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Stable optical vortex solitons in pair plasmas
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It is shown that the pair plasmas with small temperature asymmetry can support existence of localized as
well as delocalized optical vortex solitons. Coexistence of such solitons is possible due to peculiar form of
saturating nonlinearity which has a focusing-defocusing nature—for weak amplitudes being focusing becoming
defocusing for higher amplitudes. It is shown that delocalized vortex soliton is stable in entire region of its
existence while single- and multicharged localized vortex solitons are unstable for low amplitudes and become

stable for relativistic amplitudes.
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I. MODEL

The richness of an electromagnetically active medium
is often measured by the variety of structures that it can
support. Such structures, in turn, are created because of
the nonlinear response of the medium, for instance, to the
impact of a large-amplitude electromagnetic wave. Naturally
the properties of the structure (e.g., its shape, its content, its
stability, and its angular momentum) are dictated by the type
of nonlinearity that can arise in the medium. The discovery or
identification of a new nonlinearity type, then, opens up a new
era of investigation—even discovery.

In this article we work out some of the consequences of
a new focusing-defocusing nonlinearity [1] belonging to the
general class of saturating nonlinearities (whose magnitude
tends to a constant as the wave amplitude becomes large).
Saturating nonlinearities seem to appear, inter alia, in theories
of large-amplitude wave propagation in pair plasmas (plasmas
whose main constituents have equal mass and opposite charge
[2-4]) in which the pair symmetry is broken by some physical
mechanism. For instance, a small amount of Baryonic matter
(protons) may break the symmetry of an electron-positron
(e-p) plasma in the MEV era of the early universe [5-8].
In recently created pair ion (PI) plasmas in the laboratory,
a variety of symmetry breaking mechanisms like the small
contamination by a much heavier immobile ion, or a small
mass difference between the two constituent species, could
exist [9-13]. Asymmetries originating in small temperature
differences in the constituent species may be always available
for structure formation: in the laboratory such a temperature
difference could be readily engineered (in a controlled way)
and there are reasons to believe that species temperature
differences could exist in cosmic and astrophysical settings
where one encounters e-p plasmas. It is in this latter setting
that a new type of nonlinearity
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appeared while deriving the wave equation (in parabolic
approximation) [1]
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describing the nonlinear evolution of the vector potential of an
electromagnetic (EM) pulse propagating in an arbitrary pair
plasma with temperature asymmetry. Following assumptions
and notations are necessary in order to put Egs. (1) and (2)
in perspective: A is the slowly varying amplitude of the
circularly polarized EM pulse ~ A (X 4+ §) exp(ikgz — wpt)
with mean frequency wy and mean wave number ko; V2 =
02/3x> 4+ 3%/0y? is the diffraction operator and £ = z — Vgt
is the “comoving” (with group velocity vg) coordinate.

Equation (2) is written in terms of the dimensionless quan-
tities A = |e|A/[mG(TO_)c2], r = (w./c)r, t = w,t; where
w, = (4me’ny/m)/? is the electron Langmuir frequency and
m is the electron mass. The charges ¢* and masses m* of
positive and negative ions are assumed to be same (in this
article we mainly concentrate on the specific case of pair
plasma consisting of electrons and positrons, i.e., g™ = et =
g~ = —e¢ = |e| and m* = m~ = m). The equilibrium state
of the system is characterized by an overall charge neutrality
ng = n, = ng, where ng and n,, are the unperturbed number
densities of the positive and negative ions, respectively. The
background temperatures of plasma species are TOjE (TOJr #*
T, )andm G(z*) = m K3(z*)/Ka(zF) is the “effective mass,”
[z* = mc? / T*], where K, are the modified Bessel functions.
For the nonrelativistic temperatures (T <« mc?) G* =1+
5T*/2mc? and for the ultrarelativistic temperatures (7% >
myc?) Gt =4T*/mc?> > 1. The smallness parameter € =
[G(T0+) - G(Ty)H1/ G(T0+) measures the temperature asym-
metry of plasma species. For the nonrelativistic temperatures
€ =5(Ty" — Ty )/2mc* while in ultrarelativistic case € =
(T0+ —-Ty)/ T0+. The numerical factor « = 1/2 for nonrela-
tivistic temperatures (=2/3 for ultrarelativistic temperatures).
In deriving Eq. (2) with (1), we have assumed that the plasma is
transparent (wg > 1, v, 2 1) and that the longitudinal extent
of the pulse is much shorter than its transverse dimensions.
However, despite dA/d& > V| A, the second and the third
terms in Eq. (2) can be comparable due to the transparency of
the plasma (wg > 1).
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With self-evident renormalization the Eq. (2) can be written
as:
aA 9%A

4= 2 2yA —
+ 282 + Vi A+ f(JAIDA =0, 3)

where the nonhneanty function is now following [1]:
|AP?

(1+ A%

which has an unusual feature:- in the ultrarelativistic limit
(IA]? > 1) it tends to be 0.

Note that the nonlinear refraction index for the considered
system can be written as dn,; = f(I), where I = |A|? is the
intensity of the EM field. The medium is a self-focusing
[d(6ny)/d1 > 0] provided I < 1, while for higher intensities
(I > 1) it becomes defocusing [d(dn,;)/dI < 0]. For the
localized intense EM pulse with the peak intensity 1, > 1
the medium becomes defocusing at the peak while remaining
focusing at the wings of the EM pulse intensity profile.

In Ref. [1] we have demonstrated that Eq. (3) supports
existence of the stable solitonic structures for any spatial
dimensions (D = 1,2,3). Such “light-bullets” exist provided
that the amplitude of the solitons is lower than certain critical
values [for instance, in 1-dimensional (1D) media A,, <
Aper =~ 1.4]. It is important to emphasize that at A, = A,
the profile of the central part of the soliton flattens and
widens at the top. The existence of flat-top soliton can be
explained by the peculiarities of our focusing-defocusing non-
linearity, implying that the pulse top part with A > 1 entered
the defocusing region has the tendency of diffraction while the
wings of the soliton are in the focusing region to prevent the
total spread of the pulse.

FUAP) = )

II. FORMATION OF VORTICES

In this section we explore the possibility of the formation
of two-dimensional stable soliton-structures carrying a screw
type of dislocation, i.e., optical vortices. The generation,
propagation, and interaction of optical vortices in nonlinear
media has been a subject of extensive studies (see for
review Ref. [14]). In a self-defocusing medium an optical
vortex soliton (OVS) is a (2 + 1)-dimensional (two transverse
dimensions and time) stationary beam structure with phase
singularity. An OVS is a dark spot, i.e., a zero-intensity center
surrounded by a bright infinite background. Self-focusing
media also support localized optical vortex soliton solutions
(LOVS) with phase dislocation surrounded by a bright ring. In
self-focusing medium, LOVS are unstable against symmetry
breaking perturbations that lead to the breakup of rings into
filaments [15].

Since the new nonlinearity (4) has both focusing-
defocusing features, one could expect that both OVS and
LOVS solutions are possible in such a medium. This ex-
pectation is reinforced by the results of Ref. [16] where a
cubic-quintic, sign-changing nonlinearity [f(|A|?) = |A|* —
| A|*] was postulated to model a focusing-defocusing medium.
In contrast to cubic-quintic model, the focusing-defocusing
saturation nonlinearity derived in Ref. [1] has the same sign
for all values of |A|. In order to investigate further the OVS
and LOVS solutions, we assume that the pulse is sufficiently
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long and effects related to the group velocity dispersion
(~w,* 32A/3E?) can be ignored.

Introducing polar coordinates (r, ) to describe the x-y
plane, we look for solutions of Eq. (3) in the form

A = A(r)exp(irt + imb), (@)

where the integer m defines the topological charge of the vortex
and A is the nonlinear frequency shift. The ansatz (5) converts
Eq. (3) to the ordinary differential equation
d*A  1dA m? m o A3 0 6
FTr P +(1 A2 ©)

We have used numerical methods to find localized solutions
of (6). It is possible to map this equation in the A-A,
plane (phase plane) and show that it admits both OVS and
LOVS solutions. LOVS can exist in the form of an infinite
number of discrete bound states A,(r) (n = 1,2, ...), where
the radial quantum number n denotes the finite r zeros of the
eigenfunction.

In what follows we consider only the lowest radial
eigensolution (n = 1) of Eq. (6). For nonzero m (the case of
interest here), the ground-state LOVS has a positive amplitude
and a node at the origin r = 0, reaches a maximum, and
then monotonically decreases as r increases. Such localized
solution exists for A > 0 and display the following asymptotic
behavior: A,_¢— r"™Ay and A, — exp(—rﬁ)/ﬁ,
where A is a constant which measures the slope of A at
origin. OVS solutions have the same behavior for r — 0,
while for r — oo the amplitude has a nonzero value A(r) =
Ago +m?/[r? f'(Ax)]. Here, A = f(Au); the OVS exists only
if f'(Ax) <0, i.e., when the background intensity of the
soliton (far beyond the vortex core) is still relativistic Asx > 1.
In dimensional units this condition corresponds to the negative
slope of the nonlinear refractive index (dén,;/d1 < 0),1i.e., in
the asymptotic region of the solution the medium is defocusing.
It is easy to demonstrate [1] that the constant background field
with Ao, > 1 is modulationally stable.

A shooting code was used to numerically solve Eq. (6). An
analogy with the nonconservative motion of a particle turns
out to be useful to better understand the simulation results.
Equation (6) may be written as

d | (dA\® v | - m? d A2 dA Y’ -
dr dr T2 dr dr )’
where the “effective potential” V(A) = —AA? 4 In(1 + A?) —

A?/(1 4 A?). The profile of the potential V(A) for different
values of A is presented in Fig. 1. The potential has two maxima

atA =0and Apax = \/[1 — 22+ +/1 — 4)1]/2X. The bounded
solution with Ay, > 1 is possible only for 0 < A < 0.25.
The OVS solutions correspond to a particle beginning its
motion at the origin (A = 0) with certain initial Ay [which can
be termed as a velocity (if m = 1) or an acceleration (if m = 2
and so on)]; it dissipates its initial energy as it asymptotically
approaches the potential maximum at Ap,x. The background
intensity of OVS, Ao = Amax, 1S always larger than unity and
can become arbitrarily large for A — 0. We also found out
that OVS solutions exist even for 0.25 > A > A, >~ 0.2162,
i.e., when V(Anaxx) < 0 (see curve a in Fig. 1). In other words,
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FIG. 1. The “effective potential” versus the amplitude for differ-
ent values of the nonlinear frequency shift A. Curve a corresponds
to A > Ao >~ 0.2162, curve b has A = A, [the value of A for which
V(Amax) = 0], and for curve c 0 < A < A

the effective particle cannot cross but only asymptotically
approach the lower potential maximum.

The numerical solutions of the nonlinear Eq. (6) for m =
1,2, and 3 are shown in Fig. 2. As expected, the soliton-like
solutions go to zero as r™ for small r and reach an m-inde-
pendent asymptotic value predicted earlier. In Fig. 3, curve a
displays the dependence of the field derivative at the origin,
Ay, as a function of the nonlinear frequency shift A form = 1
vortex. One can see that Ay grows rapidly as A goes to zero.
For small A, the position of the potential maximum “moves” to
larger values of A and, consequently, “particle” needs to have
larger initial “velocity” (Ag) to reach the maximum.

In contrast to OVS, the LOVS solutions correspond to the
particle returning back asymptotically to the initial position at
A = 0. It seems obvious that due to “friction” the “particle”
cannot make its way back if A > A. Thus, LOVS may exist
in the range 0 < A < A, while its amplitude (in contrast to
OVY) is a growing function of A. Such behavior, calculated
numerically, is presented in Fig. 4 for singly charged vortices
(m =1). One can see that the amplitude of the LOVS
(A,;) is bounded from above by certain critical value for
A (>~1.5). Thus, in contrast to OVS the localized vortex can be
just moderately relativistic. Note that for 0.16 < A < A, the
amplitude of the LOVS (A,,) varies in the range 1 < A,, <
A,;. For the top part of such a solution [with A(r) > 1] the
medium is defocusing while it tends to focus the lower intensity
wings of the structure. This phenomenon is illustrated in Fig. 5
where LOVS profiles are plotted for a variety of As. With

30

FIG. 2. Profiles of OVSs for m = 1, m = 2, m = 3; nonlinear
frequency shift A = 0.16.

PHYSICAL REVIEW A 81, 053812 (2010)

1.5
1.0{ - a
o -
<
0.5
b
0.0 : —
0.0 0.1 0.2

FIG. 3. Ag versus A form = 1; curve a corresponds to OVS while
curve b to LOVS.

increasing A, the central part of the LOVS flattens and widens
overlapping more and more with the OVS. In principle, it is
possible to create flat-top LOVS with a large transverse width.
Convergence of LOVS to OVS can also be inferred from Fig. 3
where curve b, corresponding to LOVS, almost coincides with
curve a near the point A &~ A,. Similar behavior of the solutions
can be obtained for vortices with higher charge (m = 2,3, ...);
corresponding figures are not displayed here.

III. STABILITY

The question arises concerning whether these solitonlike
solutions are stable. The intensity dependent switching from
the focusing to defocusing regime can have an interesting
consequence for the stability properties of the solutions [17].
As is well established [14], OVSs with m = 1 are stable,
whereas the ones with a larger value of m may decay into
m =1 vortices in self-defocusing media. For the particular
system discussed in this article, the bulk of the OVS is
always in the defocusing regime and, as mentioned earlier, the
background field is always stable. However, near the vortex
core the medium becomes focusing. Thus, the overall stability
of an OVS for this mixed nonlinearity can not be guaranteed.

The soliton stability was examined by numerically solving
Eq. (3). In the simulations (for various As), the initial stationary
OVS state was perturbed radially and azimuthally by Gaussian
noise. Typical evolution of the perturbation is plotted is Fig. 6.
We see that perturbations are quickly radiated away and the
initial state relaxes to the ground-state solution; the OVS was
found to be stable in the entire examined range.

0.2

0.1+

0.0 ‘ ‘
0.0 0.5 1.0 1.5
A

m

FIG. 4. The effective eigenvalue X versus soliton amplitude A,
form = 1.

053812-3



BEREZHIANI, MAHAJAN, AND SHATASHVILI

2
d
< 1 N c
b
a
0 T T y
0 10 20 30 40

FIG. 5. Profiles of soliton solutions. Curves a, b, and ¢ corre-
spond to LOVS with A = 0.005,0.16,0.205, respectively. Curve d
corresponds to OVS for A = 0.205.

The stability of LOVS was conducted by following the
linear stability procedure developed by Refs. [18,19] in which
one considers perturbations acting along a ring of mean
radius r,, where A(r,) = A,,. Assuming constant intensity and
spatial uniformity for this ring, one can rewrite the diffraction
operatorin (3) as V2 = r29?/36?, and introducing azimuthal
perturbation with a phase factor ¥ = Qf + M6 (where M is
an integer) for the growth rate of instability, we derive:

M [2(1 — A2) M2:|
Im(Q) = — Re | ~———"2 — | (8)
T (1+42)

One can see from (8) that large-amplitude LOVS with A,, > 1
is always stable. For the lower-amplitude case LOVS should
decay into Mp,x multiple filaments, where M.« is an integer
close to the number for which maximal growth rate is maximal.

In Fig. 7 we plot Im(€2) versus M for A = 0.1 and for
m = 1,2,3. the corresponding A, are, respectively, 0.60,
0.65,0.63 and r, = 6.3,11.6,16.9. One should expect that
instability will split the pulse into filaments (fragments) with
number of filaments being, respectively, 2, 4, and 5 (or 6)
for m = 1,2,3. As it is well known [20] the vortices have a
topological sense as the branch points, where both the real
and imaginary parts of the field become strictly zero, and the
topological charge represents the number of intersecting pairs
of zero lines of the real and imaginary parts of the field A. The
circulation of the field’s phase gradient is conserved along the
closed path which encloses the branch point. As a consequence
the vortex nested in the EM beam cannot disappear even

2
i 1 t
1000
100
0
0 50 100

r

FIG. 6. The dynamics of initially perturbed OVSs; plots are
chosen for different times, t = 0,100,1000.
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FIG. 7. Instability growth rate Im(2) versus M for A = 0.1 for
different topological charges m.

when the EM beam undergoes a structural change. Hence,
the fusion of filaments is forbidden for topological reasons.
On the other hand, these filaments must conserve total angular
momentum; they can eventually spiral about each other or
fly off tangentially to the initial ring, generating the bright
solitonic structures found, for instance, for index saturation
nonlinearity [15].

Our numerical simulations for A,, < 1 give evidence of a
quickly developing instability in agreement with predictions
of linear stability analysis. Indeed, we learn from Fig. 8 that the
LOVS with m = 1 (m = 2) break up into 2 (4) filaments. The
filaments are running away tangentially without spiraling. All

m=1 m=2
450- 60
510 - 120
540 - 150
600 . 240

FIG. 8. Vortex dynamics (for different times) when A = 0.1:
(left) for m = 1, Ap.x = 0.66, the vortex splits into two filaments;
(right panel)- for m = 2, A, = 0.6580, the vortex splits into four
filaments; the filaments run away tangentially.
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FIG. 9. Vortex dynamics (for different times) when A = 0.2, the
vortex is robust toward perturbations; (left) m = 1, Ay = 1.386;
(righty m = 2,A,, = 1.3729.

filament like spatial solitons remain stable. Most interesting is
the situation where the amplitude of LOVS is larger than unity.

In Fig. 9 we again present the evolution of higher-intensity
LOVS both for m =1 and m = 2: the corresponding am-
plitudes for the soliton solutions are (A =0.2) A, = 1.39
and A,, = 1.37, respectively. The initial input LOVS solution
was modulated by a Gaussian noise (the level of noise was
5%). One can see that the LOVS maintain their fidelity; no
breaking takes place. To ensure against very slow instabilities,
the simulations were carried out for long time periods,
t = 4000, i.e., for 130 soliton periods, Ty, (=27 /A =~ 30).
Thus, single- and multicharged large-amplitude LOVS are also
demonstrated to be stable.

A word of caution should be added: Although we are
confident that the single-charged LOVS are stable, one cannot
be sure of the stability of multicharged LOVS as well as OVS.
Indeed, from general topological reasons the multicharged
vortices are supposed to be unstable and they should break
into single-charged vortices. However, in our preliminary
simulations we failed to detect such breaking for large-
amplitude structures. It is conceivable that these structures
will eventually breakup under the influence of some very slow

PHYSICAL REVIEW A 81, 053812 (2010)

process (subexponential or algebraic) and our simulations have
unearthed only a very long-lived phase of a practically stable
multicharged vortex.

The effects related to the group velocity dispersion, and the
corresponding reshaping of the radiation, have been ignored
in this work. Generalization of the results by keeping the term
~ 92A/0&?% in Eq. (3) is quite possible [18]. In a transparent
plasma, this term can affect the long time dynamics of self-
guiding vortex solitons. In particular, due to weak modulation
instability [21], the self-trapped beam eventually will break
into a train of spatiotemporal solitons, i.e., the “light bullets”
[22]. Topological reasons, however, will let the vortex line
survive structural changes. We expect that “instability” will
result in generation of fully localized bullets of vortex solitons
(the spinning bullets). Dynamics of formation and stability of
such structures is beyond the scope of the current article.

IV. CONCLUSIONS

The asymmetries originating in small temperature differ-
ences in the constituent species of an electromagnetically
active medium may be always available for structure formation
both in laboratory and cosmic or astrophysical settings. In
present article we have shown that this asymmetry, mother to
a new type of the nonlinearity (derived in Ref. [1]), imparts
specific properties to the sustained structures.

We found that the pair plasmas, through the new focusing-
defocusing nonlinearity generated by an “asymmetry” in
initial temperatures, can support multidimensional stable
large-amplitude optical vortex and localized vortex solitons.
Localized structures for certain parameters may have the
flat-top shapes. The coexistence of LOVS and OVS solutions
and their stability in such medium is due to the specific form
of saturating nonlinearity switching from the self-focusing to
the self-defocusing regime and vice versa. The consequences
of this nonlinearity can be, perhaps, observed in a variety of
situations, in particular in the laboratory settings.
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