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Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system
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We report on pulse evolution without wave breaking in a strongly dissipative-dispersive laser system where
pulses encounter significant amounts of positive and negative dispersions. In contrast to conventional soliton,
dispersion-managed soliton, and self-similar pulse evolutions, a different type of pulse shaping in mode-locked
lasers is theoretically investigated and experimentally observed. The pulses of this laser have very low frequency
chirp and exhibit as the quasirectangle temporal and Gaussian spectral profiles, and the spectral width is almost
independent of the pumping strength. The temporal and spectral widths fluctuate as low as ∼3% of the relative
fluctuation throughout the laser cavity. Both numerical and experimental results show that the pulses exist with
energies much greater than can be tolerated in self-similar pulse shaping.
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I. INTRODUCTION

Fiber-based sources attract extensive attention since they
can produce high-energy ultrashort pulses, and nonlinear pulse
evolution in fiber is a rich and fascinating subject [1–5].
Passively-mode-locked fiber lasers are able to easily generate
self-starting short pulses [6–10]. Usually, pulses formed by the
balance of (positive) nonlinear and (negative) dispersive phase
shifts are limited to ∼0.1 nJ of the pulse energy in standard
fibers [11–13]. By adjusting the intracavity structure with
the appropriate dispersion management, the passively-mode-
locked fiber lasers underlie the order-of-magnitude increase
in the pulse energy. Stretched-pulse fiber lasers, consisting of
segments of anomalous and normal group-velocity dispersion
(GVD), implement the concept of dispersion management and
emit pulses with the pulse energy to reach the 1 nJ level [14,15].
Attempts to generate higher energies in stretched-pulse lasers
constructed with single-mode fiber (SMF) always lead to
multiple pulsing or other instabilities [12]. Instead of conven-
tional solitons and dispersion-managed solitons, self-similar
pulses can tolerate strong nonlinearity without wave breaking
if they can evolve to fill available gain bandwidth. Because
of the restricted gain bandwidth (e.g., ∼30 nm for erbium-
doped fiber), the self-similar pulse encounters a limitation to
its spectral bandwidth, and thus self-similar propagation of
intense pulses is disrupted [16]. Self-similar pulses allow the
pulse energy to reach the 10-nJ level [12,17,18]. Although the
aforementioned techniques can effectively decrease the effects
of nonlinearity through dispersion management, they do not
eliminate the limitation of nonlinear effects.

All-normal-dispersion lasers can enhance the self-
amplitude modulation through chirped-pulse spectral filtering
and stabilize high-energy coherent pulses without dispersion
management. Pulse shaping based on spectral filtering feature
highly chirped pulses in the laser cavity. All-normal-dispersion
lasers generate the highly chirped pulses with pulse energy
of >20 nJ [19]. As the pulse energy increases, the spectral
shaping, owing to the finite gain bandwidth of the medium,
plays a key role. The accumulation of excessive nonlinear
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phase shift or excessive pulse chirp thus causes the pulse to
break up [12,20].

In order to substantially increase the pulse energy, direct
management of nonlinearity of the laser cavity has been used
to construct lasers. High-energy lasers with scaling at constant
nonlinear phase shift can be accomplished using large-mode-
area fibers [21–23]. However, this solution complicates the
design of the laser cavity and eliminates the alignment-free
waveguide format, due to the use of free-space components.

Wave breaking is the fundamental limit to pulse energy.
Fortunately, highly chirped pulses can reach unprecedented
energies and peak powers and avoid wave breaking despite
the accumulation of large nonlinear phase shifts. Anderson
et al. showed that wave breaking is avoided when a pulse
acquires a monotonic frequency sweep or chirp as it
propagates [24]. They proved that when the GVD is normal,
high-intensity solutions without wave breaking exist for the
nonlinear Schrödinger equation. Tamura et al. found that
the evolution to a parabolic shape reduced wave breaking in
a short-pulse fiber amplifier [25]. Jones et al. showed that
lasers operated close to the self-similar regime exhibited
operation without wave breaking with peak power five
times that of a dispersion-managed soliton laser [26]. Ilday
et al. found that stable self-similar pulses existed with
energies much greater than could be tolerated in solitonlike
pulse shaping [16]. However, both dispersion-managed
soliton lasers and self-similar parabolic-pulse lasers do not
completely eliminate the limitations of wave breaking.

In this article, a different type of pulse shaping in
mode-locked lasers is theoretically investigated and
experimentally observed. Pulse evolution without wave
breaking in a strongly dissipative-dispersive laser system is
observed numerically and experimentally. The pulse evolution
in our laser is qualitatively distinct from the well-known
conventional soliton, dispersion-managed soliton, and
self-similar pulse evolutions. The experimental observations
confirm the theoretical predictions.

II. EXPERIMENTAL SETUP AND MECHANISMS

The proposed fiber laser oscillator is shown schematically
in Fig. 1. The laser cavity consists of a polarization-sensitive
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FIG. 1. (Color online) Schematic diagram of laser cavity through
the PAPM element.

isolator (PS-ISO), two sets of polarization controllers (PCs),
a fused coupler with 50% output, a wavelength-division
multiplexing (WDM) coupler, and a piece of erbium-doped
fiber (EDF). A PS-ISO combined with two PCs forms a
polarization additive pulse-mode-locking (PAPM) element.
The total length of laser cavity is about 25.5 m, including
an EDF of about 18 m and an SMF of about 7.5 m. The
EDF and SMF have dispersion parameters of about 55 ×10−3

and −22 × 10−3 ps2/m at 1550 nm, respectively. The gain
medium of EDF has a gain bandwidth of 30 nm, and its
normalized spectral profile can be approximated by gnor(ω) =
1/[1 + (ω/�ω)6], where ω and �ω are the frequency detuning
and the EDF bandwidth, respectively.

The EDF and SMF provide large positive and negative
dispersions of about 1 ps2 and −0.17 ps2 to a laser system,
respectively. A laser with large net normal GVD would
presumably have to exploit dissipative processes in the mode-
locked pulse shaping, which has major contributions from
gain and loss processes in addition to the phase modulations
[12,27]. So the pulses in the proposed laser system have to
encounter significant amounts of dispersion (positive and neg-
ative) and suffer large loss (and gain). The strongly dissipative
and dispersive mechanisms will influence the pulse formation.

III. THEORETICAL MODELING

Usually, the lightwave propagation in the weakly birefrin-
gent fibers is modeled by the two coupled equations that
involve a vector electric field. In this work, the fiber length
of laser cavity, L, is much larger than its beat length LB (here
L ≈ 25.5 m and LB ≈ 1 m). The physical terms involved
in LB are considered to be negligible. To describe the light
propagation, we used coupled complex nonlinear Schrödinger
equations of the form [28,29]
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Here, u and v denote the envelopes of the optical pulses along
the two orthogonal polarization axes of the fiber; α is the loss
coefficient of fiber. The modal birefringence of fiber is given
by �β = β0x − β0y , where β0j is the propagation constant
(j = x, y). β1x and β1y are the group velocities of the two
polarization components, β2 represents the fiber dispersion,
γ refers to the cubic refractive nonlinearity of the medium,
�g is the bandwidth of the laser gain, δ = (β1x − β1y)/2 is the
group-velocity difference between the two polarization modes,
and T = t − (β1x + β1y)z/2. The variables t and z indicate the
pulse local time and the propagation distance, respectively, and
g is the net gain, which is nonzero only for the amplifier fiber.
It describes the gain function of EDF and is expressed by [29]

g = g0 exp (−Ep/Es). (2)

Here, g0 is the small-signal gain with a bandwidth of 30 nm.
Es is the gain saturation energy, which is dependent on pump
power [30,31]. The pulse energy Ep is given by

Ep =
∫ TR/2

−TR/2
(|u|2 + |v|2)dζ , (3)

where TR is the cavity round-trip time.
The light transmission through fibers can be simulated by

solving Eqs. (1)–(3) and by using spectral filtering [28]. When
the light propagates through the PAPM element, the intensity
transmission of light, T, is expressed as

T = sin2(θ ) sin2(ϕ) + cos2(θ ) cos2(ϕ)

+ 0.5 sin(2θ ) sin(2ϕ) cos(φ1 + φ2), (4)

where φ1 is the phase delay caused by the polarization
controllers and φ2 is the phase delay resulting from the
fiber, including both the linear phase delay and the nonlinear
phase delay. The polarizer and analyzer have an orientation
of angles θ and ϕ with respect to the fast axis of the fiber,
respectively (Fig. 1). Obviously, two coupled-mode equations
[i.e., Eq. (1)] describing the lightwave propagation in the
weakly birefringent fibers involve a vector electric field.
Komarov et al. had proposed a simplified model where the
two-component system reduces to a single Ginzburg-Landau
equation [32].

IV. SIMULATION RESULTS

The numerical model is solved with a predictor-corrector
split-step Fourier method [33]. The simulation started from
an arbitrary signal and converged into a stable solution with
appropriate parameters after a finite number of traversals
of the cavity. Numerical simulations show that, for fixed
parameters, exactly the same stable solutions are reached
from distinct initial noise fields. By appropriately setting the
polarization of polarizer and analyzer and the linear cavity
phase-delay bias of the cavity, self-started mode locking can
be achieved in a multipulse operation or single-pulse operation
without wave breaking. We use the following parameters
for our simulations for possibly matching the experimental
conditions: α = 0.2 dB/km, g0 = 2 m−1, γ = 4.5 W−1 km−1

for EDF and 1.3 W−1 km−1 for SMF, �g = 30 nm, β2 =
55 × 10−3 ps2/m for EDF and −22×10−3 ps2/m for SMF,
and the net cavity GVD βnet ≈ 0.83 ps2.
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Since the saturation energy Es is proportional to the
pumping strength [31], increasing Es corresponds to increasing
the pump power in the experiments. Numerical results show
that the stable solutions of mode-locking lasers are very
sensitive to the angles θ and ϕ and the phase delay φ1. For
instance, when θ = π/3.8, ϕ = π/4.5, and φ1 = 0.3 + π/2,
the pulse number over a cavity round-trip time is generated
one by one with the increase of the pumping parameter Es .
On the other hand, the typical single-pulse solution without
wave breaking can be obtained with θ = π/4, ϕ = π/10,
and φ1 = 0.25 + π/2, as shown in Fig. 2; θ , ϕ, and φ1 in
experiments are determined by the state of two PCs.

Figure 2(a) shows that the pulse width broadens gradually
as a function of the pumping strength Es , whereas the peak
power increases slowly with Es . For increasing Es , both pulse
width and pulse energy increase with an approximately linear
evolution, as shown in Fig. 2(c). For instance, the pulse width
is enhanced by a factor of 8 when Es is increased from 2.5 to
25 nJ [Fig. 2(c)], whereas the peak power of pulses is a factor
of 1.3 higher in this case. Therefore, the nonlinear phase shift φ
of pulses increases slowly (φ is proportional to the peak power
of pulses), although the pulse energy is enhanced greatly.

Figure 2(b) shows that, for increasing Es , the spectral
width almost keeps a constant, although the spectral peak
increases remarkably. The detailed evolution is demonstrated
in Fig. 2(d). It appears that the spectral width decreases in a
lower Es (e.g., Es < 10 nJ) and then approaches a constant.
Surprisingly, the optical spectrum of our laser approximately
is the Gaussian profile, instead of the quasirectangular profile
that is the typical spectrum of net-normal-GVD mode-locked
fiber lasers. Moreover, the spectral width of our laser is
independent of the pumping strength Es , so that our laser
intrinsically overcomes the limit of bandwidth of gain fibers
and has the capacity of generating ultra-high-energy pulses. It
is found from Fig. 2 that the time-bandwidth product increases
almost linearly for Es > 5 nJ. The theoretical results show
that the chirp of pulses remains constant when Es is more than
10 nJ.

Obviously, the evolution of pulse properties of our laser
is qualitatively distinct from that of self-similar lasers. Be-
cause the spectral width increases substantially in self-similar
amplification, the self-similar lasers have to be subsequently
amplified with a short segment of gain fiber in the presence
of minimal dispersion and nonlinearity. As a result, the pulse
energy in the self-similar lasers is limited by a shorter gain fiber
(e.g., 23-cm-long gain fiber [16]). However, the gain fiber here
is as long as 18 m because the spectral width of our laser is
almost independent of the amplification of gain fiber.

Figure 3 shows the temporal power profile and instan-
taneous frequency of the pulses at a typical Es = 25 nJ.
The corresponding autocorrelation trace is shown in inset.
One can observe from Fig. 3 that pulses have approximately
rectangular temporal profiles, different from the parabolic,
Gaussian, and hyperbolic-secant temporal profiles shown in
self-similar, dispersion-managed soliton, and conventional
soliton lasers, respectively. The pulse chirp is nearly linear
across the central region of pulse, whereas it is nonlinear
at the edges of pulse. The linear part has very low chirp,
varying from −1.5 to 1.5 THz, which is over twenty times
less than the pulse chirp of self-similar lasers [12,16]. Since
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FIG. 2. (Color online) Results of numerical simulations. (a) Pulse
evolution as a function of pumping strength Es . T0 is the pulse duration
at Es = 1 nJ. (b) Power evolution with Es in the spectral domain. Some
typical power spectra are shown in inset: Es = 5, 10, 15, 20, and 25 nJ
from bottom to top, respectively. (c) Pulse energy and pulse width
versus Es . (d) Spectral width and peak versus Es .

different frequency components of a pulse travel at different
speeds along the laser system [34], very low frequency chirp
means that the frequency components of the pulse travel at
approximately the same speed. The nonlinear chirp at the
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FIG. 3. (Color online) Numerical simulations of temporal power
profile (left) and instantaneous frequency (right) of the pulses at
Es = 25 nJ. Inset: the corresponding autocorrelation trace.

edge of the pulse can resist the influence of larger dispersion
that causes the linear chirp to pulse. Therefore, very low
frequency chirp on the central region of the pulse, together
with the nonlinear chirp at the edge of the pulse, maintain
the pulse in operation without wave breaking in a high-energy
regime.

Recently, the dissipative soliton resonance (DSR) technique
is used to achieve high-energy pulses [35]. When the parame-
ters of the laser are closer to the resonance point, high-energy
pulses appear at this resonance and the shape of the pulses is
closer to being rectangular. Although the rectangular pulses
with Gaussian spectra exhibited in the DSR are similar to our
results, their chirps have some difference. The chirps of pulses
in DSR are linear across the whole pulse, whereas the chirps
of pulses here are nonlinear at the edges of pulses (Fig. 3).
Of course, the pulses in this report can be an example of
approximate DSR.

The pulse characteristics in the intracavity position are
illustrated in Fig. 4. Figures 4(a) to 4(c) show the intracavity
pulse evolutions in the temporal domain, spectral domain,
and instantaneous frequency over a cavity round trip at Es =
25 nJ, respectively. One can see from Figs. 4(a) and 4(b) that
the relative fluctuations of the temporal and spectral widths
of pulses during the intracavity propagation are as low as
∼3%, very different from the pulse behavior in the multipulse
operation regime where the temporal and spectral breathing
ratios are more than two [36]. It is very surprising that the
chirp of pulses hardly fluctuates throughout the laser cavity,
as shown in Fig. 4(c). The pulse peak and its spectral peak
rapidly increase in the beginning of the EDF and then slightly
vary in the remaining EDF part. It is found from Figs. 4(a) and
4(b) that the pulses with quasirectangle temporal and Gaussian
spectral profiles exist throughout the laser cavity.

V. EXPERIMENTS AND COMPARISONS

With appropriate orientation and pressure settings on the
two PCs, the self-started mode locking of the laser is achieved
at the threshold pump power P ≈ 80 mW. The laser operation
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FIG. 4. (Color online) Intracavity pulse evolutions in (a) the
temporal domain (top plot: three-dimension evolutions; bottom plot:
two-dimension evolutions for pulse energy and width), (b) the
spectral domain (top plot: three-dimension evolutions; bottom plot:
two-dimension evolutions for spectral width and peak), and (c) the
instantaneous frequency at Es = 25 nJ throughout the laser cavity.
Intracavity position: EDF from 0 to 18 m, output coupler at 19 m,
and PAPM at 22.5 m.

is simultaneously monitored using an autocorrelator, optical
spectrum analyzer (OSA), and radio-frequency (rf) spectrum
analyzer. Figures 5(a)–5(d) demonstrate the optical spectrum
of the pulses, the autocorrelation trace, and the rf spectrum,
respectively. Figure 5(a) shows some typical output spectra
(P = 100, 200, 300, 400, and 500 mW), centered at ∼1567 nm,
with full width at half maximum (FWHM) of 11∼14 nm.
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FIG. 5. (Color online) Results of experimental observations:
(a) Output optical spectrum. Pump power P = 100, 200, 300, 400, and
500 mW from bottom to top, respectively. (b) Autocorrelation trace
for P = 400 mW. (c) Fundamental rf spectrum of the laser output.
(d) Wideband rf spectrum up to 500 MHz.
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FIG. 6. (Color online) Experimental results of (a) spectral width
and peak vs pump power and (b) intracavity pulse energy and duration
vs pump power.

One can see from Figs. 2(b) and 5(a) that the experimental
results are in good agreement with the theoretical predictions
that the optical spectrum of pulses is similar to the Gaussian
profile. Both experimental and numerical results illustrate that
the spectral behaviors of this laser are different from the typi-
cal spectrum characteristics of all- or net-normal-dispersion
mode-locked fiber lasers where there are steep spectral
edges.

The experimental observations show that the autocorrela-
tion trace of the pulse has a quasitriangular profile. An typical
example for P ≈ 400 mW is illustrated in Fig. 5(b), and
the experimental results confirm the theoretical predictions
(inset of Fig. 3). Figure 5(c) shows a measurement made at a
resolution bandwidth of 150 Hz. The fundamental peak located
at the cavity repetition rate of 8.19 MHz has a signal-to-noise
ratio of ∼70 dB. Figure 5(d) shows the wideband rf spectrum
up to 500 MHz. The rf spectrum confirms the stable mode
locking and absence of sidebands and harmonic frequencies
to 60 dB below the fundamental frequency.

The stable mode locking with the single-pulse operation
is always maintained in the laser as the pump power P is
gradually increased. The intracavity pulse energy and duration
increase almost linearly with P. The experimental results are
shown in Fig. 6(b) in detail. The experimental observations
are in good agreement with the theoretical predictions [3,37]
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and confirm the existence of the dissipative-soliton-resonance
phenomenon. Figure 6(a) shows the evolutions of spectral
width and peak as functions of P. It appears that the spectral
peak increases approximately linearly with P. However,
the spectral width decreases monotonically for lower pump
power (e.g., P < 400 mW), and successively it approximately
approaches constant for higher P.

VI. CONCLUSIONS

Pulse evolution without wave breaking in a large net-
normal-GVD mode-locked fiber laser is investigated numer-
ically and experimentally. Pulses in such lasers encounter
significant amounts of dispersion (positive and negative) and
are influenced by the strongly dissipative and dispersive mech-
anisms. A different type of pulse shaping in mode-locked lasers
is theoretically investigated and experimentally observed,
which is qualitatively distinct from previously identified mode-
locking techniques. The pulses have the quasirectangular

temporal profile and the Gaussian spectral profile, different
from the pulses shown in self-similar, dissipative-soliton, and
conventional-soliton lasers, respectively. The pulse of our laser
has very low frequency chirp, and its spectral width is almost
independent of the pumping strength, so the single-pulse
operation without wave breaking can be maintained in the
strongly high-energy regime. The chirp of pulses hardly
fluctuates throughout the laser cavity, and the pulses have the
relative fluctuations of the temporal and spectral widths as low
as ∼3%. Numerical and experimental results show that pulse
energies one to two orders of magnitude larger than those of
existing lasers should be possible.
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