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Perfect transmission and highly asymmetric light localization in photonic multilayers
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General principles for the existence of perfect transmission resonances in photonic multilayer structures
are formulated in terms of light interference described by recurrent Airy formulas. Mirror symmetry in the
multilayer is shown to be a sufficient but not necessary condition for perfect transmission resonances. Asymmetric
structures displaying perfect transmission in accordance with the proposed principles are demonstrated. A
hybrid Fabry-Pérot photonic-crystal structure of the type (BA)k(AB)k(AABB)m is proposed, combining
perfect transmission and highly asymmetric electric field localization. Strength and asymmetry of localization
can be controlled independently to be of use in tailoring nonreciprocal behavior of nonlinear all-optical
diodes.
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I. INTRODUCTION

Probably the simplest case of inhomogeneous media,
photonic multilayers are a good testing ground for structures
with complex geometrical properties such as aperiodic long-
range order (see, e.g., [1] and references therein). Indeed,
the availability of simple, cheap, and reliable computational
methods often makes it possible to relate geometrical and
optical properties in an explicit manner. To name a few
examples, scaling and self-similar features in optical spectra
of quasiperiodic Fibonacci [2–4] and fractal Cantor [5–7]
multilayers were recently found to result from geometrical
self-similarities of the underlying structure. It is even possible
to formulate general relations for spectral properties of
structures with arbitrary layer arrangement [8].

One of the rather intriguing properties of aperiodic mul-
tilayers is the appearance of perfect transmission resonances
(PTRs) in the optical spectra, that is, frequencies for which the
multilayer has transmittance exactly equal to unity (|T | = 1).
It is known that multilayers with mirror symmetry (e.g.,
Cantor) commonly exhibit PTRs, whereas those without it
(e.g., Fibonacci) usually do not: transmission peaks in such
multilayers, even if they look “perfect,” really have |T | < 1
(see Fig. 1). Several accounts [9–12] report PTRs if a
Fibonacci structure is symmetrized and show that perfect
transmission is explicitly related to mirror symmetry [11].
However, more recent results show perfect transmission
in asymmetric multilayers based on periodic [13], Fi-
bonacci [14], and Thue-Morse [15] geometry. This suggests
that mirror symmetry is sufficient but not necessary for
PTRs.

Such PTRs in asymmetric structures are promising in
designing nonreciprocal optical devices such as nonlinear
all-optical diodes [16]. Indeed, an associated spatially asym-
metric light localization at resonance (see [13,15]) induces
a nonreciprocal nonlinear optical response, while perfect
transmission ensures that reflection losses remain small. In
this perspective, understanding the physical principles of PTR
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formation in multilayers is undoubtedly of importance. Most
previous works, however, do not really arrive at such principles
beyond attributing PTR existence to “hidden symmetries” in
the structures. Instead they draw rather formal conclusions in
terms of the widely employed transfer matrix method [13,14].
Such conclusions would benefit from an interpretation to reveal
their physical meaning.

In this paper, the question of PTR presence in multilayer
spectra is addressed from another, more physical than com-
putational standpoint. Perfect transmission in any multilayer
(however complex) is seen to be governed by the same princi-
ples of multiple-beam interference as in a simple Fabry-Pérot
interferometer. Transmission and reflection spectra of any
multilayer are recovered using recurrent Airy formulas, and
conditions for any two structures to form PTRs when stacked
together are derived explicitly. From these conditions, known
results such as PTRs in mirror-symmetric multilayers naturally
follow. Moreover, it becomes possible to engineer structures
with PTRs on purpose. As an example, a structure comprising
a Fabry-Pérot interferometer adjacent to a one-dimensional
photonic crystal is proposed. This structure is shown to
feature both perfect transmission and a highly asymmetric,
strongly localized electric field profile. Localization strength
and asymmetry can be controlled independently by structure
design.

In Sec. II, the theoretical background on using Airy-
like formulas for calculating the optical spectra of complex
multilayers is given. Section III follows with application
of these formulas to arrive at the principles encompassing
all possible cases of PTRs in multilayers. Specific cases
such as mirror-symmetric and Thue-Morse multilayers are
considered, too. Section IV further employs these principles
in proposing a design for a structure featuring PTRs as
well as strongly localized and highly asymmetric electromag-
netic field distribution. Finally, the paper is summarized in
Sec. V.

II. RECURRENT AIRY FORMULAS

We begin by considering a single dielectric layer (la-
beled A), with refractive index n = nA and thickness dA,
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FIG. 1. (Color online) Example transmission spectra of
(a) symmetric Cantor multilayer BABAAABAB and (b) nonsym-
metric Fibonacci multilayer BABABBAB. A and B correspond
to single layers with nA = 1.55, dA = 76 nm, and nB = 2.3, dB =
113 nm, so that nAdA = nBdB = πc/2ω0 = λ0/4 for λ0 = 700 nm as
in [15]. The insets show an enlarged view of the transmission peaks
marked by arrows.

located in a homogeneous dielectric medium with n = n0

[Fig. 2(a)]. Reflection and transmission coefficients of such
a layer are given by well-known Airy formulas (see, e.g.,
[17,18])

RA = r0A + t0ArA0tA0e
2iδA

1 − r2
A0e

2iδA

, TA = t0AtA0e
iδA

1 − r2
A0e

2iδA

, (1)

where δA = (ω/c)nAdA is the phase accumulated by the
wave in the layer, and rij and tij are Fresnel reflection and
transmission coefficients, respectively, of an interface between
the two media labeled by i and j (the wave is incident on
the interface from medium i to medium j ). Note that R and
T obtained by Eq. (1) are complex and contain information

nA

FIG. 2. (Color online) (a) A single layer and (b) its transmittance
|TA|2 and phase shift of the reflected wave ϕA, given by Eq. (1), for
different values of nA [dA is chosen in accordance with Eq. (2)];
(c) an example of a composite S1S2 structure described by Eq. (3).

about the amplitude as well as the phase of the reflected and
transmitted wave. The “usual” intensity-related reflectance
and transmittance are given by |RA|2 and |TA|2, and it can
be seen that |RA|2 + |TA|2 = 1, as is obvious from energy
conservation.

In such a simple system, the only frequency-dependent
quantity is the phase δA. Since r0A = −rA0 and t0AtA0 =
1 − r2

A0, it follows that TA = 1 whenever δA = mπ for integer
m. Physically, this corresponds to constructive interference
of forward-propagating partial beams inside the layer, to
occur when its optical thickness is an integer multiple of a
half-wave. Hence, a single layer features equidistant PTRs like
a Fabry-Pérot interferometer, albeit with poor-quality mirrors
[see Fig. 2(b)]. The PTR frequencies are 2mω0 with ω0 defined
by a well-known quarter-wave (QW) condition

(nBdB =)nAdA = πc/(2ω0) = λ0/4. (2)

Similarly, let S1 and S2 be arbitrary multilayers (e.g.,
arbitrary combinations of A and B layers as in Fig. 1; but of
course, what follows remains valid way beyond this example).
Let the reflection and transmission coefficients RS and TS be
known for S = S1,S2, and S̄1 (where a bar over S1 denotes that
S1 is traversed in the reverse direction). Inserting an infinitely
thin layer of the ambient medium between the structures
[Fig. 2(c)], we can recover the reflection and transmission
for the composite S1S2 multilayer stack:

RS1S2 = RS1 + TS1RS2TS̄1

1 − RS̄1
RS2

, TS1S2 = TS1TS2

1 − RS̄1
RS2

. (3)

Note that Eqs. (3) follow from Eqs. (1) for δ = 0, and that the
energy conservation |TS |2 + |RS |2 = 1 holds. Also note that
it is critical that both the amplitude and the phase of RS and
TS are known. In a lossless, linear system one can make use
of time reversal to relate the spectra of S1 and S̄1 as TS̄ = TS ,
RS̄/TS̄ = −(RS/TS)∗.

By first taking S1,2 to be single layers with reflection
and transmission spectra given by Eqs. (1) and then using
Eqs. (3) and (1) in a recurrent fashion, we have a way
to calculate transmission and reflection spectra for a multi-
layer of any degree of complexity. Because such recurrent
calculation involves obtaining reflection and transmission
coefficients for many intermediate structures, it is numerically
less efficient than the transfer matrix method. However, the
recurrent procedure is often adopted for the sake of analytical
insight into the spectral properties of structures with internal
symmetries (as was demonstrated, e.g., for fractal multilayers
[6,7,17,18]).

III. CONDITIONS FOR PERFECT TRANSMISSION

Our goal is to formulate the existence conditions for a PTR
in the transmission spectrum of an S1S2 stack. From Eqs. (3),
|TS1S2 (ω)| can be obtained as

∣
∣TS1S2

∣
∣ =

∣
∣TS1

∣
∣
∣
∣TS2

∣
∣

∣
∣1 − ∣

∣RS̄1

∣
∣
∣
∣RS2

∣
∣ei(ϕS̄1

+ϕS2 )
∣
∣
, (4)

where ϕS̄1
and ϕS2 are the phases of RS̄1

and RS2 , respectively.
Since |R|2 + |T |2 = 1 in lossless structures, Eq. (4) can be
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rewritten in the form

∣
∣TS1S2

∣
∣
2 = (1 − |R1|2)(1 − |R2|2)

|1 − |R1||R2|eiϕ|2 , (5)

where we have denoted |R1| ≡ |RS1 | = |RS̄1
|, |R2| ≡ |RS2 |,

and ϕ ≡ ϕS̄1
+ ϕS2 for brevity. If the denominator in Eq. (5) is

nonzero, the PTR condition |TS1S2 | = 1 is equivalent to

(1 − |R1|2)(1 − |R2|2)

= (1 − |R1||R2| cos ϕ)2 + (|R1||R2| sin ϕ)2,

which reduces to

|R1|2 + |R2|2 = 2|R1||R2| cos ϕ.

Obviously, this equation always holds if |R1| = |R2| = 0,
which becomes one possible case for PTR, and never holds if
|R1| = 0, |R2| �= 0 or vice versa. In all other cases, |R1||R2| �=
0 so we obtain

cos ϕ = |R1|2 + |R2|2
2|R1||R2| = 1 + (|R1| − |R2|)2

2|R1||R2| � 1. (6)

If |R1| �= |R2|, the right-hand side of Eq. (6) is strictly
greater than unity, so no PTR can exist because the condition
cos ϕ > 1 cannot be met. If |R1| = |R2|, PTRs can and do
occur whenever cos ϕ = 1.

For completeness, note that the limiting case when the
denominator in Eq. (5) equals zero results in

1 + (|R1||R2|)2 − 2|R1||R2| cos ϕ = 0.

If |R1||R2| = 0, this equation is false. Otherwise, it can be
rewritten as

cos ϕ = 1 + |R1|2|R2|2
2|R1||R2| = 1 + (1 − |R1||R2|)2

2|R1||R2| � 1

and can only be satisfied if cos ϕ = 1 and |R1||R2| = 1. Since
the reflectance can never exceed unity, the latter implies that
|R1| = |R2| = 1 (i.e., the structure should consist of two per-
fect mirrors). Such an extreme case causes the right-hand sides
of Eqs. (4) and (5) to be indeterminate. This indicates that the
approach based on the interference of partial waves [Eqs. (3)]
becomes invalid with perfect mirrors when there are no partial
waves to interfere. However, this extreme can safely be ruled
out by assuming that perfect transmission is impossible in
structures involving perfect mirrors.

As a result, we have obtained two possibilities for PTR
existence. The first is when |R1| = |R2| = 0, or, in the original
notation of Eq. (4),

∣
∣TS1

∣
∣ = ∣

∣TS2

∣
∣ = 1. (7)

The second is when |R1| = |R2| and cos ϕ = 1; that is,
∣
∣TS1

∣
∣ = ∣

∣TS2

∣
∣ �= 1, (8)

ϕS̄1
+ ϕS2 = 2mπ. (9)

The first condition given by Eq. (7) essentialy means that,
whenever the individual structures S1 and S2 both have a PTR
at exactly the same frequency, the composite stack S1S2 will
always have a PTR at that frequency. In fact, this conclusion
could have been drawn directly from Eq. (4). It is easily
explained by the fact that if S1 and S2 are both perfectly

transparent, no reflection at the S1/S2 interface can occur.
Hence, the incident wave is fully transmitted and there is no
possibility for the reflected wave to form. This is why, for
example, all QW multilayers, where all layers conform to
Eq. (2), have PTRs at ω = 2mω0 just as any one of the
constituent layers.

The second condition [Eqs. (8) and (9)] is more interesting
because it explains how PTRs are formed in the spectral
regions of the composite structure where there were no PTRs
for either S1 or S2. Indeed, exp[i(ϕS̄1

+ ϕS2 )] = 1 in the
denominator in Eq. (4) renders it equal to the numerator
and causes |TS1S2 | = 1 although |TS1 | = |TS2 | �= 1. The PTR
formation here can be explained by regarding the composite
structure as a Fabry-Pérot interferometer with very complex
mirrors. To begin with, the resonance occurs if the interference
between partial waves is constructive, that is, if all the partial
waves arising from multiple reflection are in phase, as given by
Eq. (9). Then the resonance is perfect if the mirrors in the inter-
ferometer are balanced and have equal reflectivity [Eq. (8)].

Equations (8) and (9) let us easily see why a mirror-
symmetric structure readily supports PTRs while most other
structures do not. Mirror symmetry means S2 = S̄1, so it is
obvious that |TS1 | = |TS2 | and ϕS̄1

= ϕS2 for all frequencies.
The only remaining condition to be fulfilled is Eq. (9)
(i.e., ϕS̄1

= mπ ). Since the phase of the reflected wave
varies monotonically between transmission resonances in any
multilayer with rather few exceptions [19,20], there should
be numerous points where it crosses mπ [e.g., for one layer
it happens for ω = (2m − 1)ω0; see Fig. 2(b)]. These points
necessarily result in PTRs, as can be seen in Fig. 3(a). It is seen
that for any PTR cos 2ϕS̄1

= 1, except at ω = 0 and ω = 2ω0

where PTRs result from Eq. (7) rather than from Eqs. (8)
and (9).

Another simple example would be S2 = S1 (i.e., when the
same structure is repeated twice in the stack). Again we have
|TS2 | = |TS̄1

| = |TS1 | for all frequencies. However, Eq. (5) here
assumes a different form, namely, ϕS1 + ϕS̄1

= 2mπ , which
is more difficult to satisfy [compare Figs. 3(a) and 3(b)].
As a result, the double-stack structure S1S1 exhibits only
half as many PTRs as does its mirror-symmetric counterpart
S1S̄1. Both mirror symmetry and stack doubling contribute
to PTR formation in periodic structures (e.g., one-dimensional
photonic crystals). Note that if S1 is asymmetric, so is S1S1, and
this case can be regarded as the simplest asymmetric multilayer
featuring PTRs.

Equations (8) and (9) also encompass more exotic cases
involving intrinsically asymmetric structures. Consider S1

consisting of arbitrarily arranged A and B layers so that
nAdA = nBdB as in Eq. (2), and S2 obtained from S1 by sub-
stitution A ↔ B. The resulting structure is very asymmetric
[see Fig. 3(c)], yet it can be shown to feature PTRs. This
was observed by Nava et al. [14] for Fibonacci structures
and further pointed out by Grigoriev and Biancalana [15],
who named such structures “Thue-Morse conjugated” because
one particular case of such structures, obtained by repeatedly
applying inflation rules A → AB, B → BA, represents the
well-known Thue-Morse sequence [21]. Figure 3(c) shows
calculation results for S1S2 with the same S1 as for the previous
examples [Figs. 3(a) and 3(b)]. Similarly to these, there are
numerous frequencies where cos(ϕS̄1

+ ϕS2 ) = 1 and Eq. (9)
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FIG. 3. (Color online) PTRs in composite structures S1S2: (a) mirror-symmetric (S2 = S̄1), (b) double-stacked (S2 = S1), and (c) Thue-Morse
conjugated. The transmission spectra of the constituent structures S1,2, the transmission spectra of the whole structure, and the spectral
dependence of the phase factor cos(ϕS̄1 + ϕS2 ) as in Eq. (9) are shown in the second, third, and fourth rows, respectively. The dashed vertical
lines show the location of PTRs when both Eqs. (8) and (9) hold. The dotted lines with arrows designate the peaks that fail to be PTRs due to
violation of either Eq. (9) [in (b)] or Eq. (8) [in (c)]. The insets represent a blown-up view of some peaks to determine whether or not they are
PTRs.

is satisfied, and each such frequency represents a transmission
peak. However, only part of these peaks turn out to be PTRs
(see insets in Fig. 3), namely the ones that simultaneously
satisfy Eq. (8). The rigorous proof of how the fulfillment of
these conditions results from the Thue-Morse symmetry can
be given and is expected to appear in a forthcoming publication
by Grigoriev et al.

IV. PERFECT TRANSMISSION IN HIGHLY
ASYMMETRIC STRUCTURES

Equations (8) and (9) can be employed to engineer a
structure of any predefined geometry with a PTR at the
desired wavelength just by varying the refractive index
and thickness of the layers involved. Indeed, modifying
nB/nA in S2 without violating Eq. (2) changes the value
of transmittance and reflectance while keeping the phases
relatively intact [see Fig. 2(b)]. This aids in fulfilling Eqs. (8)
and (9) simultaneously and forms a PTR in the S1S2 structure.
Subsequently varying ω0 in Eq. (2) for both S1 and S2 causes
all the spectra (both amplitude and phase) to scale uniformly,
thus bringing the PTR to the chosen value of the wavelength.
Similarly designed dual-interferometer structures of the
type (AB)m(BA)m(A′B ′)m(B ′A′)m were shown to possess
PTRs [13].

Our objective for this paper is to arrive at a design for
multilayers with highly asymmetric light localization at a PTR
so as to facilitate the nonreciprocal operation in a nonlinear

optical diode [15]. A straightforward way to achieve the
desired asymmetry is to stack S1 featuring a strongly localized
mode with S2 having an extended mode, and to match the
frequencies of the corresponding resonances.

An obvious choice for S1 with a maximally localized mode
would be a periodic QW multilayer with a half-wave defect,
or, in other words, a Fabry-Pérot interferometer surrounded by
Bragg mirrors, so that S1 = (BA)k(AB)k . If Eq. (2) holds,
a sharp transmission resonance occurs exactly at ω0 [see
Fig. 4(b)]. On the contrary, the modes are known to be
maximally extended at ω = 2ω0 in any QW multilayer. By
doubling the thickness of each layer, this frequency can be
halved to exactly match the resonance for S1. A double-
periodic photonic-crystal structure of the type (AABB)m can
thus be used as S2. The resulting stack the has the geometry
[Fig. 4(a)]

S1S2 = (BA)k(AB)k(AABB)m. (10)

This design has the obvious advantage that both resonances
in question are PTRs (and they are exactly frequency matched),
so there is no need to go as far as Eqs. (8) and (9) and the
resulting PTR in S1S2 is ensured due to Eq. (7). The second
advantage is that frequency matching always occurs at λ =
λ0/4, so it is easy to design the structure for any desired
wavelength using any materials at hand. Figure 4(d) confirms
the existence of a PTR, as does explicit numerical calculation
of |TS1S2 (ω0)|, yielding 1 within limits of machine accuracy.
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FIG. 4. (Color online) (a) The proposed design of a highly
asymmetric multilayer featuring PTRs given by Eq. (10), along with
transmission spectra for (b) S1, (c) S2, and (d) S1S2.

The electric field intensity distribution at the resonant
frequency is shown in Fig. 5. The localization is clearly
asymmetric and mainly present in S1. Using the same materials
as in [15], comparable localization strength is observed for a
structure about three times thinner and having 32 layers instead
of 64 [see Fig. 5(c)]. The design of Eq. (10) also allows the
localization strength (by varying k) and the asymmetry (by
varying m) to be controlled independently and in a wide range
for a relatively minor change in the number of layers [compare
Figs. 5(a)–5(c)]. This is opposed to changing the number of
generations in a Thue-Morse sequence, which would double
or halve the number of layers at once. The possibility of
building PTR-enabled structures with desired localization
properties using relatively few layers is important from a
practical point of view because losses would obviously be
more detrimental to perfect transmission in thicker structures
[14].

Note, finally, that the choice of geometry for S2 is rather
arbitrary, because any arrangement of AA and BB will produce
the same extended-mode PTR at ω0. This choice of geometry
can be regarded as an additional design tool to influence
the transmission spectrum around the PTR. For a periodic

1

0.996

0.992

0.998 1 1.002

enhanced
asymmetry

enhanced
localization

strength

FIG. 5. (Color online) Electric field localization profile at the
PTR frequency ω = ω0 (cf. inset) for the proposed structure design
[Eq. (10)] for (a) k = m = 3 as in Fig. 4; (b) k = 3, m = 5
(enhanced asymmetry); and (c) k = 5, m = 3 (enhanced localization
strength).

geometry S2 = (AABB)m used in Eq. (10), the two band
gaps around (1 ± 1/2)ω0 brought about by S2 [see Fig. 4(c)]
can overlap with the gap around ω0 for S1 [Fig. 4(b)]. This
would widen the region of predominantly low transmission
surrounding the designed PTR, which can prove useful. For
the materials adopted throughout this paper from [15], it is not
yet the case, but the gap overlap can be achieved by increasing
nB/nA (Fig. 6). It is seen that the PTR then becomes very
isolated in the transmission spectrum.

FIG. 6. (Color online) Transmission spectrum of the structure in
Fig. 4(a) for nA = 1.55, nB = 2.3 as in [15] (dotted line) and for
increased nB/nA by setting nA = 1 (solid line).
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V. CONCLUSIONS

Using the formalism of recurrent Airy formulas, the condi-
tions for a mulilayer structure to exhibit perfect transmission
resonances [Eqs. (7)–(9)] are formulated rigorously in such a
way that possibilities for PTRs can be directly envisioned at
the stage of structure design. Following the previous results
[14], it was shown that mirror symmetry is a sufficient
but not necessary condition for PTR existence. PTRs are
shown to be possible in asymmetric structures, including
Thue-Morse conjugated multilayers [15]. Based on frequency-
matched PTRs in structure parts, the design for a combined
Fabry-Pérot/double-period photonic-crystal multilayer was
proposed [Fig. 4(a)]. This structure was shown to feature
perfect transmission resonances with strongly localized and
highly asymmetric spatial distribution of electric field intensity
(Fig. 5). The strength and asymmetry of localization can be

controlled independently by changing the design parameters,
keeping the number of layers reasonably small. It is expected
that multilayers of this kind would enhance nonreciprocal
transmission if they contained nonlinear materials, improving
the performance of optical diodes and similar devices.
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