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Classical dynamics of the optomechanical modes of a Bose-Einstein condensate in a ring cavity
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We consider a cavity optomechanical system consisting of a Bose-Einstein condensate (BEC) interacting with
two counterpropagating traveling-wave modes in an optical ring cavity. In contrast to the more familiar case where
the condensate is driven by the standing-wave field of a high-Q Fabry-Pérot cavity we find that both symmetric
and antisymmetric collective density side modes of the BEC are mechanically excited by the light field. In
the semiclassical, mean-field limit where the light field and the zero-momentum mode of the condensate are
treated classically the system is found to exhibit a rich multistable behavior, including the appearance of isolated
branches of solutions (isolas). We also present examples of the dynamics of the system as input parameters such
as the frequency of the driving lasers are varied.
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I. INTRODUCTION

The optomechanical cooling of mechanical oscillators has
witnessed considerable progress in the past few years, leading
to the expectation that a large class of such oscillators will soon
be cooled to near their quantum-mechanical ground state of
vibration. In addition to the top-down approach where cooling
proceeds by mounting macroscopic oscillators as moving
mirrors in an optical resonator [1,2]—often but not always
the end mirror of a Fabry-Pérot interferometer—there has also
been increased interest in considering bottom-up situations. In
that case the mechanical oscillator consists of a momentum
side mode of an ultracold atomic system trapped inside a
high-Q optical cavity with fixed mirrors. The trapped
atoms can be a thermal sample [3], a quantum-degenerate
Bose-Einstein condensate (BEC) [4,5], or even a quantum-
degenerate gas of fermions [6]. In that bottom-up situation
the mechanical oscillator(s) consist of collective momentum
modes of the trapped gas, excited via photon recoil [7–11].
Specifically, in the case of a condensate the intracavity
standing-wave field couples the macroscopically occupied
zero-momentum component of the BEC to a symmetric
superposition of the states with center-of-mass momentum
±2h̄k via virtual electric dipole transitions.

It is known that when considering the mechanical effects
of light on atoms by quantized light fields, there are situations
where a standing wave does not lead to the same diffraction
pattern as a superposition of two counterpropagating running
waves of equal frequencies [12–14]. This is because, in
contrast to a standing wave, running waves in principle permit
one to extract “which way” information about the matter-
wave diffraction process. This begs the question whether a
description of the intracavity light field in terms of a standing
wave is always appropriate to describe the optomechanical
effects of feeble light fields on ultracold atoms. As a first
step toward answering this question, this paper addresses the
somewhat simpler question of understanding the difference
between classical standing wave and counterpropagating light
fields, that is, the difference in optomechanical properties of
condensates trapped in, say, a Fabry-Pérot and a ring cavity.
One main consequence of the presence of two counterprop-
agating running waves is that in addition to a symmetric
“cosine” momentum side mode, it is now possible to excite

an out-of-phase “sine” mode as well. In the optomechanics
analogy, this indicates that two coupled “condensate mirrors”
of equal oscillation frequencies but in general different masses
are driven by the intracavity field. This can result in complex
multistable behaviors that we analyze in some detail in the
following sections.

The dynamical interaction between BECs and counter-
propagating light fields has a long history. The cooperative
scattering of light and atoms in ultracold atomic systems, in-
cluding experimental [15–18] and theoretical [19–23] studies
of superradiance in BECs and coherent atom recoil lasing
(CARL) [24–31] has been the subject of a number of studies
(see Ref. [32] for a brief review). The work most closely
related to our analysis is Ref. [33], which considers likewise
the collective dynamics of atoms in a ring resonator, but in the
somewhat simplified situation where the amplitude of one of
the counterpropagating fields inside the resonator is fixed.

The remainder of the paper is organized as follows.
Section II describes our model of a BEC interacting with
two counterpropagating fields in a ring cavity. It introduces
a description of the condensate that clearly illustrates an
optomechanical analogy involving two mirrors driven by the
intracavity field. In the semiclassical limit where the light fields
are treated classically, the dynamics of these two “mirrors”
can be understood in terms of an interference effect between
the propagating fields. We further discuss conditions under
which one of the mirrors can be trapped into a dark state.
Section III discusses the steady-state properties of the system
and comments on the appearance of isolated branches of
solutions, or “isolas” [34,35]. We then turn in Sec. IV to the
dynamics of the system, considering in particular the response
of the condensate to a sweep of the frequency of the external
pump lasers. Finally, Sec. V is a summary and outlook.

II. MODEL

We consider a BEC of N two-level bosonic atoms with tran-
sition frequency ωa trapped inside one arm of a high-Q optical
ring cavity supporting two counterpropagating traveling-wave
fields of frequency ω and driven by two coherent pump fields
of identical frequency ωp and complex amplitudes η1 and η2.
The light fields are taken to be far detuned from the atomic
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transition so that the excited electronic state of the atoms can be
adiabatically eliminated. We further assume that the atom trap
is sufficiently soft that the condensate can be assumed to be
homogeneous along the axis of the resonator. For simplicity we
neglect transverse effects and describe both the condensate and
the light fields as plane waves, thereby reducing the description
of the problem to one dimension. By neglecting atom-atom
collisions and in a frame rotating at the pump frequency ωp

the model Hamiltonian for this system is then

Ĥ = −
∑
i=1,2

[h̄�â
†
i âi + ih̄(η∗

i âi − ηiâ
†
i )]

+
∫

dxψ̂†(x)

[
− h̄2

2m

d2

dx2
+ h̄U0(â†

1â1 + â
†
2â2

+ â
†
2â1e

2ikx + â
†
1â2e

−2ikx)

]
ψ̂(x), (1)

where ψ̂(x) and âi are the bosonic annihilation operators for
the atomic field and the counterpropagating cavity modes
i = 1,2, respectively, k = ω/c, � = ωp − ω is the pump-
cavity detuning, m is the atomic mass, and U0 = g2

0/�a is
the familiar off-resonant atom-photon interaction strength,
with g0 the vacuum Rabi frequency and �a = ωp − ωa the
atom-pump detuning.

The BEC is initially prepared in a macroscopically occupied
zero-momentum state from which the atoms are then scattered
into higher momentum side modes ±2�h̄k by the intracavity
optical field, where � is an integer. For moderate fields the
condensate dynamics can be restricted to the zero-momentum
mode and the first two side modes, � = 1 [4,7], and the atomic
field operator can be expanded simply in terms of these modes.
Instead of a plane-wave expansion, we find it convenient to use
a sine and cosine basis, so that

ψ̂(x) = 1√
L

ĉ0 +
√

2

L
ĉc cos(2kx) +

√
2

L
ĉs sin(2kx), (2)

where L is the cavity length and ĉ0, ĉc, and ĉs are the
bosonic annihilation operators of the zero-momentum mode,
the cosine mode, and the sine mode, respectively. They satisfy
the usual bosonic commutation relations [ci,c

†
j ] = δi,j . With

this expansion of the Schrödinger field the Hamiltonian (1)
reduces to

Ĥ = h̄(−� + U0N )
∑

â
†
i âi −

∑
ih̄(η∗

i âi − ηiâ
†
i )

+ 4h̄ωr (ĉ†ccc + ĉ†s cs) + h̄U0√
2

(â†
2â1 + â

†
1â2)(ĉ†cĉ0 + ĉ

†
0ĉc)

+ ih̄U0√
2

(â†
2â1 − â

†
1â2)(ĉ†s ĉ0 + ĉ

†
0ĉs), (3)

where ωr = h̄k2/2m is the atomic recoil frequency. This
Hamiltonian can be further simplified since for weak optical
fields and large N the depletion of the initial condensate
remains weak. More specifically, the dominant mechanism for
condensate decay is three-body scattering, which generally
results in decay times on the order of seconds [9]. Since
this paper addresses systems that are studied on the time
scale of milliseconds [4], we are then justified in treating

the zero-momentum mode classically, ĉ0 → √
N . We further

introduce the “position” operators

X̂j ≡ (ĉ†j + ĉj )/
√

2 (4)

and the corresponding “momentum” operators

P̂j ≡ i(ĉ†j − ĉj )/
√

2, (5)

where j = {c,s}, resulting in the Hamiltonian (3) being
mapped to the optomechanical Hamiltonian

Ĥ = h̄(−� + U0N )
∑

â
†
i âi −

∑
ih̄(η∗

i âi − ηiâ
†
i )

+ 2h̄ωr

(
X̂2

c + P̂ 2
c + X̂2

s + P̂ 2
s

)
+ h̄U0

√
NX̂c(â†

2â1 + â
†
1â2)

+ ih̄U0

√
NX̂s(â

†
2â1 − â

†
1â2). (6)

In this form, the Hamiltonian provides a simple physical
picture: The sine and cosine momentum side modes of
the condensate behave as a pair of mirrors driven by the
interference between the two counterpropagating intracavity
light fields. As such, they can be thought of as a “bottom-up”
realization of coupled mirrors driven by the radiation pressure.
We return to this point shortly, but first we derive the coupled
equations of motion of the light-condensate mirrors system.

In practice the sine and cosine momentum modes are
coupled to other momentum side modes as a result of the
presence of a trapping potential that is otherwise ignored in
our discussion. This results in a damping of the population
of these modes and associated noise operators. The resulting
quantum Langevin equations obtained from the Hamiltonian
(6) are therefore

˙̂Xc = 4ωrP̂c − γ X̂c + f̂xc,

˙̂Pc = −4ωrX̂c − U0

√
N (â†

2â1 + â
†
1â2) − γ P̂c + f̂pc,

˙̂Xs = 4ωrP̂s − γ X̂s + f̂xs,

˙̂Ps = −4ωrX̂s − iU0

√
N (â†

2â1 − â
†
1â2) − γ P̂s + f̂ps,

i ˙̂a1 = U0

√
Nâ2(X̂c − iX̂s) − (�̃ + iκ)â1 + iη1 +

√
2κâin

1 ,

i ˙̂a2 = U0

√
Nâ1(X̂c + iX̂s) − (�̃ + iκ)â2 + iη2 +

√
2κâin

2 ,

(7)

where κ is the linewidth of the ring cavity, �̃ = � − U0N is
the Stark-shifted cavity-pump detuning, and the side-mode
damping rate γ affects both position and momentum, as
discussed in Ref. [9]. All noise operators, f̂xc, âin

1 , etc., are
assumed to have zero mean.

In the remainder of this paper we consider the simple
limit where all fields, optical and matter-wave, are treated
classically. A full quantum description of the problem will
be considered in future work. Taking the expectation values
of Eqs. (7) and factorizing all operator products, for example
〈â2X̂c〉 → 〈â2〉〈X̂c〉, 〈â†

2â1〉 → 〈â†
2〉〈â1〉, etc, yields the classi-

cal equations of motion,

Ẍc = −2γ Ẋc − (
16ω2

r + γ 2
)
Xc

− 4ωrU0

√
N (α∗

2α1 + α∗
1α2), (8)
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FIG. 1. Excitation of symmetric X̂c and antisymmetric X̂s col-
lective density side modes. The excitation of these modes is due to
the interaction between a classically treated zero-momentum mode
ĉ0 → √

N and the superposition of two traveling wave modes â1

and â2.

Ẍs = −2γ Ẋs − (
16ω2

r + γ 2
)
Xs

− 4iωrU0

√
N (α∗

2α1 − α∗
1α2), (9)

iα̇1 = U0

√
Nα2(Xc − iXs) − (�̃ + iκ)α1 + iη1, (10)

iα̇2 = U0

√
Nα1(Xc + iXs) − (�̃ + iκ)α2 + iη2, (11)

where we have set 〈âi〉 → αi , 〈X̂c〉 → Xc, etc.
Equations (8) and (9) are particularly instructive in that they

show that the sine and cosine side modes are driven by out-
of-phase components of the interference pattern produced by
the counterpropagating optical fields. In particular, we observe
that if these two fields have equal phase and amplitude, then
the sine mode is not excited: It becomes a dark state as a result
of the destructive interference between the coherent recoil
effects from the two counterpropagating fields. Similarly, the
cosine mode can become a dark state for out-of-phase and
equal-amplitude intracavity fields (see Fig. 1). We show in the
next section that these dark states are useful in understanding
the steady-state properties of the system. Interestingly, in
high-Q Fabry-Pérot resonators it is usually appropriate to
describe the intracavity light field as a standing wave (a
cosine-wave if the origin is chosen as the center of the
resonators). In that case, only the cosine momentum side mode
of the condensate is excited, and the problem reduces to the
familiar BEC optomechanical situation of Ref. [4].

We remark that even in Fabry-Pérot interferometers it
is strictly speaking never completely appropriate to ignore
the other mode, the sine mode of the optical field, unless
the mirrors are perfectly reflecting (and infinitely heavy).
This is especially so in the limit of feeble quantized fields,
where certainly the quantum fluctuations of the cosine mode
are always present. It will be interesting in future work to
determine the extent to which the two BEC “mirrors” under
consideration here can develop quantum correlations between
the two light fields, leading, for example, to 〈â†

2â1〉 �= 0, with
similar behavior for the sine and cosine side modes. As
such, this system may provide a sensitive test-bed to generate
and study the onset of quantum correlations in this optically
driven Bose condensate. These intriguing questions will be
the topic of subsequent work. In the context of a BEC driven
inside a Fabry-Pérot resonator, work has been done to treat
quantum noise and correlations (see for instance [7,36,37]).
Concentrating for now on the classical properties of the system,
we turn in the next section to a discussion of its steady-state
properties.

III. STEADY-STATE SOLUTIONS AND OPTICAL
BISTABILITY

Setting the time derivatives to zero in Eqs. (8)–(11) yields
after some algebra a fifth-order polynomial equation for |α1|2.
This equation is quite cumbersome and is not presented here.
We proceed by numerically determining |α1|2, retaining only
the physically relevant real positive roots of the fifth-order
equation. From these values one readily finds |α2|2, Xc, Xs ,
α1, and α2 from

α2 = iη2

�̃ + iκ + C1|α1|2
, (12)

α1 = iη1

�̃ + iκ + C1|α2|2
, (13)

Xc = C2(α∗
2α1 + α∗

1α2), (14)

Xs = iC2(α∗
2α1 − α∗

1α2), (15)

where

C1 = 8ωrNU 2
0

/(
16ω2

r + γ 2)
and

C2 = −4ωrU0

√
N

/(
16ω2

r + γ 2
)
.

The stability of the steady-state solutions is determined by the
standard Routh-Hurwitz criterion [38].

Figures 2–8 show typical results obtained for parameters
similar to those used in previous experimental [4] and
theoretical [9] work. For these specific parameters we obtain
only three real roots for |α1|2.

Consider first the case of real and equal pump amplitudes,
η1 = η2. Figure 2 shows the mean intracavity intensity of the
counterpropagating optical fields 1 and 2 as a function of the
effective detuning �̃. Starting from large negative detunings,
the intracavity field intensities increase as the magnitude of the
detuning is decreased, as expected, with both field intensities
being equal. At point A the system makes a discontinuous
jump to point B. A similar behavior has been observed in the
case of a BEC trapped in a Fabry-Pérot cavity [4]. However, a
new feature of the ring cavity system appears at point C. Here,
the solution described by the thick curve becomes unstable
and the system undergoes a spontaneous symmetry breaking,

4 2 0 2 4
κ

0.1

0.2

0.3

α1
2, α2

2

A

B
C

D
E

F

a

FIG. 2. (Color online) Mean intracavity intensity (unitless) of
mode 1 or 2 as a function of the detuning �̃ for L = 100 µm,
λp = 780 nm, κ = 2π × 1.3 MHz, ωr = 2π × 3.8 kHz, U0 = 2π ×
3.1 kHz, N = 9000, η1 = η2 = 0.54κ , and γ = 0.001κ . The dashed
segments are unstable. The plot for modes 1 and 2 are identical,
except that when mode 1 is on the CFD branch then mode 2 is on the
CED branch, and conversely (see text).
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4 2 2 4
κ

1.0

0.5

0.5

1.0

θ1, θ2

FIG. 3. (Color online) Phase of the intracavity fields as a function
of the detuning �̃ for the same parameters as in Fig. 2. The plots for
modes 1 and 2 are identical, except that when mode 1 is on the upper
semiloop then mode 2 is on the lower semiloop, and conversely (see
text). The dashed segments are unstable.

with one of the intracavity intensities increasing and following
the CFD curve, while the other decreases and follows the
CED curve. Which of the two counterpropagating fields will
follow which branch is completely random and determined
by classical (or quantum) noise, as illustrated in the following
section. This behavior is reminiscent of that found for instance
in symmetrically pumped nonlinear interferometers [35,39].

Figure 4(a) shows the steady-state position Xc of the
cosine mode for the parameters of Fig. 2. Clearly, Xc is also
multistable, although this would appear not to be the case
from the figure. This is because the branch CGD is actually
degenerate, with the field intensities corresponding to both
branches CED and CFD in Fig. 2 yielding the same value
of Xc for a given detuning �̃. This might appear surprising,
given that these intensities are vastly different. The point is
that the intensity only gives part of the story; we also need
to consider the phase of the intracavity fields (see Fig. 3),
which are just as important in determining the steady-state
values of Xc and Xs , as apparent from Eqs. (14) and (15).
More precisely, it is the interference between the forward and
backward field amplitudes that drives Xc and Xs . To the left

4 2 2 4
κ

10

8

6

4

2

Xc

C

D
G

a

4 2 2 4
κ

10

8

6

4

2

Xc

b

FIG. 4. (Color online) Position Xc (unitless) of the cosine mode as
a function of the detuning �̃ for (a) equal pumping amplitudes η1 = η2

and (b) slightly imbalanced pumping η1 = 0.53κ , η2 = 0.54κ; other
parameters are the same as those in Fig. 2. The dashed segments are
unstable.

4 2 2 4
κ

6

4

2

2

4

6

Xs

FIG. 5. (Color online) Position Xs (unitless) of the sine mode as
a function of the detuning �̃ for equal pumping amplitudes. The
parameters are the same as in Fig. 2. The dashed segments are
unstable.

of the spontaneous-symmetry-breaking point C in Fig. 2 the
phases of the two counterpropagating fields are equal; hence
α∗

2α1 − α2α
∗
1 = 0, and the sine side mode is in a dark state (cf.

Fig. 5). The situation is the same to the right of point D in
Fig. 2. For detunings in the spontaneous-symmetry-breaking
region, the upper intensity branch corresponds to the lower
phase branch. For a fixed detuning, these combinations of
phase and amplitudes of the fields result in equal values of
the interference term α∗

2α1 + α2α
∗
1 for the two branches, and

hence the same value of Xc. In this region we also have
that α∗

2α1 − α2α
∗
1 �= 0, resulting in nonzero values for Xs (see

Fig. 5). Note however that, for that mode, the two branches
lead to two values of Xs exactly out of phase with each other,
as expected from the form of Eq. (15).

A small imbalance between the two (real) pump field
amplitudes (η1 �= η2) is sufficient to lift the degeneracy and
remove the symmetry between the two counterpropagating
modes [see Fig. 4(b)]. This leads to a qualitatively different
steady-state behavior of the system, including the appearance
of isolated domains of solutions, or isolas. A similar behavior
has been previously predicted in other nonlinear optics
contexts, including nonlinear ring resonators filled by a Kerr
nonlinear medium [34,35].

Figure 6 shows the mean intracavity intensity of mode 1
as a function of the detuning �̃ for imbalanced pumping,
and Fig. 7 shows the corresponding curves for mode 2. The
effect of imbalanced pumping is to detach the loop previously
associated with spontaneous symmetry breaking from the

4 2 0 2 4
κ

0.1

0.2

α1
2

C

D

E

P

R

FIG. 6. (Color online) Mean intracavity intensity (unitless) of
mode 1 as a function of detuning �̃. The parameters are the same as
those in Fig. 2 except that η1 = 0.54κ and η2 = 0.55κ . The dashed
segments are unstable.
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4 2 0 2 4
κ

0.1

0.2

α2
2

FIG. 7. (Color online) Mean intracavity intensity (unitless) of
mode 2 as a function of detuning �̃. The parameters are the same as
those in Fig. 6. The dashed segments are unstable.

“main” bistability branch. The isolated branch, the isola,
is accessible via an adiabatic sweep of the detuning from
large negative values. When reaching point C in Fig. 6 the
main branch becomes unstable, and the field jumps toward
point D on the isola. One could also reach the isola with
a hard nonequilibrium excitation to a point within the basin
of attraction of the steady-state branch RDE. That basin of
attraction can be determined numerically by integrating the
equations of motion (8)–(11) backward in time from initial
values arbitrarily close to that branch.

Figure 4(b) shows Xc as a function of detuning, illustrating
particularly clearly the lifting of the degeneracy associated
with symmetric pumping and the onset of an isola, and Fig. 8
shows the corresponding Xs . Further results not discussed
here show that when the difference between the pump field
intensities are sufficiently large, both bistability and the isolas
eventually disappear.

IV. DYNAMICS

We now turn to a discussion of selected aspects of the
dynamics of the system as external parameters are varied in
time. Here we concentrate on linear sweeps of the effective
detuning from large negative values to large positive values.
The main motivation of the calculations presented in this
section is to show how the steady-state structure displayed
in Sec. III is probed for reasonable parameter values. Our
calculations show that each stable branch, including isolas,
should be observable. Because the cavity field decay rate κ

is typically orders of magnitude larger than the characteristic

4 2 2 4
κ

6

3

3

6

Xs

FIG. 8. (Color online) Position Xs (unitless) of the sine mode as
a function of detuning �̃. The parameters are the same as those in
Fig. 6. The dashed segments are unstable.

200 400 600 800
t ωr

1
0.05
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0.15
0.20
0.25
0.30

α1
2

a

2 0 2 4

200 400 600 800
t ωr

1
0.05
0.10
0.15
0.20
0.25
0.30

α1
2

b

2 0 2 4

FIG. 9. (Color online) Time evolution of the intensity (unitless)
of mode 1 as the effective detuning is varied at a rate of 2π ×
0.3 MHz/ms from −4κ to 4κ . Due to random noise, the system
evolves either along (a) the lower stable loop or (b) the upper stable
loop (cf. Fig. 2). The values given above the time axis are the
instantaneous values of the detuning in units of κ . Other parameters
are the same as in Fig. 2.

frequency of mechanical motion, 4ωr, and the damping rate γ

of the side modes, we can eliminate the optical field degrees of
freedom adiabatically, and we are left with a pair of coupled
nonlinear second-order differential equations for Xc and Xs

that can easily be solved numerically. The initial conditions
for the oscillator variables are taken to be Xc(0) = Xs(0) =
Ẋc(0) = Ẋs(0) = 0 in all cases. We also add a small amount

200 400 600
t ωr

1

2

4

6

Xs

a

2 0 2

200 400 600
t ωr

1

2

4

6

Xs

b

2 0 2

FIG. 10. (Color online) Time evolution of Xs (unitless) as the
effective detuning is swept linearly at a rate of 2π × 0.3 MHz/ms
from −4κ to 4κ . Classical noise can result in the system evolving
either along (a) the upper or (b) the lower stable loop (see Fig. 5).
The values given above the time axis are the instantaneous values
of the detuning in units of κ . Other parameters are the same as in
Fig. 2.

053833-5



CHEN, GOLDBAUM, BHATTACHARYA, AND MEYSTRE PHYSICAL REVIEW A 81, 053833 (2010)

200 400 600 800
t ωr

1

0.1

0.2

0.3

α1
2

a

C
2 0 2 4

200 400 600 800
t ωr

1

0.1

0.2

0.3

α1
2

b

P2 0 2 4

FIG. 11. (Color online) Time evolution of the intensity (unitless)
of mode 1 under a linear sweep of the effective detuning at a rate
of 2π × 0.3 MHz/ms (a) for a sweep from −4κ to 4κ and (b) for a
sweep from 4κ to −4κ (cf. Fig. 6). The values given above the time
axis are the instantaneous values of the detuning in units of κ . Other
parameters are the same as in Fig. 6.

of classical noise δN(t) to simulate atom number fluctuations,
due for example to collisions or to thermal effects in the
condensate. This noise term has the main effect of helping
drive the system away from unstable branches in a reasonable
time. In the simulations presented in this section, δN (t) is
a pseudorandom field generated using a normal distribution
specified by a zero mean and a standard deviation of 0.05N .
Each simulation corresponds to a single realization of δN(t),
that is, no additional averaging is used.

We consider first the case of real pumps of equal amplitudes,
η1 = η2, and sweep the effective detuning linearly at a rate of
2π × 0.3 MHz, a rate that is in most cases slow compared to
the characteristic time scale of the atomic motion, in order to
guarantee adiabaticity, but still fast compared to the atom loss
rate [4]. Figure 9 shows the time evolution of the intensity of
mode 1 as the detuning �̃ is varied from −4κ to 4κ . Except
for rapid transients that occur for a narrow range of detunings
the intensity follows the steady-state values of Fig. 2. These
rapid transients correspond to system parameters such that the
system is almost unstable, with a particularly slow relaxation
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FIG. 12. (Color online) An enlarged figure for the transient
around point C in Fig. 11(a).
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FIG. 13. (Color online) Time evolution of Xs (unitless) as the
effective detuning is swept linearly at a rate of 2π × 0.3 MHz/ms
(a) from −4κ to 4κ and (b) from 4κ to −4κ (cf. Fig. 8). The values
given above the time axis are the instantaneous values of the detuning
in units of κ . Other parameters are the same as in Fig. 6.

time to equilibrium. At the spontaneous-symmetry-breaking
point C in Fig. 2, random noise determines whether the
intensity follows the lower half-loop solution of Fig. 9(a) or
the upper half loop shown in Fig. 9(b). Figure 10 shows the
corresponding Xs(t).

We already mentioned that sweeping the effective detuning
allows one to reach the isolas characteristic of imbalanced
pumping. This is illustrated at point C of Fig. 11(a), which
shows the evolution of the intensity of mode 1 as the detuning is
swept linearly from −4κ to 4κ . Likewise, point P on Fig. 11(b)
shows that transition when the detuning is swept down from
4κ to −4κ . Figure 12 is a closeup of the rapid oscillations
near point C in Fig. 11(a). For completeness, Fig. 13 shows
the corresponding time evolution of the position Xs of the sine
mode.

V. CONCLUSIONS

In this paper we have presented a classical analysis of
the fundamental optomechanical modes of a Bose-Einstein
condensate trapped inside a ring cavity. In contrast to the
situation of a Fabry-Pérot cavity there are now two such
modes, symmetric (cosine) and antisymmetric (sine) ones.
These sine and cosine modes act as two coupled “con-
densate mirrors” of equal frequencies, with their coupling
resulting in a rich steady-state behavior, including for in-
stance the appearance of isolas for an appropriate choice of
parameters.

One important feature of these modes is that together
with the original condensate they form a V system, with
the upper levels—the sine and cosine modes—driven by a
two-photon process involving both counterpropagating light
fields. One or the other of these modes can then become a
dark state as a result of destructive interferences between the
two counterpropagating fields. This is of course a classical
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effect: In the case of quantized optical and matter-wave fields,
quantum fluctuations will normally prevent these modes from
becoming perfectly dark. It follows that measuring correlation
functions of the optical field provides a direct means to probe
the quantum properties of the matter-wave side modes. Future
work will examine these aspects of ring-cavity optomechanics
in detail, both when quantum fluctuations can be treated as
small fluctuations about a classical mean and in the limit of
very feeble fields where this approach is no longer appropriate.
We will also revisit the Fabry-Pérot case to include both the
standing-wave mode that is normally included in the analysis,
as well as the second frequency-degenerate but out-of-phase
optical mode that needs to also be included and can become

significantly excited for low mirror reflectivities. Finally, we
will investigate in detail the damping of the matter-wave side
modes due to the presence of a trap as well as the damping due
to collisions. This will provide us with an effective Q factor
for the condensate mirrors and permit us to study in detail their
heating and cooling mechanisms.
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