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We consider collective emission of a single photon from a cloud of N two-level atoms (one excited, N — 1
ground state). For a dense cloud the problem is reduced to finding eigenfunctions and eigenvalues of an integral
equation. We discuss an exact analytical solution of this many-atom problem for a spherically symmetric atomic
cloud. Some eigenstates decay much faster then the single atom decay rate, while the others undergo very slow
decay. We show that virtual processes yield a small effect on the evolution of rapidly decaying states. However,
they change the long time dynamics from exponential decay into a power-law behavior which can be observed
experimentally. For trapped states virtual processes are much more important yielding additional decay channels
which results in a slow decay of the otherwise trapped states. We also show that quantum mechanical treatment
of spontaneous emission of weakly excited atomic ensemble is analogous to emission of N classical harmonic

oscillators.
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I. INTRODUCTION

Collective spontaneous emission phenomenon has been
a subject of interest since the pioneering work of Dicke in
1954 [1]. In that classical paper, Dicke considered mainly two
types of collective radiation phenomena: superradiance and
subradiance in a collection of two-level atoms when all atoms
are confined inside a volume much smaller than radiation
wavelength. Later work generalized Dicke’s description of
superradiance to an extended system [2,3]. See especially the
experimental and theoretical work of Feld and coworkers [4].
Further studies brought in the concept of superfluorescence [5],
which describes the cooperative emission from a system of
uncorrelated excited atoms. This process usually starts with
normal spontaneous emission but later develops correlation
among the system [6]. In the past half century, both types
of phenomena were extensively studied theoretically and
experimentally. The case of an ensemble of excited nuclei has
long been, and continues to be a subject of research interest [7].

From the physical standpoint, cooperative spontaneous
emission is an example of a many-body quantum problem of
N atoms collectively interacting with an electromagnetic field.
Emission from a weakly excited group of atoms is, in some
ways, even more interesting than the case of a highly excited
system. In the case of a weakly excited ensemble (e.g., one
atom out of N is excited) it might be thought that the radiation
rate would go as the single atom decay rate y; however, the
Dicke symmetric state of maximum cooperation radiates at a
rate 'y o« Ny.

Collective spontaneous radiation is interesting physics
and also has potential applications. From the standpoint of
applications, superradiance is useful as one of the methods
for producing coherent emission without coherent pumping.
This is especially important in those regimes, such as x-ray
or y-ray, where there are no effective mirrors which limit
the use of ordinary stimulated emission process. On the
other hand, with the recent advances of quantum informatics,
decoherence-free subspace (DFS) [8] has been proposed to be
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one of the strategies to combat the effects of decoherence
in quantum computation and quantum communication. A
collective system of many two-level particles is one of the
ideal candidates to realize DFS [8-10]. An ensemble of N
two-level atoms with one excitation also plays an important
role in quantum memory and quantum networking. Relevant
experiments have been carried out by the groups of Lukin [11],
Kimble [12], and Vuleti¢ et al. [13].

Cooperative effects of N atoms in a cavity were investigated
in 1980s by Cummings [14-16] and the others [17,18]. Buzek
[19] studied the dynamics of an excited atom in the presence
of N —1 atoms in the free space and predicted radiation
suppression. Dynamics of the system in free space and spatial
anisotropy of the emitted radiation have been re-explored in
the past few years [20-37].

The problem of cooperative spontaneous emission of N
atoms reduces to finding all eigenstates and their decay rates.
Once they are determined, evolution of an arbitrary initial
state is obtained by expanding the initial condition in terms of
the set of the eigenstates. In 1969 Ernst [38] studied such an
eigenproblem for a spherical atomic cloud in Weisskopf and
Wigner theory disregarding the effect of virtual photons. Later
Ressayre and Tallet [39], and Andreev et al. [40] investigated
such a problem in various geometries. However, the exchange
of virtual photons induces dipole-dipole interaction between
atoms [25,41-44]. Recently it was shown that virtual photons
modify eigenstates and eigenvalues of the system [26,27] and
dramatically change the evolution of the trapped states [32].
However, virtual processes yield a small (yet interesting) effect
on the evolution of rapidly decaying states [32]. This question
is a subject of recent debate [45—47].

In the present paper we discuss the problem of single-
photon cooperative spontaneous emission in details focusing
on the issues of current interest. In particular, we clarify the
effect of virtual processes and situations when the quantum
N-atom problem has a classical analogy with radiation of a
system of N harmonic oscillators.
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II. DERIVATION OF EIGENVALUE EQUATION

We consider a system of two level (a and b) atoms, initially
one of them is in the excited state ¢ and E, — E;, = ho.
Initially there are no photons. Atoms are located at positions
r; (j =1,...,N).In the dipole approximation the interaction
of atoms with photons is described by the Hamiltonian (we
disregard polarization effects)

N
Hi =) ) a6 +6]e)

kK j=I

% (alteivkt—ik-r/ + &ke—il)kl-'rik-r/)’ (1)

where 6; is the lowering operator for atom j, dy is the photon
operator, and g is the atom-photon coupling constant for the

k mode [48]
© h
=w—= | , 2
gk =03 o Von ()

where g is the electric-dipole transition matrix element and
Vh 1s the photon volume. Please note that we do not make the
rotating wave approximation in Eq. (1).

We look for a solution of the Schrédinger equation for the
atoms and the field as a superposition of Fock states

N
W= "Bi(Olbiby - aj - by)|0)

j=1
+ D @by by) k)

k
+ )Yk @Ibrbo, .,y By ),

m<n Kk

3)

where o, x = Qum k- States in the first sum correspond to
zero number of photons, while in the second sum the photon
occupation number is equal to one and all atoms are in the
ground state b. The third term corresponds to the presence
of two excited atoms inside the cloud and one (virtual)
photon with “negative” energy. Substitute of Eq. (3) into the
Schrodinger equation yields the following equations for §;(t),
Yk(?), and oty k() (We puth = 1):

Bi() = —i Y gty expl—i(v — )t +ik - 1)]
k

—iy &
K

N
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N
() = —igk Zﬂj(t) expli(vy — )t —ik-r;], (5)
j=1

dmn,k(t) - _igk,Bn(t)
xexpli(vy + w)t — ik -r,] 4+ (n «<— m). (6)

PHYSICAL REVIEW A 81, 053821 (2010)

Integrating Eqgs. (5) and (6) over time with initial conditions
Vk(o) = 07 amn,k(o) = 05

; N
W(t) = —igk/ dt’Z,Bj(t’)exp[i(vk —w)t' —ik-r;],
0

j=1

)

1) = —igk / At [Ba(t") expli(vg + ) — ik - T ]
0
+(n «<— m)], (8)

and substituting y(¢) and «,,, k(¢) into Eq. (4) we obtain an
equation for ()

N t
0

k j=I
N t
-2 2 f dr' g2 B (t')e i+t =D=ik(r;—;)
k j=1j#j "0

t
—(N=1D}) g / di'Bj(te! N0 (9)
Kk 0

In Appendix A we derive equation for B;(f) assuming
Markovian approximation (slow decay) which is valid pro-
vided the sate decay time is larger then the time of photon flight
through the atomic cloud. The answer is given by Eq. (A7).
Next we assume that initially the system is prepared in an
eigenstate and the state decays exponentially, that is

Bi(t) = e, (10)

where Re(),) > 0. Substituting Eq. (10) into Eq. (A7) yields
the following eigenvalue equation:

exp(ikolr; —rj])

)»nﬁjzyﬁj—iyz 3 B (11)
—  kolrj —rj|
J'#J
where
k3 2
= P (12)
27‘[6071

is the single atom decay rate and kg = w/c.

In Appendix B we derive an eigenvalue equation in
the rotating wave approximation and show that the answer
substantially differs from Eq. (11). Thus counter-rotating terms
in the interaction Hamiltonian (1) can play an important role
for some problems.

Inclusion of light polarization changes the kernel of
Eq. (11). Such general equation has been considered for
the case of two identical atoms in [49,50] and for N atoms
in [28,41,43,51].

III. EIGENFUNCTIONS AND EIGENVALUES
FOR A DENSE CLOUD

For a dense cloud when there are many atoms in volume A3
(A = 2mc/w) one can go to the continuous limit and replace
summation over j’ by integration. Then the eigenvalue Eq. (11)
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reads
N ikolr — 1/
iy Y[ SR gy g (3)
Vv kolr — 1’|

or
N
J/Vfdr'[K()(r,r’)+iK1(r,r')]ﬂn(I")=knﬂn(r), (14)

where

sin(kg|r — r’|) cos(ko|r —r'|)

Ko(r,x) = , Kir,rxr)=

’

kolr — 1| kolr — 1’|
and kyp = w/c. We assume that atoms are uniformly distributed
in a sphere of volume V =47 R?/3, and N/V is the atomic
density. Decay rate of an eigenstate n is given by [';, = Re(},,),
while Im(%,,) yields the frequency shift. The imaginary part
of the kernel i K;(r,r’) describes contribution from virtual
photons.

In Appendix C we derive analytical solution of the integral
Eq. (13). The eigenfunctions are given by [26,27]

/3(1‘) = jn (akor) Ynm(f)v (15)

m(0,¢) are spherical harmonics and

3iyN
= [1- 22—, 16
“ K3R3 M, (16)

Eigenvalues 1, are determined from the following equation
for a:

where Y,,,,,(F) =

o _n(akoR) 1 (koR) an
Jn—1(akoR) BV (koR)

where ji;(z) and hg)(z) are the spherical Bessel functions.
Forn =0

Jolx) = Sir;(x), o) = Coi(x), (18)
hP(x) = < h(x) = < (19)
X X

and Eq. (17) reduces to
a = i tan(akoR). 20)

Next we analyze limiting cases of small and large atomic
cloud. In the Dicke limit kg R < 1 we have

h,(}Zl(koR) ~i (ko R)>" 0. —0 o
hﬁl)(kOR) [2n — D2 2/:)51’ -0

We keep only the imaginary part in the right hand side of
Eq. (21). Then Eq. (17) reduces to

(koR)™"

ajn—1(akoR) ~ imjn(akoR)- (22)
Using the identity
d
—[xjn—1(0)] = njp_1(x) — xju(x) (23)
dx

we expand the left hand side of Eq. (22) near akgR = A,
where A,; is a positive zero of the Bessel function j,_;(x),
and find

(kOR)2n+1

—Am(akoR — Ap) =i —2
1(ako 1) on DI

(24)
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Therefore

A, koR)*"
a~ 2 iL' (25)
koR  Ay[2n — D2

The corresponding eigenvalues and eigenfunctions are given
by [26]

3iyN 6y N(koR)*"

nl ~ = P 4 N (26)
A koR A [(2n — D]

= (A . ) Yom(? 27

IBnlm(r) =Jn nIE nm(r)- ( )

In particular, Ay = (2 — )w/2and Ay, =nwl, [ =1,23....
Equation (26) shows that in the long wavelength limit
(kpR <« 1) only eigenvalues with n = 0 have large real part
and decay fast (Dicke superradiance [1]), while eigenvalues
with n > 0 are suppressed by a factor (koR)>". Those states
are trapped. One should note that

0 00 6)/N
Y Re(ho) =y —7 =yN, (28)
=0 1=0 Ad

as expected from general arguments [26].

Let us now consider the large cloud limit kg R >> 1. In this
case we take asymptotics of the Bessel functions in Eq. (17)
(z>n)

. 1 . n
Jn(2) = —sin (z - —n> ,
z 2

1 A
D A iz
h,’(2) ~ Z(_l)n e,

and obtain
a = itan (akoR — gn) . (29)
One can rewrite Eq. (29) as
i arctanh(a) = —akoR + %7[ + 7, (30)
where [ is an integer. In logarithmic representation
arctanh(a) = %ln(}%z .

For |a| « 1 we approximate arctanh(a) =~ a, then Eq. (30)
has a solution

w(n+ 2l) i
~TRTD () 31
7 TR ( k0R> D
and thus
3iyN 72(n + 21)?
P 1 32
(koR) ( 4o R 32

Solutions (31), (32) are valid provided |n + 2| < koR.
For |a| > 1 we use arctanh(a) ~ —im/2 + 1/a and obtain

21 -1 2i
~ r(n+ ) _ i ’ (33)
2koR T(n+20—-1)
12iy N 96y N
S us Y (34)

T m2(n 420 — 1)2kgR | mHn +21 — 1)*

which is valid if |n + 21| > koR.
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FIG. 1. Real part of Ay as a function of koR for/ = 0, 1, and 2.

Finally, for |a + 1| <« 1 we find with logarithmic accuracy

T 1 2k0R
— 21
2/<0R(2+"+ +{ 7 }>

l 4k0 R
+ n
2koR  \In(4koR)

3iyN 1 2koR
Ay X — 21
koR)? |:71<2+n+ —i—{ - })

, 4koR 1
“in(im)] o

where {---} stands for the fractional part of a number.
Eigenvalues (36) are much larger then those given by Egs. (32)
and (34).

Figures 1-4 show real and imaginary parts of A, as a
function of ko R obtained by solving Eq. (17) numerically. We
plot the result for n = 0 and / = 0,1,2 in Figs. | and 2, while
Figs. 3 and 4 show the answer for n = 1. One can see that
the imaginary part of A,; (frequency shift) is large for small
atomic samples and becomes small when R > A (A is the
wavelength of the emitted photon). It is interesting to note that
states which decay slowly for R <« A become super-radiant for
the intermediate sample size wherein they decay faster then
the n = [ = 0 state.

a~—1+

(35)

0.5+

FIG. 2. Imaginary part of Ay as a function of koR for [ =0, 1,
and 2.
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FIG. 3. Real part of Ay; as a function of ko R for/ =0, 1, and 2.

IV. EFFECT OF VIRTUAL PHOTONS ON
STATE EVOLUTION

The imaginary part of the kernel i K (r,x’) in Eq. (14)
describes contribution from the virtual photons. For K; = 0
the integral Eq. (14) reduces to equation with sin kernel

,sin(ko|r — r'|)

3/3(tr)
‘__/ kolr — 1|

which for spherical atomic cloud was solved by Ernst in 1969
[38] and has the following solutions:

—————Btxr) (37

Bum(*) = Ju (kor) Yum(F), (38)
3yN
Jm = =2 [ koR) = ju1(koR) jusa (ko R)] . (39)
In the small sample limit ko R < 1 Eq. (39) yields
3yN "
n (koR)™", (40)

(2n +3)[(2n + DUT?
while in the opposite limit kg R > n we obtain

3yN (="
n ~ 1 -
2(koR)? 2koR

sin(2kg R)] . 41

The set of eigenfunctions (38) is incomplete. There is an
infinite number of functions which are orthogonal to S, (r).
For example, Eq. (C13) yields that functions

ﬁnml(r) = jn (AnlkOr) Ynm(f)v (42)

Im[y., YN

FIG. 4. Imaginary part of Ay; as a function of koR for [ =0, 1,
and 2.
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where A,; are roots of the equation (excluding the root A = 1)

_ ju(AkoR) ju_1(koR)
Jn—1 (AkoR)  ju(koR)
are orthogonal to B, (r). Functions (42) are also solutions of
the truncated Eq. (37) but with zero eigenvalues. It is worth
noting that the structure of Eq. (43) is similar to Eq. (17).
Now let us consider the effect of the K; term in Eq. (14).
In the Dicke limit kg R < 1 the eigenvalues of the full integral
equation are given by Eq. (26). One can see that Im(%,;)
(frequency shift) becomes large for kyR <« 1 and Eq. (26)
differs substantially from Eq. (40) obtained for the truncated
kernel. Thus the K term has a crucial effect on eigenvalues
for a small atomic sample. For a large atomic sample kgR > 1
the leading eigenvalues for the full and truncated kernels are
given by Eqs. (36) and (41), respectively. Now the eigenvalues
differ by a factor of the order of one.
To illustrate such a difference we solved numerically the
matrix eigenvalue equation

(43)

N
dnBit) =y Y TijBy(0), (44)
j=1

where

[y = Ko(ri,r)) +iKi(r;,x;), i#j and TI'y=1,

(45)
for the full kernel (45) and the truncated kernel I';; =
Ko(r;,r;). Insimulations we took N = 10 000 atoms randomly
distributed inside a sphere of radius R = 10A (A is the
wavelength of the emitted photon). The results for Re(},)
are plotted in Fig. 5. One can see that the K, term modifies
the eigenvalues by a factor of the order of one if the atomic
sample is large.

However, despite the difference in eigenvalues and eigen-
functions, the evolution of an initial state for both kernels is
close for rapidly decaying states [32]. For example, in the small
sample limit R < A the Dicke symmetric state B,(r) = 1/+/N
is an eigenstate for the sin kernel and decays at the rate
I'; = Ny. For the exp kernel the fastest decaying eigenstate
is [see Egs. (27) and (26)] Bo(r) = sin(wrr/2R)/r and Ty =
96Ny /m* ~ 0.986Ny. Because I'g ~ 'y and overlapping
between states S;(r) and By(r) is almost 1: (B(r)|Bo(r)) =

sin

Re(2 )

o =~ N W b~ OO N © ©
Dot b gl sl sl

exp

0 2000 4000 6000 8000 10000
n

FIG. 5. (Color online) Real part of eigenvalues for a system of
N = 10000 atoms randomly distributed inside a sphere of radius
R = 10X calculated with the exp and sin kernels.
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0.993 the symmetric state S,(r) decays essentially the same
way for both kernels.
For a large atomic sample R > A the “timed” Dicke state

B(r) = e*o* (46)

is an example of state which rapidly decays with a rate
I' ~ Ny /(koR)?. State (46) is prepared by absorption of a
single photon with wave vector Ky (ko = w/c) [20,21]. As
shown in [32,36,37], virtual transitions modify evolution of
the timed Dicke state (46) in the large sample limit by about
10%—-20%. If, however, the size of the atomic cloud is very
large (R >> ¢/ T") the initial state undergoes oscillations with
a collective Rabi frequency [24]. In such a non-Markovian
regime, virtual transitions give essentially no effect.

Next we discuss the effect of virtual photons in details in a
Markovian regime.

A. Sin kernel

If we omit virtual processes the evolution of state vector
is described by equation with sin kernel (37). Here we solve
Eq. (37) analytically with the initial condition

1 . r
B(O.r) = ~sin (aﬁ), 47)

where a is an arbitrary parameter. We look for solution of
Eq. (37) in a spherically symmetric form

Bt.x) = f(t.r). (48)
Plugging Eq. (48) into Eq. (37) and using the identity

sin(ko|r — r'|)
kolr — 1’|

=Y @m A )Py - ) jmkorVjmkor),  (49)
m=0

where 7 and 120 are unit vectors in the directions of r and kg,
respectively, ji(z) are the spherical Bessel functions and P,
are the Legendre polynomials, we obtain

af(t,r)  4myN
a 14

R
jokor) f dr'r? jolkor £ (1.7, (50)
0

Taking into account that jy(x) = sin(x)/x we find that solution
of Eq. (50) satisfying the initial condition (47) is

B(t,r) = % sin (ag—;) + g sin(kor)[1 — e ™1, (51)
where
. 2koR[racos(ma/2)sin(koR) — 2 sin(mwa/2)ky R cos(koR)]

F [(ra/2) — (ko R)P112ko R — sin2koR)]
(52)
and
_ 3yN |:1 3 sin(2k0R):| (53)
2(koR)? 2koR

In the small sample limit Eq. (53) reducesto I' = Ny.
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Equation (51) shows that at the beginning the atomic system
decays with the super-radiant rate (53) but quickly ends up in
a trapped state

B(r) = — sm (aﬂ) + F Ginteor. (54)
2R r

Probability that atoms are excited is given by
,mal2koR — sin(2koR)]
2koR [ra — sin(am)]
In the limit koR < 1,a Eq. (55) yields

48 [macos(wa/2) —2sin(ra/2)]?
(ra)?

P()=1-F — e, (55)

P(t)=1- [1—e72"].

[ra — sin(wa)]
(56)
Equation (56) shows that all initial population is trapped if
ma/2 = tan(wa/2), &)
that is
a = 2.8606, 4.9181,

6.9417, 8.9547, .... (58)

Taking limita — 0in Egs. (51) and (52) we obtain formula
for the time evolution of the symmetric state

BO,r) =1, (59)

namely,

B(t,r)=1+2F [1—e T, (60)

sin(kor)
kor
where
koR cos(kgR) — sin(kgR)

~ koR — sin(koR) cos(koR)”

Equation (60) shows that for # 2 1/T" the system ends up in a
trapped state

(61)

Bty = 1 +2F sin(kor)

(62)
or

Function (62) vanishes in the small sample limit kgR < 1,

however, for a large sample B(r) ~ 1, state (59) is completely

trapped. For the initial condition (59) the probability that atoms

are excited is given by

p(r) = 1 — SkoR cos(koR) — sin(kgR))* [1 — e™2"]
n koR — sin(koR) cos(koR) (koR)3
(63)
B. Exp kernel: Evolution of fast decaying state excited
by single photon spherical wave
Here we solve the evolution equation with exp kernel
ap(t,r N exp(ikg|r —
oD /d’ pk(’|°' - SRR g vy (o)
ol

assuming that initially atoms are prepared in the spherically
symmetric eigenstate of Eq. (37), that is
sin(kor)

BO,r) = jolkor) = Ty (65)
ol
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State (65) corresponds to a = 2kgR/m in Eq. (47) and can be
excited by the absorption of a single photon of frequency w
with a spherical wave front.

We look for the solution of Eq. (64) in the form

B(t,r) = . (66)

Then we use the identity (C6) and orthogonality condi-
tion (C10) and obtain the following equation for f(¢,r):
af(.r)
at

N r
— —4nyr7 [hg”(kor) / dr'r' jolkor') f(t,r")
0

R
+ Jolkor) / dr/r/hg“u«or’)f(t,r/)} (67)

with the initial condition

f(0,r) = sin(kor). (68)
Replacing
=" e =it (69)

and introducing the dimensionless coordinate x = r/R and
t — I't, where
3yN
= ——, 70
2(koR)? 70)
Eq. (67) reads

of(t,x)
ot

=2i |:eik°Rx / dy sin(koRy) f(t,y)
0
1
+ sin(koRx) / dye'*oRy f(t,y):|. (71)

1. Large atomic sample

Next we consider the large cloud limit ko R > 1 and look
for the solution of Eq. (71) in the form

f(t.x)

where A(f,x) and B(¢,x) are slowly varying functions of x.
Substituting Eq. (72) into Eq. (71) and keeping the leading
order terms in kgR we obtain the following equations for
A(t,x) and B(t,x):

= A(t,x)sin(koRx) + i B(t,x)cos (koRx), (72)

AA(t,x) ! !
o = —/ dyA(t,y) —/ dyB(t,y), (73)
t 0 X
0B(t,x) *
3 = | dyA(.y) (74)
t 0
with the initial condition
A(0,x)=1, B(0,x)=0. (75)

We solve Egs. (73)—(75) in Appendix D using the method of
Laplace transform. In dimension units the answer is given by

;[JO(Z 1——J_>+Jo<2 14+ = \/_)]
(76)

A(t,r) =
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B(t,r) = % [Jo <2 1— %\/ﬁ) —Jo <2 1+ %\/ﬁ)} ,
()

where Jy(z) is the Bessel function.
The probability that atoms are excited as a function of time
is

dr|B@,p)”
P@t)= f—z (78)
J dr|B(0.1)]
For integral equation with sin kernel
Pan(t) = e (79)
For B(t,r) given by Eq. (72) we find
Pep(t) = JF(Q2+/2T1) + JE(2V/2T 1) (80)
which for # > 1/ T yields
Pexp(1) ~ 1 8D
NG T
The probability that atoms are in the state (65) reads
0|8, D> JX2V2It
P01y = [OIBW)P _ J222TT) )
P (0]0)? 2I't
and for ¢ > 1/ T reduces to
cos? (24/2I't + Z
P2 ()~ ( 4). (83)
P T (2T'1)3/2

In Fig. 6 we plot the probability that atoms are excited given
by Egs. (80) (solid line) and (79) (dash line) obtained using the
exp and sin kernels in the large sample limit. Initially atoms
are prepared in the state (65). Figure 7 shows Pe(;p(t) obtained
from Eq. (82) (solid line) and compares it with those obtained
from the equation with sin kernel PY, (r) = e=2'" (dashed line).
The two curves are close to each other. The P(t) — Py(¢) line
is the probability to find the atomic system in any other state

but (65).
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FIG. 6. (Color online) Probability that atoms are excited P(t)
for large atomic cloud calculated using the exp (solid line) and sin
(dashed line) kernels. Initially atoms are prepared in the state (65)
and " = 3Ny /2(koR)>.
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FIG. 7. (Color online) Probability that atoms are in the state (65)
Py(z) obtained in the large sample limit from equation with exp
(solid line) and sin (dash line) kernels. The P(t) — Py(t) curve shows
probability that atoms are in any other state but (65). Initially atoms
are in the state (65).

2. Small sample limit

In the small sample limit R < A the initial condition (65)
reduces to symmetric Dicke state (59) and equation with sin
kernel (37) yields Dicke result

Bt,r)=e ", (84)

where ' = Ny.
For the equation with exp kernel the state evolution can be
obtained by noting that in the small sample limit

R

Ba(t,r) = — sin [(2}1 +nZ
r

TT ot
2R] e (85)

are eigenfunctions of Eq. (64) with eigenvalues (26)

12iNy 96Ny
A= — , n=0,1,2,....
72Q2n + 1)2kgR ~ 7*(2n + 1)*
(86)

Using the identity

4 (=1

1=— ———sin[(2 1
— ;) Gy 1 Sinl@n + D]

one can expand the initial condition B(0,r) = 1 in terms of
B,(0,r). As a result, time evolution of the symmetric state is
given by

Bt,x) = S—RZ

2
Ter
n=0

="

iR [(Zn +1) %] et (87)

and the probability to find atoms excited is

96 exp [—2Re(A,)t]

PO =3 Qn+ 1) (88)

n=0

Figure 8 shows P(z) given by Eq. (88) (solid line)
and compares it with the answer obtained omitting virtual
processes P(t) = exp(—2I't) (dashed line). The two curves
are close to each other, but Eq. (88) yields a few percent of the
population trapped which slowly decays with time.
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FIG. 8. (Color online) Probability that atoms are excited P(t)
for small atomic cloud calculated using the exp (solid line) and sin
(dashed line) kernels. Initially atoms are prepared in the symmetric
state (59), ' = Ny.

The probability that atoms are in the symmetric state (59)
is

2

1
Py(t) = V2 drp(t,r)

96 00
i 7)L”Nyt
4 2(; 2n + ])4

(89)

In Fig. 9 we plot P,(¢) obtained for R = 0.01A from Eq. (89)
(solid line) and compare it with P(t) = exp(—2I't) (dashed
line). The two curves are very close meaning that the net decay
rate of the symmetric state into all channels is very similar with
or without virtual processes. The insert shows the probability
to find atoms in any other state but the symmetric state (59) for
R = 0.01X (solid line) and R = 0.03 (dash-dot line) obtained
from Eqgs. (88) and (89). Dependence of the imaginary part of
A, (collective Lamb shift) on 7 is the reason for oscillations.
The period of oscillations is proportional to kgR. The other
states are excited with a few percent probability. Thus, in the
small sample limit, virtual photons also yield a small (but
interesting) effect on the evolution of fast decaying states.

FIG. 9. (Color online) Probability that atoms are in the symmetric
state P,(¢) obtained using the exp (solid line) and sin (dashed line)
kernels for R = 0.01A. Initially atoms are in the symmetric state (59)
and I' = Ny. Insert shows probability to find atoms in any other
state but symmetric state calculated for R = 0.01A (solid line) and
R = 0.031 (dash-dot line) from equation with exp kernel.
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C. Exp kernel: Evolution of slow decaying states
1. Symmetric state in the large sample limit

Here we solve the evolution Eq. (64) with the initial
condition (59). We use Eq. (71) and look for solution in the
form

2t etkoR
t, = —]— 1 1 — h t, .

f(t,x) xexp( lk0R> |: + ToRx ( +k0R> ( x)]
90

Substituting Eq. (90) into Eq. (71) we obtain the following

equation for A(t,x):

1 dh(t, x)

2 ot

sin(koRx) — sm(koRx)/ dx’ sin(koRx"h(t,x")
+ kO—Rh(t,x) + i cos(koRx)

X f dx’ sin(koRx"h(t,x")
0

1
+isin(k0Rx)f dx' cos(koRx)Hh(t,x")  (91)
subject to the initial condition

h(0,x) = 0. 92)

Here we solve Eq. (91) in the large sample limit kg R > 1.
In this limit one can represent i(z,x) as

h(t,x) = B(t,x)sin(koRx) + i C(t,x) cos(koRx), (93)

where B and C are real slowly varying functions of x.
Substituting Eq. (93) into Eq. (91) and keeping the leading
order terms in kg R we obtain the following equations for B
and C:

dB(t,x) b b
=2—/ dx B(t,x)—/ dx'C(t,x"), (94)
ot 0 X

aC(t *
Ca.x) =/ dx'B(t,x") (95)

dt 0

with initial conditions

C(0,x) =0, B(0,x)=0. (96)

One can solve Eqgs. (94) and (95) using the method of Laplace
transform which in dimension units yields

C(,r) = (11:—IL)J] (2 1—%VF[>
R
|, (2
+0)"

NS

+(1i—ti)(21+ J_) (98)

+ %«/ﬁ) Y,

where
3yN

= 2RP ©9
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FIG. 10. (Color online) Probability that atoms are excited P(t)
obtained using the exp (solid line) and sin (dashed line) kernels.
Initially atoms are in the symmetric state (100), R = 5A and T is
given by Eq. (99).

As aresult, the final answer for the state evolution in the large
sample limit ko R >> 1 is given by

< .21"[) { e'koR )
Br)y=exp|—i— )31+ [B(t,r) sin(kor)
k()r

+iC(t,r) cos(kor)]} . (100)

Solution (100) is valid for not very large ¢. For t > 1/T°
one should take into account the next order terms in ko R and
Eq. (100) becomes invalid.

In Fig. 10 we plot the probability that atoms are excited P(t)
obtained from Egs. (100) (solid line) and (63) (dashed line).
Initially atoms are prepared in the symmetric state (59). The
size of the atomic sample is R = 5A. Analytical formula (100)
is accurate up to t ~ 20/ I". The insert shows the behavior
of P(t) for exp kernel on a larger time scale obtained by
the numerical solution of Eq. (91). P(¢) exhibits interesting
plateaus and oscillations. For ¢ less then afew 1/ T" the exp and
sin kernel curves are identical. For such time the real processes
dominate and the initial state evolves into the state (62) which
is trapped if we omit virtual processes. Virtual processes,
however, result in state decay as shown by the solid curve.
State (59) overlaps with many eigenstates of Eq. (64) [26].
Eigenstates which decay faster contribute to evolution at small
time. As time increases P(¢) decays more slowly. However,
eigenfunctions of Eq. (64) are not orthogonal [52] and, in
addition, have different collective Lamb shifts. This makes
state evolution richer.

2. Trapped states in small sample limit

Here we solve the evolution equation with exp kernel in
the small sample limit assuming that initially the system is
prepared in the state (47) with a given by Eq. (57). Such
states are completely trapped if we omit virtual processes. The
evolution equation with exp kernel can be solved noting that
in the small sample limit, eigenfunctions and eigenvalues of
Eq. (64) are given by Egs. (85) and (86). Using the identity

4 = —1y
sin(ax) = ;“ cos (”7“) 3 m sin[(2n + 1)x]
n=0

PHYSICAL REVIEW A 81, 053821 (2010)
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FIG. 11. (Color online) Probability that atoms are exited P(t)
calculated in the small sample limit taking into account virtual

processes (solid line) and omitting them (dashed line). Initially atoms
are prepared in the state (47) witha = 2.8606 and I = Ny.

one can expand the initial condition (47) in terms of 8,(0,r).
As a result, time evolution of the state (47) is given by

oo

4a ma (—1)re=!
t, = — —_— -
B(t,r) ﬂrcos( 5 )§(2n+1)2_a2
r
in[@n+ 17 ] 101
xsm[(n—}- )ZR (101)
and probability to find atoms excited is
164> way w— exp [—2Re(kr,)t]
P(t)= ——————cos’ () ), —————5 5.
O = e —smera) < ( 2 ) ; [(2n+ 1) — a2
(102)

Figures 11 and 12 show P(¢) given by Eq. (102) (solid
line) and compare it with the answer obtained omitting virtual
processes (dashed line) for a =2.8606 and a = 4.9181,
respectively. For such a the initial state is trapped if we use
the equation with sin kernel. Virtual processes result in the
state decay as shown by the solid line. Please note that for
a = 4.9181 the initial state decays ten times more slowly then
for a = 2.8606.
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0.0

a=4.9181

exp

0 500 1000 1500

I't

FIG. 12. (Color online) Probability that atoms are exited P(t)
calculated in the small sample limit taking into account virtual
processes (solid line) and omitting them (dashed line). Initially atoms
are prepared in the state (47) witha =4.9181 andI" = Ny.
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V. COOPERATIVE SPONTANEOUS EMISSION
OF N ATOMS: CLASSICAL ANALOGY

Whether or not the many-body effects of spontaneous
emission of N atoms can be understood classically is a
question of longstanding interest. Here we show that the
quantum mechanical treatment of a single-photon emission
(weak excitation) is analogous to the radiation of a system
of N classical harmonic oscillators. Namely we show that
Eq. (11) obtained in the quantum mechanical description is
identical to those in a classical problem when the two-level
atoms are treated as classical harmonic oscillators of frequency
w [53]. Let r;(¢) be the electron position in the oscillator j.
The equation of motion for the electronic displacement is

3%r; (1)
ot?

where E(z,r) is the electric field, e is the electron charge, and
m is the electron mass. Electric current density is given by

N
Z aj(t) ( —I‘,)

+o’ri(t) = <E(t.r)), (103)
m

i) = (104)
j=1
Next we use microscopic Maxwell’s equations
oH . oE
VxE:—MOE, VxH:‘H-eoE (105)

which yield (uogo = 1/¢?)

1 3°E aj
cirvey VxVxE_,uOE
Here ¢ and v are the free space permittivity and permeability,
respectively, and c is the speed of light in a vacuum. Using
V x V x E = grad - divE — AE and assuming divE = 0 (the
electron charge is compensated by the charge of nuclei) we
obtain

N

1 82E 82

Dsee—r,).  (106)

We assume that electrons move in the same direction €, that
is rj(t) =r;j(t)é. One can look for a solution of Egs. (103)
and (106) in the form

E(r,r) = €A(t,r)e ',
ri(t) = Bj(t)e ",

where A(z,r) and B;(z) are slowly varying functions on a
time scale 1/w. Substituting Eqgs. (107) and (108) into (103)
and (106) and omitting higher order derivatives in ¢ we obtain

(107)
(108)

(1) e ‘
= g A(t,r)), (109)

N
AA + kA= —w? uge Z B8 —r;),  (110)

j=1

where ky = w/c. Equation (110) has the form of Helmholt’s
equation

(A +k5) Ar) = — f(1). (111)
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In terms of Green’s function G defined as

(A +k5) Gr—r)= -8 —r) (112)
the solution of Eq. (111) is
A(r) = / F@EHG(r —r)dr. (113)

To obey the causality condition we must choose the retarded
Green’s function

expliko|r — 1))

GRar-r)= (114)
4|r — 1|
which yields
ue exp(ikolr — r'|)
Ay = 210 Zﬂ(r)/8< ) SR e
(115)
or after integration over r’
W poe x~ - explikolr — 1))
A(t,r) = () ———— 2 116
(1= —— ;ﬁ,() E— (116)

Substituting this into Eq. (109) and taking out the contribution
to the field from atom j we find

N
9B; () ) exp(ikolr; —r ;)
P — i +iy 3 B I (117
ot . k()|r/' —I'/'/|
J'#J ’ ’
where
22 Beld?
)= w'et ke (118)
8meome®  8megh
and
/]
d= ]2
me

is the oscillator length.

Equation (117) obtained in the classical consideration is
equivalent to Eq. (11) derived in quantum mechanics (please
note that equations are equivalent if in the quantum mechanical
treatment we take into account virtual processes). This means
that the many-body features of spontaneous emission of N
two-level atoms (decay speed up and radiation trapping) can
be understood in the classical model. Please note that the
expression for y obtained in the classical problem (118) is
similar to those in quantum consideration (12). Namely if in
Eq. (12) we replace g by ed/2 we get Eq. (118).

The analogy between radiation of two-level atoms and
classical harmonic oscillators takes place for weak excitation
of atomic ensemble (e.g., only one atom is excited). In the
opposite limit, the cooperative emission can be qualitatively
different in classical and quantum treatments (see, e.g.,
Ref. [54]).

VI. SUMMARY

In the present paper we study the time evolution of
collective N-atom states in which one atom is excited (but
we do not know which one) and obtained analytical formulas
for the eigenstates and eigenvalues A, of the system. Since
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evolution of rapidly decaying states. However, virtual photons
change the long time dynamics from exponential decay into
a power-law behavior which can be observed experimentally.

For slowly decaying or trapped states the virtual processes APPENDIX A: DERIVATION OF EIGENVALUE EQUATION
substantially modify the state dynamics yielding new decay

channels which results in a decay of the otherwise trapped We make an assumption of slow decay (Markovian ap-
states. proximation) and replace 8;(t') ~ B,(t) under the integral in
Finally we show that for weak atomic excitation the quan- ~ Eq. (9). This is valid provided the state decay time is larger

tum mechanical treatment of collective spontaneous emission  then the time of photon flight through the atomic cloud. Taking

of N atoms is analogous to emission of N classical harmonic ~the remaining integral over 1" and replacing summation over k
oscillators. by integration we obtain

. _ iV, ph 3 1-— gl(\ka)t> B inh A / A (1 _ ei(vk+w)z>
Bj(t) = 2 )3,3]( )/d kg; <—k ~ + (N 1)(27”3,3}(1‘) d’Kkg; i te

iV —i(uk—w)t ) 1— e—i(uk-&-w)t )
(2;;3 f Z 8k [(—v - ) e (—U = ) e"“'“f‘rf’)} By (), (A1)
k — k

=1j'#j

where Vj, is the photon quantization volume. Integration over directions of k gives (vx = ck, ko = w/c)

) iV ) 1 — e—ictk—ko) 1 — e—ictk+ko)t
Bit) = %ﬂjm/ dkk>g? (—e >+(N - 1) ,BJ(I)/ dkk>g? <—e )
0

k — ko k + ko
inh 00 ) 5 N 1— e—ic(kfko)t 1— e*ic(k+kg)t sin(k|rj _ rj’|)
— dkk i(1). A2
+2ﬂch0 gka#j et e e (A2)

Next we replace ko by ko + 0 and remove exponential factors containing ¢. Such factors oscillate fast under integration over k

and thus can be disregarded. Then we obtain
2 1
(t) dkk _
k + ko +i0

(t)/ dkk*g? (;)H
k — ko —i0

leh 2 1 1 Sin(klr]' |)
dkk-g . s
;/ |:k ko —i0 k+k0+i0:| k|rj_rj| :31() (A3)

One can rewrite the first two terms in Eq. (A3) using the relation

ﬁ,()—

1
x Fi0

1
=P- Lind(x),
X

where P stands for the Cauchy principle part. Then taking into account Eq. (2) we find

iy o 1 )
) + n_ko(N - l)ﬂj(t)./o dkk <Pk . imd(k + k0)>

—|—i—yZN:/OOdk 1 n 1 sin(k|rj—rj/|)13"(t) (A
ko k—ko—i0 k+ko+1i0 rj—ry| 7

0= g [ ank (p—
B = =0 [ ( =
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where y = (kgpz) /(2meph) is the single atom decay rate. The
integral over dk in last term can be transformed into an integral
from —oo to oo as

dk e
'/0 |:k—ko—i0+k+k0+io]51n( lr; —rjl)

_ /00 L)
o k—ko—i0

1 °°dk exp(iklr; —rj|)  exp(—ik|r; —r;|)
2. k — ko — i0 k—ko—i0 )
(AS)

Integration over k in Eq. (AS) is performed by the contour
method. For the first term we close the integration contour in
the upper half-plane of complex k, while for the second term
in the lower half-plane. Integration of the second term gives
zero. As a result, Eq. (A4) yields

,B(t)—iyﬁ(t)/oodkkP Lo ph-t
T k™ k — ko k + ko

Y explikolr; — 1)
—yBi+iy Y — L TEp1). (A6

kolr; — 1
jz foley =y

The first term in Eq. (A6) corresponds to a frequency shift
by the same value for all B;(¢). This constant shift will be
ignored in the following discussion. Finally we obtain
exp(ikolr; —rjr|)

(A7)
k0|rj —I'j/|

Bi(t)=—yB;(t)+iy Y Bi(1).

J'#i

APPENDIX B: INTEGRAL EQUATION IN THE ROTATING
WAVE APPROXIMATION (RWA)

In the RWA the interaction of atoms with photons is
described by the Hamiltonian

N
Hie =) ) ul6jaexpliv — o)t — ik - 1] + adj)
kK j=I
(BI)
and for single-atom excitation one can look for a solution of
the Schrodinger equation in a form

N
W= Bi()biby--aj - by)|0)

j=1

+ ) OIbibs - b)) (B2)
k

Substitution of Eq. (B2) into the Schrodinger equation yields
the following equations for 8;(¢) and yi(?):

Bi(t)=—i Y gim(t)expl—i(v — o)t + ik -r;], (B3)
k

N
() = —igi Yy Bi()expli(vi — )t — ik -x;].  (B4)
j=1

Equation (B4) is the same with or without making RWA.
However, Eq. (B3) obtained in the RWA has only one term
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in the right hand side, while Eq. (4) derived beyond the RWA
contains an extra contribution.

Derivation of the eigenvalue equation based on Egs. (B3)
and (B4) is similar to those used to obtain Eq. (A4). The only
difference is that now there are no counter-rotating terms with
k + ko and, thus, instead of Eq. (A4), we obtain

. . |
hnfy = —Y ﬂj/ dkk (Pk—k +in5(k—ko))
0 0

— i XN: /oodk B sin(k|r; —r;/|)
7Tk() 0 k—ko—io '

[rj —rj

(BS)
The integral over dk in the last term we rewrite as [~ dk =

0
[, dk — | dk and find

B = iyﬂ/wdkP Yy
"R = T, k—ko VP

N .
. exp(ikolr; —;/|)
—iy Z =) Vg

j'

ol =yl
. N 0 .
iy sin(k|r; —r;|)
+ ﬂ~r/ dk————L T2 (B6)
ko ; s Iy = x|k — ko)

As we did during derivation of Eq. (A7) we omit the first term
in Eq. (B6) and finally obtain

N

MBi=vBi—iy Y

J#i

exp(ikolr; —rj|)

Bj

kolrj — |

N
+iy Y Ka(rj.r)By, (B7)
J'#J

where

1 0
Kr(rj,ry) = —
2(] ‘/) Nk() .

sin(k|r; —rj|)
Ir; —rj|(k — ko)

1
= ————— [sin(ko|r; —r;/|)ci(ko|r; —r;)
7Tk()|rj _ rj/| J J J J

— cos(kolr; — 1y Dsitkolr; — ;D] (BS)

ci(x) and si(x) are the cosine and sine integrals. For ko|r; —
ri| < 1, Eq. (B8) yields K(r;j,r;)) ~ In(kg|r; —rj/|)/m.
One can see that the eigenvalue Eq. (B7) derived in the RWA
contains an extra term compared to Eq. (A7) obtained beyond
the RWA. The extra term yields an additional imaginary
contribution to the kernel and appears as a consequence of
improper treatment of the effect of virtual photons in the RWA.

APPENDIX C: SOLUTION OF INTEGRAL EQUATION

To find solutions of Eq. (13) we take into account that ex-
ponential kernel coincides with the retarded Green’s function
GR(r — r') of the Helmholtz equation, i.e.,

(A+K)GRar—r)=—-s(r -7, (C1)
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where

GR(r_r/) — exp(ik()'r_r/') (C2)
4alr —1|

Applying operator A + & to both sides of Eq. (13) we obtain
(V =47 R%/3)

AB(r) + a’ky B(r) = 0, (C3)
where
2 3iNy
R 0

For the present spherically symmetric problem we choose
solutions of the Helmholtz Eq. (C3) in the form
B(x) = ju (akor) Yum(F), (C5)

where Y,,,,(7) = Y,,,,(0,¢) are spherical harmonics. To find
parameter a (and thus the eigenvalues A,) we plug Eq. (C5)
into the integral Eq. (13) and use the following identity [55]:

00 k
=4mi Y Y VPV

k=0 s=—k

Jilkor Y (kor), 7 > 1!
{h@ﬂ%”@ﬂ) '
where 7 and 7

are unit vectors in the directions of r and
r’, respectively, ji(z) and h,il)(z) are the spherical Bessel
functions. Asymptotics of the spherical Bessel functions are

explikolr — 1))
kolr — 1

. (Co)
r<r

Al

()
Qk+ DHI'k+1/2) ’

[Lk+1/2) ( )k“ L0
2T \z ’ '

If we multiply both sides of Eq. (C6) by ky and then take the
limit k) — O we obtain a familiar expansion for the Coulomb
potential

oo k
|I‘—r/ = ZZ Yo (Y ()

Ji(@) =
(C7)

h(z) ~ —

r>r

e (©®

1 Tk —(k+1)
x 2k + 1) | k=G0,
Taking into account Egs. (C6) and (C5) we find

N
47TVV / dr,jn(akor/)ynm(f,)

ok . AYAQY) /

o e | Tk (kor), 7 >

x§:§p%mnws{ oo ,
k=0 s—k Jelkor)hy, " (kor”),

= )‘-njn (akOr) Ynm(f) (C9)

r<r
One can perform an integration over r’ directions using the

orthogonality condition for spherical harmonics

/ dQ Y[ (F) Y () = 8u85m (C10)
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which yields
N (R in(kor YAV (kor), r > 1’
47‘[)/—/ dr'r" j,(akor’) IR0 0
VJo Jalkor)hP(kor'), r <1
= AnJn (akor) . (C1D)

Next we introduce x = kor and rewrite Eq. (C11) as

KoR iy, (D)
Ja(xDh,(x),

/ d'x/'x/z.]n( ) . (1) 1 7

0 Jn(Oh(x"), x < x

x> x

= Anjn(ax), (C12)
where
N 44 K R?
Ap = 0 Ap = 2 n.
47 N 3N
Integral in Eq. (C12) can be calculated using
/ dxx? j,(ax) ju(x)
%2
= 7= g2 [ ()jn1(ax) = ju-1(X)ju(@x)],  (C13)
/ dxx?j,(ax)hP(x)
x? YRy )
=1_n [ahn (X)ju—1(ax) — h, 1()c)jn(ax)] (C14)
and an identity
IR () = BP0 o1 (6) = — (C15)

This results in

kOR H N (D
y Ja(HRD (),
/ X jaxy
0 Jn(RP N,
= A jn(ax) + i(koR)* Xy ju (x)

x [ahD(koR) ju—1(akoR) — b (koR) ju(akoR)].
(C16)

x> x

x <x

The integral Eq. (13) is satisfied provided the last term in

Eq. (C16) is equal to zero. This yields the following equation
for the eigenvalues:

_ nakoR) B2 (koR)

Jn—1(akoR) hg,l)(k()R)

(C17)

APPENDIX D: SOLUTION OF EQS. (73)-(75) USING
METHOD OF LAPLACE TRANSFORM

Here we solve the coupled integrodifferential equations

8A(t ) F/Rd "A(t,r) r‘/Rd’B(t ", (DI1)
- ) =—= r ) — —= r ),
at R Jy R J,

0 r [r
—B(t,r) = — ar' A@t,r’ D2
~B(.r) RA KAL) (D2)

with the initial conditions

AQO,r)=1, B(@O,r)=0. (D3)
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Adding Egs. (D1) and (D2) yields

3F(t )——E/Rd "F(t,r") (D4)
g = R J, S
where
F(t,r) = A(t,r) + B(t,r). (D5)

Taking the Laplace transform £ of Eq. (D4) with respect to
time, we obtain

R
sQ(s,r)— F(0,r) = —%/ dr' Q(s,r"), (D6)

where Q(s,r) = L[F(¢,r)] and F(0,r) = 1. The solution of

Eq. (D6) is
0G.r) = L exp [—E (1 _ 1)} (D7)
’ s s R/ |
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To find the solution of Eq. (D4) as a function of time we need
to take the inverse Laplace transform of Eq. (D7), which gives

F(t,r) = Jo(2y/T — r/RT0). (D8)

Equations (D1), (D2), and (D3) yield A(z, — r) = A(¢,r) and
B(t, — r) = —B(t,r). Therefore

Alt,r) = %[F(t,r) + F(t, — r)]
= L@y T= RV 1y T+ 1RV,
(D9)
and

B(t,r) = % [F(t,r)— F(t, —r)]

= L@y T=F/RVFD — 2y T+ H/RVTDL
(D10)
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