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Enhancement of correlated photon-pair generation from a positive-negative
index material heterostructure
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The generation efficiency of correlated photon pairs from a positive-negative index material heterostructure
has been investigated by using a rigorous quantum model of spontaneous parametric down-conversion. The mean
number of output photon pairs and the signal-field energy spectrum have been calculated. It is shown that the
strong confinements of both the pump and signal fields around the resonance state result in a giant enhancement
of the correlated photon-pair generation. The generation rate of the correlated photon pair can be improved by
several orders of magnitude in the present structure in comparison with those in the corresponding conventional
resonant cavity. This means that the present structure can be applied as a highly efficient potential source for
entangled photon pairs.
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I. INTRODUCTION

During the past few years, there has been a great deal
of interest in studying how to produce entangled photon
pairs, because it is an essential resource that must be freely
available for implementing many of the novel functions
of quantum-information processing [1,2]. Many methods to
produce such a resource have been developed [1–12]. A
popular approach to generating entangled pairs of photons is
based on the nonlinear process of parametric down-conversion
in naturally birefringent nonlinear crystals such as β-barium
borate (BBO) [3]. The other mechanisms, such as using
quasi-phase-matching in photonic crystals and periodically
poled materials, have also been proposed [4–12].

Recently, negative index materials (NIMs) have attracted a
great deal of attention from both theoretical and experimental
sides [13–21]. These materials, which are characterized by
simultaneous negative permittivity and permeability, possess
a number of unusual electromagnetic effects [13–21]. The
characteristic of single and coupled cavities made of positive
index material (PIM) sandwiched between two NIMs has also
been analyzed [21]. It is found that the nonlinear conversion
efficiency can be improved greatly by such a system in
comparison with that in the conventional resonant cavity [21].
It is natural to ask whether or not the system possesses
some advantages in the generation of correlated photon
states.

Motivated by such a problem, in this paper we will
investigate the generation of correlated photon pairs from a
positive-negative index material heterostructure. Our studies
are based on the quantum theory of spontaneous parametric
down-conversion. We first extend the rigorous quantum model,
which has been developed in Ref. [8] for the one-dimensional
dielectric photonic crystal, to the multilayer structures contain-
ing the NIMs. The two-photon amplitude and the generation
rate for the correlated photon pairs in the structure will
be studied in detail. The rest of the paper is organized as
follows. In Sec. II, we summarize the theory and method for
the generation of correlated photon pairs in the multilayer
structures containing the NIMs. The numerical results and
discussion are described in Sec. III. A conclusion is given in
Sec. IV.

II. THEORY

We consider a cavity consisting of a positive index material
sandwiched between two negative index materials (NIM-PIM-
NIM). The electric and magnetic responses of the NIM are
modeled with a lossy Drude model [20,21]:

ε(ω̃) = 1 − 1

ω̃(ω̃ + iγ̃e)
, µ(ω̃) = 1 − (ωpm/ωpe)2

ω̃(ω̃ + iγ̃m)
, (1)

Where ω̃ = ω/ωpe is the normalized frequency, ωpe and ωpm

are electric and magnetic plasma frequency, respectively. γ̃e =
γe/ωpe and γ̃m = γm/ωpe are the electric and magnetic loss
terms normalized with respect to the electric plasma frequency.
The middle layer is nonlinear materials such as semiconductors
with high quadratic nonlinear susceptibility.

The nonlinear interaction in the above structure is described
by a Hamiltonian Ĥ (t), which is given as a sum of every layer
Hamiltonian Ĥ (l)(t):

Ĥ (t) =
3∑

l=1

Ĥ (l)(t), (2)

with

Ĥ (l)(t)

= ε0

∫
υ

χ̃ (l)(r) :
[
E

(l+)
P,α (r,t)Ê(l−)

s,β (r,t)Ê(l−)
i,γ (r,t) + H.c.

]
.

(3)

Where ε0 is the permittivity of the vacuum and χ̃ (l)(r) represent
the second-order susceptibility tensor in the lth layer. Here
l = 1,2,3 are the marks of three layers in the cavity, the left
and right regions of the cavity are marked by l = 0 and l = 4,
respectively.

�

E(l+)
p,α (r,t) is the positive frequency electric field

for the pump and
�

E(l−)
m,α (r,t) is the corresponding electric field

operator for the generated photon with negative-frequency
ωm (m = s,i) in the lth layer. Here α, β, and γ denote the
polarization directions [transverse electric polarization (TE)
and transverse magnetic polarization (TM)]. H.c. stands for a
Hermitian conjugated term.
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Considering a monochromatic pump field, E(l+)
p,α (r,t) in the

lth layer can be written as

E(l+)
p,α (r,t) = {

A
(l)
pF,α exp

[
iβ(l)

p (z − zl−1)
]
e

(l)
pF,α

+A
(l)
pB,α exp

[−iβ(l)
p (z − zl−1)e(l)

pF,α

]}
× exp(ikp⊥r⊥) exp(−iωpt),

α = TE,TM, l = 0,1,2,3,4, (4)

with

β(l)
p =

√(
k

(l)
p

)2 − k2
p⊥

(
k(l)
p = n(l)(ωp)

ωp

c

)
, (5)

Where k(l)
p represents the wave vector of the pump field in the

lth layer, kp⊥ and β(l)
p are the transverse and longitudinal com-

ponents of the wave vector. r⊥ and z stand for the transverse and
longitudinal coordinates, n(l)(ωp) is the refractive index for the
pump field with frequency ωp . Where e

(l)
pF,α and e

(l)
pB,α represent

the unit polarization vectors for the pump field, and A
(l)
pF (B),α

is the amplitude for the forward (backward) propagating
field in the lth layer, which are determined by the boundary
conditions and free fields inside the layers. The expressions
for A

(l)
pF (B),α are given in Appendix A.

The electric-field operators Ê(l−)
m,α (r,t) with negative fre-

quency for the signal and idler fields with α polarization can
be described as [19]

Ê(l−)
m,α (r,t) = −

∫ ∞

0
dωm

√
h̄ωmζ (l)(ωm)

4πε0cA
u(l)(ωm)

n(l)(ωm)

× [
eiβ(l)(z−zl−1)α̂

(l)
mF,α(ωm)e(l)

mF,α + e−iβ(l)(z−zl−1)

× α̂
(l)
mB,α(ωm)e(l)

mB,α

]
exp(ikm⊥r⊥) exp(iωmt),

(6)

with

ζ (ωm) = εI (ωm) − κI (ωm)|n(ωm)|2
2γ (ωm)

, (7)

β(l)
m =

√(
k

(l)
m

)2 − k2
m⊥

(
k(l)
m = n(l)(ωm)

ωm

c

)
, (8)

where ε0 and c are the permittivity and light speed in vacuum,
respectively. h̄ is the reduced Planck constant, A denotes
the area of the transverse profile of a beam. α̂

(l)
mF,α(ωm) and

α̂
(l)
mB,α(ωm) are the annihilation operators for the generated

field in the lth layer. ê(l)
mF,α(ωm) and ê

(l)
mB,α(ωm) are polarization

vectors of mode m of α wave propagating forward and
backward with respect to the z axis. km⊥ is the transverse
component of the wave vector, which is a constant in the
whole structure. εI (ωm) is the imaginary part of the electric
permittivity, and κI (ωm) is the imaginary part of the reciprocal
of magnetic permittivity. γ (ωm) is the imaginary part of the
refractive index n(ωm). n(l)(ωm) and u(l)(ωm) are the refractive
index and magnetic permittivity for the generated field with
frequency ωm in the lth layer. The expressions for α̂

(l)
mF,α(ωm)

and α̂
(l)
mB,α(ωm) are given in Appendix B.

Inserting Eqs. (4) and (6) into Eq. (2), we can get
the following expression by using the transverse Fourier
transformation:

Ĥ (t) = ε0A
√

2π

3∑
l=1

∫ zl

zl−1

dz

∫ ∞

0
dωs

×
∫ ∞

0
dωiχ̃

(l)(z) :
{
E

(l+)
P,α (z,ωp)Ê(l−)

s,β (z,ωs)

× Ê
(l−)
i,γ (z,ωi) exp[−i(ωp − ωs − ωi)t] + H.c.

}
,

α,β,γ = TE,TM. (9)

The transverse wave vectors of the pump field and the signal
and idler fields satisfy the following relation:

kp⊥ = ks⊥ + ki⊥. (10)

Solving the Schrödinger equation to first order in nonlinear
perturbation together with the assumption of incident vacuum
state |vac〉, the output state |�〉out

s,β,i,γ of signal and idler fields
can be expressed as [7,8]

|ψ〉out
s,β,i,γ = exp

[
− i

h̄

∫ ∞

−∞
dtHint(t)

]
|vac〉

= |vac〉 − i

h̄
lim

T →∞

∫ T

−T

dtĤ (t)|vac〉. (11)

Inserting Eqs. (4), (6), and (9) into Eq. (11), we arrive at
the expression for the output state as

|ψ〉out
s,β,,i,γ = |vac〉 − i

√
2π

2c

3∑
l=1

∫ ∞

0
dωs

√
ωs

∫ ∞

0
dωi

√
ωi

×
∑

m=pF,pB

∑
n=sF,sB

∑
o=iF,iB

χ̃ (l) :e(l)
m,αe

(l)
n,βe(l)

o,γ

×
√

ωsωiζ
(l)
s (ωs)ζ

(l)
i (ωi)u(l)

s (ωs)u
(l)
i (ωi)

n
(l)
s (ωs)n

(l)
i (ωi)

×A(l)
m,αLl exp

[
i

2

(
k(l)
m − k(l)

n − k(l)
o

)
Ll

]

× sin c

[
1

2

(
k(l)
m − k(l)

n − k(l)
o

)
Ll

]

× σ (ωp − ωs − ωi)α̂
(l)†
n,β(ωs)α̂

(l)†
o,γ (ωi)|vac〉. (12)

For the NIM-PIM-NIM cavity, we assume only the middle
layer has a nonzero nonlinear coefficient and the absorption is
neglected. Then, |�〉out

s,β,i,γ can be expressed as

|ψ〉out
s,β,,i,γ = |vac〉 − i

√
2π

2c

∫ ∞

0
dωs

√
ωs

∫ ∞

0
dωi

√
ωi

×
∑

m=pF,pB

∑
n=sF,sB

∑
o=iF,iB

χ̃ (2) :e(2)
m,αe

(2)
n,βe(2)

o,γ

×
√

ωsωi

n
(2)
s (ωs)n

(2)
i (ωi)

×A(2)
m,αL2 exp

[
i

2

(
k(2)
m − k(2)

n − k(2)
o

)
L2

]
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× sin c

[
1

2

(
k(2)
m − k(2)

n − k(2)
o

)
L2

]

× σ (ωp − ωs − ωi)α̂
(2)+
n,β (ωs)α̂

(2)+
o,γ (ωi)|vac〉.

(13)

We are interested only in the second term of |�〉out
s,β,i,γ , the

vacuum state |vac〉 can be neglected. By using the matrix-
transfer formalism in Eqs. (A5) and (B2), the operators α̂

(2)
mF,α

and α̂
(2)
mB,α can be expressed in terms of the operators â

(4)
mF,α

and â
(0)
mB,α , and the pump-field amplitudes A

(2)
pF,α(ωp) and

A
(2)
pB,α(ωp) can be determined from the amplitudes of the

incident fields A
(0)
pF,α and A

(4)
pB,α . A

(4)
pB,α can be assumed to

be zero. The second term (|�〉(2)
s,β,i,γ ) in |�〉out

s,β,i,γ can be
decomposed into the following four parts [7,8]:

|ψ〉(2)
s,β,i,γ = ∣∣ψFF

s,β,i,γ

〉 + ∣∣ψFB
s,β,i,γ

〉 + ∣∣ψBF
s,β,i,γ

〉 + ∣∣ψBB
s,β,i,γ

〉
,

(14)

where∣∣ψFF
s,β,i,γ

〉 =
∫ ∞

0
dωs

∫ ∞

0
dωi

[
φFF (ωs,ωi)α̂

(4)+
sF,β (ωs)

× α̂
(4)+
iF,γ (ωi)

]|vac〉,∣∣ψFB
s,β,i,γ

〉 =
∫ ∞

0
dωs

∫ ∞

0
dωi

[
φFB (ωs,ωi)α̂

(4)+
sF,β(ωs)

× α̂
(0)+
iB,γ (ωi)

]|vac〉, (15)∣∣ψBF
s,β,i,γ

〉 =
∫ ∞

0
dωs

∫ ∞

0
dωi

[
φBF (ωs,ωi)α̂

(0)+
sB,β (ωs)

× α̂
(4)+
iF,γ (ωi)

]|vac〉,∣∣ψBB
s,β,i,γ

〉 =
∫ ∞

0
dωs

∫ ∞

0
dωi

[
φBB (ωs,ωi)α̂

(0)+
sB,β (ωs)

× α̂
(0)+
iB,γ (ωi)

]|vac〉,
with

φFF (ωs,ωi)=− i
√

2π

2c

∑
c=11(n=sF )
c=21(n=sB)

∑
d=11(o=iF )
d=21(o=iB)

�n,o

(
R

(2)
s,β

)
c
(ωm)

× (
R

(2)
i,γ

)
d
(ωm)σ (ωp − ωs − ωi),

φFB(ωs,ωi)=− i
√

2π

2c

∑
c=11(n=sF )
c=21(n=sB)

∑
d=12(o=iF )
d=22(o=iB)

�n,o

(
R

(2)
s,β

)
c
(ωm)

× (
R

(2)
i,γ

)
d
(ωm)σ (ωp − ωs − ωi),

φBF (ωs,ωi)=− i
√

2π

2c

∑
c=12(n=sF )
c=22(n=sB))

∑
d=11(o=iF )
d=21(o=iB)

�n,o

(
R

(2)
s,β

)
c
(ωm)

× (
R

(2)
i,γ

)
d
(ωm)σ (ωp − ωs − ωi),

φBB(ωs,ωi)=− i
√

2π

2c

∑
c=12(n=sF )
c=22(n=sB)

∑
d=12(o=iF )
d=22(o=iB)

�n,o

(
R

(2)
s,β

)
c
(ωm)

× (
R

(2)
i,γ

)
d
(ωm)σ (ωp − ωs − ωi), (16)

and

�n,o =
∑

b=11(m=pF )
b=21(m=pB)

χ̃ (2) : e(2)
m,αe

(2)
n,βe(2)

o,γ

√
ωsωi

n
(2)
s (ωs)n

(2)
i (ωi)

(
R(2)

p,α

)
b

× (ωp)A(0)
pF,α(ωp)L2 exp

[
i

2

(
k(2)
m − k(2)

n − k(2)
o

)
L2

]

× sin c

[
1

2

(
k(2)
m − k(2)

n − k(2)
o

)
L2

]
, (17)

where φFF (ωs,ωi) denotes the probability amplitude that
a photon pair occurs in modes signal-forward and idler-
forward, φFB(ωs,ωi) correspond to signal-forward and idler-
backward, φBF (ωs,ωi) to signal-backward and idler-forward,
and φBB(ωs,ωi) to signal-backward and idler-backward. Here
the symbols FF , FB, BF, and BB represent the marks for
four kinds of mode, respectively. The concrete forms for the
matrix element (Fp(2)

α )b(ωp), (Fs
(2)
β )c(ωs), and (Fi(2)

γ )d (ωi)
are given in the Appendixes A and B. Then |φhk(ωs,ωi)|2(h =
F,B,k = F,B) can be expressed as

|φhk(ωs,ωi)|2 = lim
T →∞

2T

2π
f (ωs,ωi)δ(ωp − ωs − ωi), (18)

with

f (ωs,ωi) = π

c2
|ϕ|2 , (19)

and

ϕ =
∑

c=hp(n=sF )
c=hq(n=sB)

∑
d=kp(o=iF )
d=kq(o=iB)

�n,o

(
R

(2)
s,β

)
c
(ωm)

(
R

(2)
i,γ

)
d
(ωm),

(20)
Fp = 11, Fq = 21; Bp = 12, Bq = 22,

where the period of nonlinear interaction goes from −T to
T . The expressions for the above physical quantities must be
normalized by 2T , which indicates that 2T

2π
will be replaced by

1
2π

in the calculation.
After the output states are obtained, the generation rate of

correlated photon pairs can be analyzed. Thus, we define a
quantity Nhk

s,i (ωs,ωi) which describes the number of photon
pairs that have a signal photon at the frequency ωs and its twin
idler photon at the frequency ωi in mode mn [8]:

Nhk
s,i (ωs,ωi) = 〈

ψhk
s,β,i,γ

∣∣ n̂sh,β (ωs)n̂ik,γ (ωi)
∣∣ψhk

s,β,i,γ

〉
, (21)

where the density operators of photons, n̂sh(ωs) and n̂ik(ωi),
are defined as

n̂sh,α(ωs) = α̂
†
sh,α(ωs)α̂sh,α(ωs),

(22)
n̂ik,α(ωs) = α̂

†
ik,α(ωi)α̂ik,α(ωi),

with

α̂mF,α = â
(4)
mF,α, α̂mB,α = â

(0)
mB,α. (23)

By using Eqs. (15) and (18), the expression for Nhk
s,i (ωs,ωi)

can be written as

Nhk
s,i (ωs,ωi) = |φhk(ωs,ωi)|2. (24)
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If we introduce Nhk
s (ωs) to describe the number of signal

photons at frequency ωs in mode hk, it can be expressed in the
following form:

Nhk
s (ωs) =

∫ ∞

0
dωi |φhk(ωs,ωi)|2. (25)

Sometimes, the energy spectrum of the signal field, Shk
s (ωs),

is easy to measure from the experimental view. It is related to
Nhk

s (ωs) which is determined by the following expression:

Shk
s (ωs) = h̄ωsN

hk
s (ωs) = h̄ωs

∫ ∞

0
dωi |φhk(ωs,ωi)|2. (26)

Inserting Eq. (18) into Eqs. (25) and (26), Nmn
s (ωs) and

Smn
s (ωs) can be expressed as

Nhk
s (ωs) = 1

2π
f (ωs,(ωp − ωs)), (27)

and

Shk
s (ωs) = h̄ωs

2π
f (ωs,(ωp − ωs)). (28)

Based on Eqs. (27) and (28), the mean number of photon pairs
and the energy spectrum of the signal field can be obtained
easily by the numerical calculations.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results for the
efficiency of generating a correlated photon pair by a
NIM-PIM-NIM structure. In numerical calculations, we take
ωpm/ωpe = 0.8 and γe/ωpe = γm/ωpe = 10−4 for the NIM
layer according to Ref. [21]. The middle PIM layer is assumed
to be nondispersive and nonabsorbing with refractive index
n = 1.4 [21]. The nonlinear coefficient of the middle PIM
layer is taken as χ (2) = 10 pm/V [21]. The linear transmission
spectrum for normal incidence of TE polarized mode and the
density of states (DOS) as a function of the frequency for
such a structure are plotted in Figs. 1(a) and 1(b), respectively.
The thicknesses of NIM and PIM layers are taken as 2.5λpe

and 0.16338λpe (λpe = 2πc/ωpe), respectively. From the
transmission spectrum, we find that a transmission resonance
appears in the middle of the gap, which corresponds to the
maximum value of the DOS at ω = 0.9 ωpe.

If we let a pump field with ωp = 1.8 ωpe and Ip =
100 MW/cm2 be incident normally on the sample, making sure
the output states of the signal and idler light at the resonance
frequency, highly efficient generation of correlated photon
pairs can be realized. Figure 2(a) shows the energy spectrum
SFF

s of mode FF for generated correlated photon pairs by
the NIM-PIM-NIM structure as a function of normalized
frequency. Here the angle (θs) of emergence of the signal
field is taken as θs = 0, with θs defined by the relation
sin (θs) = ks⊥/k(0)

s , where k(0)
s is the signal-field wave vector

in the left background. It is seen clearly that the resonant
peak appears at 2ωs = 1.0ωp. For comparison, in Fig. 2(b)
we have plotted the corresponding results by the conventional
three-layer heterostructure (PIM-PIM-PIM). The middle layer
and size of the PIM-PIM-PIM structure are taken the same as
those in the NIM-PIM-NIM structure. The solid and dotted
lines correspond to the case of the dielectric constants of the
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FIG. 1. Linear transmission coefficient (a) and density of states
(b) as functions of the normalized frequency for the NIM-PIM-NIM
structure. The thicknesses of NIM and PIM layers are taken as
2.5λpe and 0.16338λpe (λpe = 2πc/ωpe), respectively. ωpm/ωpe =
0.8, γe/ωpe = γm/ωpe = 10−4, and the refractive index of the PIM
layer is taken as 1.4.

exterior layers 3.0 and 10.0, respectively. Comparing these
results with the maximum in Fig. 2(a), we find that the
generation rate of correlated photon pairs can be improved
by four orders of magnitude by using the NIM-PIM-NIM
structure instead of the PIM-PIM-PIM structure.

Although the generation rates of correlated photon pairs
in the periodically poled lithium niobate (PPLN) waveguide
or fiber-based source are high [22–24], the present system
also possesses some advantages in comparison with them.
For example, to reach the same generation rate, we have to
construct a PPLN waveguide with 200 nonlinear layers in
which the thickness of each nonlinear layer is the same as the
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FIG. 2. Energy spectra SFF
s of mode FF as a function of nor-

malized frequency at ωp = 1.8ωpe for the NIM-PIM-NIM structure
(a) and the PIM-PIM-PIM structure (b). The parameters in the
NIM-PIM-NIM structure are identical with those in Fig. 1. The
middle layer in the PIM-PIM-PIM structure is the same as that in
the NIM-NIM-PIM structure; the dielectric constants of the exterior
layers are 3.0 (solid line) and 10.0 (dashed line).
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FIG. 3. Square modulus of the electric field for the NIM-PIM-
NIM structure at 0.9ωpe. The parameters are identical with those in
Fig. 1.

above structure; the PPLN waveguide with 100 periods only
possesses one-tenth the generation rate of the present system.

The physical origin for such a highly efficient generation
of correlated photon pairs can be attributed to the local
resonance of the field and the quasi-phase-matching in the
structure. In order to disclose such a phenomenon, in Fig. 3
we show the distribution of the electric field intensity in
the structure without considering the nonlinear interaction.
It is seen clearly that the field localization appears inside the
sample which corresponds to the maximum of the DOS in
Fig. 1(b). Thus, the nonlinear interaction can be promoted
under the field localization in the nonlinear material, which
leads to the improvements of the generation rate of correlated
photon pairs. In fact, such a phenomenon has been observed
in a defective quadratic nonlinear photonic crystal (PC) [9].
However, many-layer structures need be fabricated for the PC.
The superiority of the present structure is that a three-layer
system is only needed to obtain highly efficient generation of
correlated photon pairs.

Furthermore, we find that the phenomenon is also sensitive
to the thickness of the sample. Figure 4(a) shows the mean
number of photon pairs of mode FF as a function of thickness
of the middle layer in the NIM-PIM-NIM structure at ωs =
0.9ωpe. With the increase of the thickness, many resonance
peaks appear, which is equivalent to the multiresonant peaks
in the transmission spectrum of Fig. 4(b). This means that
a high generation rate can always be obtained by tuning the
thickness of the middle nonlinear layer.

The results presented above are for the case in which the
output states of signal and idler photons are at the resonance
frequency in the gap region while the pump field is in the band
region. In fact, if the incident pump field is at the resonance
frequency and the output states of signal and idler photons are
in the band region, a similar phenomenon can also be observed.
Figure 5(a) displays the energy spectrum of mode FF as a
function of normalized frequency at ωp = 0.9ωpe for the NIM-
PIM-NIM structure. It is shown clearly that two resonance
peaks at 2ωs/ωp = 0.956 and 1.044 appear, corresponding
to the output states of signal and idler photons, respectively.
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FIG. 4. (a) Mean number of photon pairs NFF
s of mode FF as a

function of the thickness of the middle layer in the NIM-PIM-NIM
structure at ωs = 0.9ωpe. (b) Corresponding transmission coefficient.
The other parameters are identical with those in Fig. 1.

Comparing these values of SFF
s with the corresponding results

for the PIM-PIM-PIM structure as shown in Fig. 5(b) (solid
and dashed lines correspond to the dielectric constants of the
exterior layers 3.0 and 10.0, respectively), we find that the
generation rate of correlated photon pairs can also be improved
by three orders in the NIM-PIM-NIM structure in comparison
with those in the PIM-PIM-PIM structure.

The above discussions are only for the case with θs = 0.
In fact, the generation rate of correlated photon pairs also
depends on the emitted angle. Figure 6 shows the energy
spectra of four kinds of mode as a function of emission angle
θs of the signal photon for the NIM-PIM-NIM structure at

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

0.4

0.6

0.8

1.0

2 s p

2 s p

N
or

m
al

iz
ed

 S
F

F
s

N
or

m
al

iz
ed

 S
F

F
s

(a)

(b)

FIG. 5. Energy spectra SFF
s of mode FF as a function of nor-

malized frequency at ωp = 0.9ωpe for the NIM-PIM-NIM structure
(a) and the PIM-PIM-PIM structure (b). The parameters in the
NIM-PIM-NIM structure are identical with those in Fig. 1. The
middle layer in the PIM-PIM-PIM structure is the same as that in
the NIM-NIM-PIM structure, the dielectric constants of the exterior
layers are 3.0 (solid line) and 10.0 (dashed line).
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FIG. 6. Energy spectra Ss(ωs) as a function of emission angle θs

of the signal photon for the NIM-PIM-NIM structure at ωs = ωp/2
and ωp = 0.9ωpe. •, �, ◦, and × correspond to the modes FF , BB,
FB, and BF , respectively. The other parameters are the same as
those in Fig. 5.

ωs = ωp/2 and ωp = 0.9ωpe. The dark dot, triangular dot,
circle dot, and cross point correspond to the modes FF , BB,
FB, and BF , respectively. The generation rates of correlated
photon pairs for the symmetric modes (FF and BB) are
much higher than those of the nonsymmetric modes (FB and
BF ). The decreases also become quicker for the symmetric
modes than those for the nonsymmetric modes. The decrease
of the generation rate of correlated photon pairs is due to the
appearance of the phase mismatching with the increase of the
emission angle. This means that the phase-matching condition
plays an important role in the enhancement of the correlated
photon-pair generation, although the localization of the signal
and idler fields in the present structure is crucial to such a
process. This also means that we have to collect the output
photons at the range of small angle around θs = 0 in order
to obtain a high generation rate of correlated photon pairs. In
addition, we would like to point out that the above calculations
only focus on the case in which the absorption and dispersion
of the PIM layer are negligible. In fact, if we consider the
effect of the absorption and dispersion in the PIM layer, similar
phenomena can be observed except that the generation rates
of correlated photon pairs decrease properly.

IV. CONCLUSION

Based on the rigorous quantum model of spontaneous
parametric down-conversion, we have investigated the gen-

eration efficiency of correlated photon pairs from a positive-
negative index material heterostructure. We have extended
the rigorous quantum theory, which has been developed
for the one-dimensional dielectric photonic crystal, to the
multilayer structures containing the negative index materials.
The mean number of output photon pairs and the signal-field
energy spectrum have been calculated. We have found that
the strong confinements of both the pump and signal fields
around the resonance state result in a giant enhancement of
the correlated photon-pair generation. The generation rate of
correlated photon pairs can be improved by several orders
of magnitude in the present structure in comparison with those
in the corresponding conventional system. This means that
the present structure can be regarded as another alternative to
be applied as a highly efficient potential source for entangled
photon pairs.
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APPENDIX A

In this appendix, we give the calculated method for
the remaining amplitudes of the pump field A

(l)
pF,α(ωp) and

A
(l)
pB,α(ωp). They are determined by the relations at the

boundaries and free field inside the layers, which can be
expressed as [8]⎛

⎝A
(1)
pF,α(ωp)

A
(1)
pB,α(ωp)

⎞
⎠ = T (0)

p,α(ωp)

⎛
⎝A

(0)
pF,α(ωp)

A
(0)
pB,α(ωp)

⎞
⎠

⎛
⎝A

(l+1)
pF,α(ωp)

A
(l+1)
pB,α(ωp)

⎞
⎠ = T (l)

p,α(ωp)P (l)
p

⎛
⎝A

(l)
pF,α(ωp)

A
(l)
pB,α(ωp)

⎞
⎠ (A1)

l = 1,2,3,

Where the symbols A
(0)
pF,α(ωp) and A

(0)
pB,α(ωp) describe the

amplitudes of the pump field at the frequency ωp incident and
reflection from the left-hand side of the structure, respectively.
The boundary transfer matrices, T

(l)
p,TE and T

(l)
p,TM, have the

form

T
(l)
p,TE = 1

2

(
1 + v(l)

p (ωp)f (l)
p (ωp)1 − v(l)

p (ωp)f (l)
p (ωp)

1 − v(l)
p (ωp)f (l)

p (ωp)1 + v(l)
p (ωp)f (l)

p (ωp)

)
,

T
(l)
p,TM = 1

2

(
g(l)

p (ωp) + f (l)
p (ωp)/g(l)

p (ωp)g(l)
p (ωp) − f (l)

p (ωp)/g(l)
p (ωp)

g(l)
p (ωp) − f (l)

p (ωp)/g(l)
p (ωp)g(l)

p (ωp) + f (l)
p (ωp)/g(l)

p (ωp)

)
, (A2)

l = 0,1,2,3,
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with

v(l)
p (ωp) = u(l)

p (ωp)/u(l+1)
p (ωp),

g(l)
p (ωp) = n(l)

p (ωp)/n(l+1)
p (ωp), (A3)

f (l)
p (ωp) = β(l)

p (ωp)/β(l+1)
p (ωp).

The free-field propagation matrix is in the form

P (l)
p (ωp) =

(
exp

(
ik(l)

p L(l)
)

0

0

exp
(−ik(l)

p L(l)
)
)

,

(A4)
l = 1,2,3.

Furthermore, the amplitudes A
(2)
pF,α(ωp) and A

(2)
pB,α(ωp) can be

expressed by A
(0)
pF,α(ωp) and A

(4)
pB,α(ωp) in the following form:(

A
(2)
pF,α(ωp)

A
(2)
pB,α(ωp)

)
=

((
Fp(2)

α

)
11 (ωp)

(
Fp(2)

α

)
12 (ωp)(

Fp(2)
α

)
21 (ωp)

(
Fp(2)

α

)
22 (ωp)

)

×
(

A
(0)
pF,α(ωp)

A
(4)
pB,α(ωp)

)
, (A5)

where

Fp(2)
α (ωp)

= T (1)
p,αP (1)

p (ωp)T (0)
p,α(ωp)

×
(

1 0

−(Sp,α)21(ωp)/(Sp,α)22(ωp)1/(Sp,α)22(ωp)

)
,

(A6)

with

Sp,α(ωp) = T (3)
p,α(ωp)

3∏
l=1

[
P l

p(ωp)T (l−1)
p,α (ωp)

]
. (A7)

The above expressions are obtained under the assumption of
the pump field incident from the left-hand side of the cavity,
so that the amplitude A

(4)
pB,α(ωp) can be taken as zero.

APPENDIX B

In this appendix we provide the expressions for the
operators α

(l)
mF (ωm) and α

(l)
mB(ωm). The relation between

α̂
(l)
mF,α (z,ωm) and α̂

(l)
mB,α (z,ωm) in the lth layer and α̂

(0)
mF (z,ωm)

and α̂
(0)
mB (z,ωm) in the left-hand side of the structure can be

described in the same form [19]:(
α̂

(1)
mF,α(ωm)

α̂
(1)
mB,α(ωm)

)
= T̃ (0)

m,α

(
α̂

(0)
mF,α(ωm)

α̂
(0)
mB,α(ωm)

)
,

(
α̂

(l+1)
mF,α(ωm)

α̂
(l+1)
mB,α(ωm)

)
= T̃ (l)

m,αP̃ (l)
m

(
α̂

(l)
mF,α(ωm)

α̂
(l)
mB,α(ωm)

)
, (B1)

l = 1,2,3.

Transfer matrices T̃ (l)
m,α at the boundaries and free-field prop-

agation matrices P̃ (l)
m are defined in the same way as those

given in (A2) and (A4) for the pump-field amplitudes. The
operators â

(2)
mF (ωm) and â

(2)
mB(ωm) can be expressed by â

(4)
mF (ωm)

and â
(0)
mB(ωm) as(
α̂

(2)
mF,α(ωm)

α̂
(2)
mB,α(ωm)

)
=

((
Fm(2)

α

)
11 (ωm)

(
Fm(2)

α

)
12 (ωm)(

Fm(2)
α

)
21 (ωm)

(
Fm(2)

α

)
22 (ωm)

)

×
(

α̂
(4)
mF,α(ωm)

α̂
(0)
mB,α(ωm)

)
, (B2)

where

Fm(2)
α (ωm)

= T (1)
p,αP (1)

m (ωm)T (0)
m,α(ωm)

×
(

1/(Sm,α)11(ωm)−(Sm,α)12(ωm)/(Sm,α)11(ωm)

0 1

)
.

(B3)

Sm,α(ωm) is defined in the same way as that given in
Eq. (A7).
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