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Pulse trapping inside a one-dimensional photonic crystal with relaxing cubic nonlinearity
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We theoretically study the effect of pulse trapping inside one-dimensional photonic crystal with relaxing cubic
nonlinearity. We analyze dependence of light localization on pulse intensity and explain its physical mechanism
as connected with the formation of a dynamical nonlinear cavity inside the structure. We search for the range of
optimal values of parameters (relaxation time and pulse duration) and show that pulse trapping can be observed
only for positive nonlinearity coefficients. We suppose that this effect can be useful for realization of optical
memory and limiting.
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I. INTRODUCTION

Photonic-band-gap structures are actively studied as
promising elements for different devices of nonlinear and
quantum optics [1–3]. Study of nonlinear photonic crystals is
connected with the possibility of dynamical adjustment of the
parameters of the system. Photonic crystals (including two-
and three-dimensional) allow one to control dispersion and
diffraction properties of light [4,5], obtain pulse reshaping [6],
obtain pulsed high-harmonic generation [7], etc. The processes
of light self-action in such systems result in localization effects
such as gap solitons formation, discrete mode existence, or
light energy localization (see, e.g., [8–11]).

The simplest example of a one-dimensional photonic crys-
tal can be represented as a periodic set of alternating dielectric
layers with large depth of refractive index modulation. One
of the most prominent effects of nonlinear optics of such
structures is strong pulse compression in photonic crystals
with nonresonant cubic nonlinearity [12,13]. The effect of light
pulse localization, or trapping, in one-dimensional photonic
crystal with a defect was studied in Ref. [14] and, in more
general form, in Refs. [15,16].

In this paper we study pulse propagation in photonic crystal
with relaxing cubic nonlinearity. It is obvious that if we reduce
incident pulse duration, the inertial properties of medium
nonlinearity should be taken into account. Indeed, the lowest
values of relaxation time connected with the electronic Kerr
mechanism (a few femtoseconds [17]) appear to be comparable
with pulse durations obtained at the modern setups. As it
was shown in Ref. [18], relaxation of nonlinearity results
in vanishing of the effect of femtosecond pulse compression
which can be obtained in the relaxation-free case.

In our research we use numerical simulations of the
Maxwell wave equation taking into account the process of
nonlinearity relaxation. The method used allows one to obtain
numerical solutions of the problem without any assumptions
about medium parameters modulation or rate of variation of
field envelope. We show that, in a certain region of pulse
amplitudes, relaxation times and pulse durations, the pulse can
be trapped inside a nonlinear cavity dynamically formed by the
light. Appearance of the cavity is connected with local change
of reflective properties of the photonic structure. In other
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words, dynamical shift of band spectrum occurs. Trapping
pulse inside the photonic crystal is a prospective effect for
such possible applications as optical limiters (which transmit
light only with proper intensity), optical buffers or memory
(which allows one to store light for time, large in comparison
with characteristic transmission time). Large advantage of the
scheme considered is the absence of necessity to introduce
nonuniformity or any imperfections in the structure of nonlin-
ear photonic crystal.

The article is divided into several sections. In Sec. II the
main equations are given and the approach for numerical
solving of the wave equation is considered. Sec. III is devoted
to some phenomenological aspects of the pulse-trapping effect.
In Sec. IV the physical mechanism of pulse trapping in
photonic crystal with relaxing cubic nonlinearity is discussed.
Finally, in Sec. V we consider some conditions for pulse-
trapping observation connected with the proper choice of pulse
duration and relaxation time.

II. MAIN EQUATIONS AND NUMERICAL METHOD

In this paper we consider ultrashort pulse interaction with
one-dimensional photonic crystal made of substance with
relaxing cubic (Kerr) nonlinearity. Light propagation along
the z axis is governed by the Maxwell wave equation,

∂2E

∂z2
− 1

c2

∂2(n2E)

∂t2
= 0, (1)

where E is electric field strength and n is medium refractive
index that depends on light intensity I = |E|2 as

n = n0(z) + δn(I,t). (2)

Here, n0(z) is a linear part of refractive index. Time dependence
of nonlinear term δn is responsible for the relaxation process
and is described by the first-order differential equation due to
the Debye model of nonlinearity [17],

tnl
dδn

dt
+ δn = n2I, (3)

where n2 is the Kerr nonlinear coefficient and tnl is the
characteristic relaxation time. We consider fast relaxing media
(electronic Kerr mechanism) with relaxation times as small
as a few femtoseconds. Representing field strength as E =
A(t,z) exp [i(ωt − kz)], where ω is a carrier frequency, k =
ω/c is the wave number, and introducing new, dimensionless
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arguments τ = ωt and ξ = kz, we come to the wave equation
for the pulse amplitude A(t,z),

∂2A

∂ξ 2
− ∂2n2A

∂τ 2
− 2i

∂A

∂ξ
− 2i

∂n2A

∂τ
+ (n2 − 1)A = 0. (4)

Usually, second-order derivatives are neglected at this point
resulting in slowly varying envelope approximation. However,
in the case of abrupt changes of refractive index (photonic
crystal) it may fail, so that we should solve the full Eq. (4). In
addition, this equation allows one to describe the behavior of
electric field in the structure without division into forward and
backward waves. Equation (4) and the computational scheme
considered below are similar to those of Refs. [19,20] where
they were implemented to consider light propagation in a dense
resonant medium and a photonic crystal containing it.

Equation (4) can be solved numerically by using the finite-
difference time-domain (FDTD) approach. The computational
scheme is based on calculation of amplitude value at every
mesh point (l�τ,j�ξ ) as

Al+1
j = [−a1A

l−1
j + b1A

l
j+1 + b2A

l
j−1 + f Al

j

]/
a2. (5)

Here, the auxiliary values are

a1 = (
nl−1

j

)2
(1 − i�τ ), a2 = (

nl+1
j

)2
(1 + i�τ ),

b1 =
(

�τ

�ξ

)2

(1 − i�ξ ), b2 =
(

�τ

�ξ

)2

(1 + i�ξ ),

f = 2
(
nl

j

)2 − 2

(
�τ

�ξ

)2

+ �τ 2[(nl
j

)2 − 1
]
.

The values of the refraction index at the mesh points can be
obtained in terms of finite-difference representation of Eqs. (2)
and (3),

nl+1
j = n0j + δnl+1

j ,
(6)

δnl+1
j = τnl

τnl + �τ

[
δnl

j + �τ

τnl
n2j

∣∣Al
j

∣∣2
]

,

where τnl = ωtnl, and n0j and n2j are the values of the
background refraction index and nonlinearity coefficient at
ξj = j�ξ .

To correctly set the boundary conditions we use the
total-field–scattered-field (TF-SF) method and the perfectly
matched layer (PML) method which allows one to apply the
so-called absorbing boundary conditions at the edges of the
calculation region [21].

III. PULSE-TRAPPING EFFECT

Let us consider propagation of ultrashort (femtosecond)
light pulse in one-dimensional photonic crystal shown in
Fig. 1. Spatial periodic modulation of the background re-
fractive index n0(z) defines the structure of it, so that it
can be treated as a set of alternate layers. The parame-
ters used in calculations are as follows: refractive indices
of the layers na = 2, nb = 1.5; their thicknesses a = 0.4,
b = 0.24; number of layers N = 200. Nonlinear coefficient
of the material is defined as n2I0 = 0.005 (i.e., the pulse
amplitude is normalized by the value A0 = √

I0). This value
of cubic coefficient provides a refraction index change of

a b

na nb

FIG. 1. Scheme of a photonic crystal considered. Parameters:
refractive indices na = 2, nb = 1.5; thicknesses a = 0.4, b = 0.24;
number of layers N = 200.

one-thousandth and one-hundredth of unity and was used in
calculations of Ref. [18]. Note that the nonlinear coefficient
is positive (focusing nonlinearity), so that the refractive index
increases with the intensity. The incident pulse is assumed
to have Gauss envelope A = Am exp (−t2/2t2

p). Here, tp is a
pulse duration which further takes on the value of 30 fs, while
the carrier frequency lies on the wavelength λ = 1.064 µm.

Figure 2 shows the results of calculations of pulse interac-
tion with nonlinear photonic structure with and without relax-
ation. One can easily see that the effect of pulse compression
(obtained at tnl = 0) is completely absent when tnl = 6 fs.
This result is in strict accordance with the conclusions of
Ref. [18].

Vanishing of compression effect in Fig. 2 was obtained
for pulse peak intensity Im = |Am|2 = I0, where I0 = |A0|2
is the value of intensity corresponding to n2I0 = 0.005. If we
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FIG. 2. (Color online) Interaction of ultrashort pulse with the
photonic crystal with (a) relaxation-free (tnl = 0) and (b) relaxing
(tnl = 6 fs) cubic nonlinearity. Pulse peak intensity Im = I0, where
I0 is such that n2I0 = 0.005. Other parameters are the same as in the
caption of Fig. 1 and in the text of the paper. The inset demonstrates
the spectra of the photonic crystal (solid line) and of the pulse (dotted
line).
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FIG. 3. (Color online) (a) Transmitted and (b) reflected intensity
after interaction with nonlinear photonic crystal at different incident
pulse peak intensities (Am = 1,3,7 in units of A0). Relaxation time
of nonlinearity tnl = 6 fs. Other parameters are the same as in the
caption of Fig. 2.

take greater Am, the transmitted pulse continues to decrease.
As seen in Fig. 3(a), only a small part of incident light can
pass through the nonlinear photonic crystal at Am = 3A0. This
situation is observed at Am = 7A0 as well, though the reflected
pulse gets larger in this last case [Fig. 3(b)]. When we integrate
intensity of reflected and transmitted light over a certain
time interval (200tp in our calculations, i.e., large enough in
comparison with time required for pulse to pass through the
photonic crystal which is about 30tp; see Fig. 2), we obtain the
characteristic energy curves (Fig. 4) that describe the change
in behavior of pulses as their peak intensity is increasing. It is
seen that, when Am gets larger than 2A0, reflected, transmitted
and overall (summarized) energies demonstrate a dramatic
decrease. After reaching the minimum (output energy is about
20% of the input one), the curves begin to rise slowly. This slow
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FIG. 4. (Color online) Dependence of transmitted, reflected, and
overall output energy (as fraction of input energy) on incident pulse
peak amplitude Am. Relaxation time of nonlinearity tnl = 6 fs. Energy
was integrated over the time interval of 200tp .
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FIG. 5. Distribution of light intensity inside the photonic crystal
at different time points. Pulse peak amplitude (a) Am = 3A0,
(b) Am = 7A0. Relaxation time of nonlinearity tnl = 6 fs.

growing of transmitted energy continues, while, for reflected
and total ones, rise becomes more steep (especially, when
Am > 5A0) and, finally, the plateau is observed for Am � 7A0.
Thus, the input energy almost entirely transforms to reflected
light at high intensities of incident pulse.

It is obvious that the energy of pulses with amplitudes
between Am ≈ 2A0 and Am ≈ 6A0 is confined inside the
photonic crystal. Figure 5(a) demonstrates light intensity
distributions along the length of the structure at different
instants of time for the pulse peak amplitude Am = 3A0. At
first (t = 50tp), the largest part of the pulse energy is localized
in a narrow region of the nonlinear photonic crystal, near the
position L = 50 µm (the total length of the structure is about
130 µm). As time goes by, energy tends to redistribute more
uniformly. Nevertheless, there is still pronounced maximum
of intensity distribution, moreover, it is shifted toward larger
positions, namely 60–70 µm at t > 700tp. At large time
points this distribution stays almost invariant, or stationary.
Its maximum only slightly decreases, which seems to be
connected with further redistribution rather than with output
radiation. Anyway, even at t = 4000tp approximately 80% of
pulse energy is still confined inside the photonic structure, just
as at t = 200tp (see Fig. 4). This time is more than 100 times
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FIG. 6. Distribution of light intensity inside the photonic crystal
at different time points. Pulse peak amplitude Am = 5A0. Relaxation
time of nonlinearity tnl = 0.

higher than the interval needed for pulse to pass through the
system. Recalling that tp = 30 fs, this delay time in absolute
units is greater than 100 ps. Therefore, we can say about pulse
trapping in this case. Only for t > 4000tp the system starts
to slowly emit light so that the sharp distribution shown in
Fig. 5(a) becomes violated. More detailed calculations show
that even at t = 10000tp about 50% of the initial energy is still
inside the photonic crystal, though it is distributed much more
uniformly.

Now let us consider the pulse with Am = 7A0. The
corresponding spatial distributions are shown in Fig. 5(b). It
turned out that in this case the pulse is localized near the
very beginning of the structure. In this position it rapidly loses
energy which is mainly radiated through the front (input) end
of the system. So this radiation gives significant contribution to
reflection [see Fig. 3(b)]. After light intensity becomes lower
than a certain threshold, the pulse starts moving and widening.
It moves quite slowly, so that some part (about 20%) of the
input energy is confined inside the photonic crystal for a long
time, but the peak intensity of the distribution is very low if
we compare it with the case of Am = 3A0.

It is interesting to compare pulse behavior considered with
pulse propagation in photonic crystal with relaxation-free
nonlinearity (i.e., at tnl = 0). Intensity distributions inside the
system for this case are demonstrated in Fig. 6. It is seen
that any longterm energy localization in nonrelaxing photonic
structure is absent. Light exhibits only chaotic “wander” inside
it and simultaneous attenuation due to emitting through input
and output ends. Finally, almost all energy of the pulse is
already radiated by the instant of time t = 700tp. Therefore,
we can say that relaxation of nonlinearity is a necessary
condition to obtain the effect of pulse trapping inside a
photonic crystal.

IV. PHYSICAL MECHANISM OF PULSE TRAPPING

What is the physical reason, or mechanism, of this phe-
nomenon? As pulse propagates inside the photonic crystal
possessing cubic nonlinearity, the refractive index of the
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FIG. 7. Spatial variation of (a) the linear part of the refractive
index n0(z), (b) the nonlinear contribution δn. Pulse peak amplitude
Am = 3A0; time point t = 50tp . Relaxation time of nonlinearity
tnl = 6 fs.

structure changes dynamically according to light intensity. If
nonlinearity is relaxation free, these changes are instantaneous
and depend entirely on field distribution at the current instant
of time. In the case of relaxing nonlinearity, nonlinear variation
of the refractive index (δn in our notation) can form a certain
stable structure due to retardation in its change. Appearance
of this nonlinear dynamical “cavity” results in pulse trapping:
Light tends to change the distribution of δn and leave the
cavity, but inertia of nonlinearity stabilizes it so that intensity
is transformed to provide steady spatial distribution δn(z).
The example of this is shown in Fig. 7(b). One can see that
maximal values of nonlinear variation of the refractive index
δn (so-called primary maxima) are achieved in the layers with
low linear refractive index n0 = 1.5 [see Fig. 7(a)]. This is
in accordance with the effect of light concentration in low
refractive index regions of photonic crystal for radiation tuned
to the high-frequency side of the reflection spectrum [2] as it
is in the case considered (see the inset in Fig. 2). On the other
hand, high refractive index layers of the structure contain minor
(secondary) maxima of δn.

Obviously, low-intensity initial pulses are insufficient to
produce high enough nonlinear contribution δn, so that pulse
is mainly transmitted and reflected during short time after
pulse incidence. For higher intensities [e.g., Am = 3A0 as in
Fig. 5(a)] pulse forms a nonlinear cavity inside the photonic
crystal which localizes the most part of pulse energy. Though
this cavity slowly tends to uniformity of δn and loses its
energy, it allows one to trap pulse light for a relatively large
time interval. This behavior is obtained in a wide range of
pulse amplitudes, from approximately 2.5A0 to 5A0. As pulse
intensity increases, the cavity formation position moves toward
the front end of the photonic structure. Finally, for Am ≈ 7A0

the nonlinear cavity appears so close to the entrance of the
system [Fig. 5(b)] that it rapidly emits almost all its energy
in the form of reflected light. That is why only intermediate
intensities of pulse (not too low and not too high) are suitable
to obtain the effect of trapping pulse inside the structure
considered.
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FIG. 8. (Color online) Transmitted and reflected pulses after the
interaction with a uniform cubic medium. Pulse peak amplitude
(a) Am = 3A0; (b) Am = 20A0. Linear part of refractive index
n0 = 1.8125. Relaxation time of nonlinearity tnl = 6 fs.

Finally, we should explain the role of photonic crystal
in this process. Is it necessary to use photonic-band-gap
structure or, maybe, the effect of pulse trapping can be
observed in a uniform cubic medium? To clarify this question
we performed calculations of pulse interaction with the
medium possessing relaxing nonlinearity and mean refractive
index n0(z) = (ana + bnb)/(a + b) = 1.8125. One can see
[Fig. 8(a)] that in this case there is not any light localization
for pulse amplitude Am = 3A0. Only much more intensive
pulses start to lose considerable part of energy inside the
medium. For example, about 40% of pulse energy is found to
be trapped for Am = 20A0 [Fig. 8(b)]. This part of energy stays
inside the uniform medium for a long time and is connected
with corresponding nonlinear variation of refractive index
(see Fig. 9 for the instant of time t = 1000tp). However, the
distribution of light intensity in the uniform medium seems to
be stochastic and does not resemble pulse envelope as in the
case of nonlinear photonic crystal [compare the distributions in
Figs. 9(a) and 5(a)]. Therefore, we cannot call light localization
in the uniform medium with relaxing nonlinearity by the pulse
trapping in the full sense of this term. Moreover, in photonic
crystals we need pulse intensities which are less by an order
of magnitude than in the case of the uniform medium.

Perhaps, the nonlinear cavity formation is connected with
local change of reflective properties of photonic crystal. This
results in dynamical shift of the band spectrum of the structure.
To examine this situation we consider the refractive properties
(for the central wavelength λ = 1.064 µm) of the structure
with refractive index variations shown in Fig. 10(a) [it corre-
sponds to intensity distribution of Fig. 5(a) at t = 1000tp].
We calculate reflectivity of the partial structures, which
include the layers from the input to a certain final position
(inside the whole photonic crystal), and compare it with the
case of linear structure. Difference between reflectivities in
these two cases as a function of final position is demonstrated in
Fig. 10(b). It is seen that the structure with modified refractive
index modulation provides locally large reflectivity deviations
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FIG. 9. Spatial variation of (a) intensity, (b) nonlinear variation
δn in the case of uniform cubic medium with linear part of refractive
index n0 = 1.8125. Pulse peak amplitude Am = 20A0, time point
t = 1000tp . Relaxation time of nonlinearity tnl = 6 fs.

from the linear case. These deviations mainly appear at large
positions inside the crystal where δn is high enough, so
that they can prevent light propagation in forward direction.
A similar situation is observed if we consider backward
propagation. Hence, it turns out that light is trapped in the
central region of the structure. Finally, it is worth noting
that this picture of refractive index variations and reflectivity
deviations is permanently changing, though it is stabilized by
the relaxing properties of nonlinearity.

V. ON OPTIMAL CONDITIONS OF PULSE TRAPPING

In previous sections we considered the effect of pulse
trapping in photonic crystal with relaxing cubic nonlinearity
only for a single set of time parameters: tnl = 6 fs and
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FIG. 10. (a) Distribution of nonlinear refractive index variation
δn corresponding to intensity distribution of Fig. 5(a) at t = 1000tp .
(b) Difference between reflection coefficients of the partial structures
including the layers from the input to a certain final position in the
cases of δn given by picture (a) and δn = 0. Calculations were carried
out for the central wavelength λ = 1.064 µm.
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tp = 30 fs. Figure 11(a) shows the dependence of output
energies (reflected, transmitted, and total) on relaxation time
at a fixed value of pulse duration tp = 30 fs. The behavior of
these dependencies is similar to that of the curves in Fig. 4:
abrupt drop in the range of small tnl (less than 1 fs), smooth
increasing and, finally, steep rise of the curves for reflected
and total energies. The full range of relaxation times where
the pulse trapping can be observed is rather wide: from a
fraction of a femtosecond (relaxation is so fast that it does not
influence the pulse) to about 150 fs that is much greater than
tp (medium reacts so slowly that the nonlinear cavity forms
near the very entrance of the system). The optimal value is
tnl ≈ 10 fs.

If we fix relaxation time tnl = 10 fs and vary pulse duration,
the behavior of output energies is quite different [Fig. 11(b)].
As in the previous case, it demonstrates abrupt decrease
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FIG. 12. Dependence of overall output energy on the ratio tnl/tp
plotted according to the data of Fig. 11.
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FIG. 13. (Color online) Transmitted and reflected pulses after in-
teraction with a photonic crystal with negative nonlinearity coefficient
n2I0 = −0.005. Pulse peak amplitude Am = 3A0. Relaxation time of
nonlinearity tnl = 6 fs. Other parameters are the same as in the caption
of Fig. 1.

for small times, namely, pulse durations tp � 10 fs which
correspond to only a few optical cycles. Such very short pulse
is not able to create a stable nonlinear cavity. On the other
hand, if tp is increasing, there is only stepless growth of output
energies, reflected and transmitted ones being approximately
of the same magnitude. The reason is the same: nonlinear
cavity is not formed as long as a whole pulse cannot be placed
inside the structure. The optimal value of pulse duration is
about 20 fs.

Since the limits of the pulse-trapping region are due to
different reasons in the cases of fixed tp and tnl, the width of
this region will be different, too. In Fig. 12 we plotted the
curves of Fig. 11 versus the ratio tnl/tp. This figure shows
explicitly that relaxation time can be varied in much more
wide range than pulse duration. This also implies that we can
use media with relatively slow relaxing nonlinearities to obtain
the effect of pulse trapping.

Another question is connected with the role of sign of non-
linearity. So far we considered only the positive nonlinearity
coefficient such that n2I0 = 0.005. If we take n2I0 = −0.005
(defocusing nonlinearity), there are not any symptoms of
pulse trapping as one can see in Fig. 13 for the amplitude
Am = 3A0. Though this problem should be studied in detail,
the preliminary conclusion is that trapping can be observed
only for n2 > 0, at least for comparatively low intensities.

VI. CONCLUSION

To summarize, we have analyzed the possibility of trapping
pulse in photonic crystal with relaxing cubic nonlinearity. By
using numerical simulations, we showed that this process is
due to the balance between light spreading and inertia of
nonlinearity which results in steady nonlinear cavity formation
and pulse trapping within it. Photonic crystal is a necessary
element for this cavity to appear, due to the processes of
dynamical local change of reflection and transmission of the
nonlinear structure, and, in addition, leads to decreasing of
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pulse intensity required to observe trapping. We discussed
the reasons for pulse trapping disappearance at high and low
values of both pulse duration and relaxation time resulting
in existence of the range of optimal magnitudes of these
parameters.
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