of Fig. 3 seem to be
proportional to σ1/σM at the resonant thickness. It happens
that the σi are almost constant in the vicinity of the resonance
with the exception of σM , which varies significantly in this
very small interval of LN . The value of σM can be inferred
from Fig. 7 by using Eq. (A1) and the fact that σ1 ≈ 11.274
(σ1 ≈ 11.603) for M = 188 (M = 228). Then we obtain that
min(σM ) ≈ 4.75 × 10−14 [min(σM ) ≈ 3.08 × 10−13] for M =
188 [M = 228]. On the other hand, our machine ε is εm =
2.2 × 10−16; thus the error bound is b ≈ 2.48 × 10−15 (b ≈
2.55 × 10−15) for M = 188 (M = 228). Also, the error bound
b is related to the bound for the minimum σM that can be
obtained numerically, that is, σM > b. Therefore, the facts
that the variation of σM is huge in this small interval and
that min(σM ) nearly reaches the bound b indicate the existence
of a legitimate resonance.
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FIG. 8. (Color online) Numerical check near a resonance for
�ε = 3.4 (strong modulation), ω0 = �/2, and matrix order M =
188 and 228. (a) |Q0 − 2| as a function of the normalized thickness
LN . (b) |Q1| as a function of the normalized thickness LN .

The addition of Eqs. (6) and (7) yields

Qn − 2δn0 = 0, (A3)

where

Qn ≡
∑

p

epn(ω0)

[
Ap

E0

(
1 + kp(ω0)c

ω0 − n�

)

+ Bp

E0

(
1 − kp(ω0)c

ω0 − n�

) ]
. (A4)

As an additional check of our numerical solution, we calculate
Qn by using the numerical outcomes for M = 188 and 288.
Figure 8 shows the plots of |Q0 − 2| and |Q1| as functions
of the normalized thickness LN . Thus, these plots show how
much the numerical calculations of |Q0 − 2| and |Q1| deviate
from zero (the exact solution). We mention that the series Qn

converges numerically when p ≈ 17. The ripple appearing in
Fig. 8 is due to the error propagation arising from the sum of
large numbers. Also, the amplitude of this ripple is smaller
for M = 228 than for M = 188 (see Fig. 8). The significant-
digit number accuracy depends on the condition number of
the matrix A. As seen in Figs. 7 and 8, there is a correlation
between the deviation from zero and cnd (A).
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