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Solitons in curved space of constant curvature
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We consider spatial solitons as, for example, self-confined optical beams in spaces of constant curvature,
which are a natural generalization of flat space. Due to the symmetries of these spaces we are able to define
respective dynamical parameters, for example, velocity and position. For positively curved space we find stable
multiple-hump solitons as a continuation from the linear modes. In the case of negatively curved space we show
that no localized solution exists and a bright soliton will always decay through a nonlinear tunneling process.
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I. INTRODUCTION

A remarkable effect in nonlinear systems such as Bose-
Einstein condensates or optical fields, which interact with mat-
ter [1–3], is the formation of self-localized states conveniently
termed solitons. Although of completely different origin, they
are often described by the same evolution equation, called the
Gross-Pitaevskii equation [1] for Bose-Einstein condensates
or the nonlinear Schrödinger equation in optics [3,4]. One
key feature of solitons is that they behave like particles.
They can be characterized by constants of motion such as
momentum, center of mass, and energy, which arise from
the symmetries of flat space. Each symmetry introduces one
parameter of the soliton. Galilean invariance, for example,
gives rise to the velocity of the soliton. Owing to these
symmetries we can study collisions of similar solitons. Un-
fortunately this nice picture breaks down when one considers
nonlinear solutions in an external potential as in the case of
Bose-Einstein condensates, which are naturally confined in
an external potential [1]. This potential breaks, in general,
the translational invariance of flat space. Hence the standard
notion of solitons is lost. This leads to the question, Is there
a way to introduce a nontrivial external potential without
breaking translational invariance? This is in fact possible in
some cases. One considers the nonlinear Schrödinger equation
with inhomogeneous coefficients and then transforms it to
the standard nonlinear Schrödinger equation with constant
coefficients [5,6]. In this paper we present a geometric
approach to maintain translational invariance.

In fact curved space can play the role of an effective
potential. In cosmology, space is curved in general, but the
cosmological principle states that space is homogeneous and
isotropic. Thus translational invariance is not broken [7], and
an internal observer, like us in our universe, cannot physically
distinguish two different points by any measurement. In this
sense, these spaces are a natural generalization of the standard
flat space. As we will see, although translational invariance is
not broken, the evolution of fields in these spaces is almost
equivalent to the evolution in an effective external potential.
Therefore we are able to introduce a nontrivial potential
and maintain translational invariance and thus the notion of
solitons.
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II. SPACES OF CONSTANT CURVATURE

Homogeneous and isotropic spaces have a constant cur-
vature [7]. If we neglect topology, there are three spaces of
constant curvature in cosmology. They differ by the sign of
the scalar curvature K . The three-dimensional metric of these
spaces can be written in spherical coordinates as [7]

ds2 = dr2

1 − Kr2
+ r2(sin2 θdξ 2 + dθ2). (1)

Unfortunately there is no practical way to study three-
dimensional curved space in the laboratory. Therefore we
restrict ourselves to the two-dimensional case θ = π/2.
However, this restriction is not too strong, since the nontrivial
effects of curvature result mainly from the radial dependence.

Now for K = 0 we find the usual two-dimensional flat
space in polar coordinates. For K �= 0 we define the new
coordinate η through r = R cosσ η for K = σ/R2 and σ =
sgn(K). For convenience we defined cos1 := cos and cos−1 :=
cosh. Therefore we find the two metrics,

ds2
σ = R2

(
dη2 + cos2

σ ηdξ 2
)
, σ = ±1, (2)

for the two cases K > 0 and K < 0. The coordinate ranges
are ξ ∈ [0,2π ) and η ∈ (−π/2,π/2) for positive and η ∈ R
for negative curvature. Especially, to discuss flat space as a
limiting case (R → ∞), it is also useful to define the real
lengths x = ηR and z = ξR.

Here we consider the solitonic solution of light in spaces of
constant, positive and negative, curvature. Experimentally this
could be achieved by a nonlinear waveguide, which is attached
to the surface of a three-dimensional body and therefore
models the corresponding curved spaces (see Fig. 1). For a
detailed discussion of these surfaces and the ideas, see [8]
and [9]. Therefore a curved waveguide on the surface of these
bodies is able to reproduce the metric in (2).

However, the presented results are universal in the sense
that they are valid for any self-interacting scalar field and do
not depend on the particular experimental realization.

Now the evolution of a nonlinear scalar field ψ , in particular
light in a fixed polarization state, can be modeled by the
nonlinear Helmholtz equation [8],

−�σ ψ = β2(1 + γ0|ψ |2)ψ, σ = ±1. (3)
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FIG. 1. (Color online) Illustration of the considered spaces and
coordinates. (a) An example of a positively curved space is the sphere.
(b) A negatively curved space.

Here β = kR, k = nω0/c is the wave number, n the refractive
index of the wave guiding layer, and ω0 the frequency. The
operator

�σ = ∂2
η − σ tanσ η∂η + ∂2

ξ

cos2
σ η

, (4)

is the generalized Laplace operator [7,10] with respect to the
metric, (2). Note that there is no coordinate transformation
for K �= 0 that transforms Eq. (3) into one with constant
coefficients, that is, to the flat case K = 0. This reflects the
fact that spaces with different signs of curvature or curvature
0 are not isometric [9,10].

III. SCHRÖDINGER AND FLAT SPACE LIMIT

For the physical interpretation of Eq. (3) it is suggested
to study the corresponding nonlinear Schrödinger evolution
equation. We consider propagation in the ξ direction and make
the ansatz

ψ(η,ξ ) = (cosσ η)−1/2U0U (η,ξ ) exp(iβξ ).

As in flat space the assumption of propagation in the ξ

direction is no restriction, since we know that no direction
is preferred. Similarly to the flat case [4] there are different
length scales involved in the problem. The diffraction length
�d = kw2

0, with w0 the typical size of the soliton solution, the
nonlinear length scale �nl = 2/(|γ0U

2
0 |k), associated with the

peak amplitude U0, and, in addition, the curvature scale R.
Due to the additional curvature length scale we are able to
define the dimensionless parameters ω = �d/R, δ = 1/(kR)
and the geometric mean ε = √

ωδ � 1. Furthermore, we
define the scaled coordinates X and Z through η = εX and
ξ = ωZ. Within the paraxial approximation we obtain, for the
lowest order in ε, the nonlinear Schrödinger equation:

i
∂U

∂Z
= −1

2

∂2U

∂X2
+ 1

2
σω2X2U ± N2|U |2U, (5)

with an attractive (σ = 1) or repulsive (σ = −1) harmonic
potential and N2 = �d/�nl. We find that the flat space limit
is obtained not only for R → ∞, but also for �d,�nl → 0,
by keeping N2 constant. Therefore the high-amplitude limit
of Eq. (5) has to show properties of an integrable model
[3]. In general, for finite R, integrability is not present and
therefore solitons may become unstable and will occasionally
not survive collisions. In these cases they are better termed
solitary waves. Before we analyze the stationary solutions of

Eq. (3), we briefly discuss the symmetry transformations of
spaces of constant curvature.

IV. SYMMETRIES

Spaces of constant curvatures are spaces of maximal
symmetry and therefore translational invariance is present
[10,11]. Consider the metric (2) or, equivalently, the nonlinear
Helmholtz equation (3) to be invariant under the coordinate
transformation η = η(η′,ξ ′) and ξ = ξ (η′,ξ ′). An immediate
consequence of this symmetry is that, if ψ(η,ξ ) is a solution
of (3), so is ψ ′(η′,ξ ′) = ψ[η(η′,ξ ′),ξ (η′,ξ ′)]. In particular, it
can be shown that the coordinate transformation

sinσ η′ = sinσ η + v0 cosσ η sinσ ξ√
1 + v2

0

,

(6)
sinσ ξ ′ = cosσ η sinσ ξ − v0 sinσ η√

1 + v2
0 − σ (sinσ η + v0 cosσ η sinσ ξ )2

,

is a symmetry of the metric in (2). The parameter v0 is
associated with a shift in the velocity of a given solution,
since we have

dη′

dξ ′

∣∣∣∣
η,ξ=0

=
dη

dξ

∣∣∣
η,ξ=0

+ v0

1 − v0
dη

dξ

∣∣∣
η,ξ=0

, (7)

the addition theorem for velocities. We obtain the usual
Galilean addition of velocities for sufficiently small values
of v0. This reflects the fact that, within the paraxial approx-
imation, only small velocities or angles with respect to the
propagation direction are allowed [12,13]. A translation is
associated with the transformation

sinσ η′ = cosσ η0 sinσ η − sinσ η0 cosσ η cosσ ξ,

cosσ ξ ′ = cosσ η0 cosσ η cosσ ξ + σ sinσ η0 sinσ η√
1 − σ (cosσ η0 sinσ η − sinσ η0 cosσ η cosσ ξ )2

,

(8)

where η0 is the initial shift or translation, since we have
η′ = η − η0 and ξ ′ = 0 for ξ = 0. The third symmetry trans-
formation corresponds to the simple translation ξ ′ = ξ + ξ0.
Therefore for every solution we find a three- parametric family
of solutions. This is in total analogy with the usual flat case.
In the following we only need the infinitesimal version of the
preceding symmetries. These are given by

η′ = η + v0 sinσ ξ,
(9)

ξ ′ = ξ − v0 tanσ η cosσ ξ,

for an infinitesimal velocity shift v0 � 1 and

η′ = η − η0 cosσ ξ,
(10)

ξ ′ = ξ − ση0 tanσ η sinσ ξ,

for a translation with η0 � 1. From these transformations we
are also able to identify the meaning of the parameters v0 and
η0 as a shift in the velocity or position of a given solution.
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V. NONPARAXIAL SOLITONS

In flat space the slowly varying envelope approximation
of (3) describes the evolution of the system well. However, in
spaces of nonzero constant curvature a paraxial approximation
breaks the translational symmetry, which can have serious
effects on the stability properties. Therefore, here we do not
make use of the slowly varying envelope approximation. In
contrast, we are looking for soliton solutions of the nonlinear
Helmholtz equation (3). Nevertheless, as in the flat case, we
are able to interpret the ξ direction as the propagation direction
[12,13]. Similarly to the flat case, we now assume propagation
in the ξ direction. To simplify Eq. (3) we transform the field,
as

ψ(η,ξ ) = (β2 cosσ η)−1/2u(η,ξ ),

and look for stationary solutions of the newly introduced
field u(η,ξ ) such as u(η,ξ ) = u0(η) exp(imξ ), where m is the
propagation constant of the soliton and β = kR. With this
ansatz we find

−∂2
ηu0 + V (η)u0 − γ (η)|u0|2u0 =

(
β2 + σ

4

)
u0, (11)

where γ (η) = γ0/ cosσ η. Although translational invariance is
not broken, Eq. (11) is similar to one describing propagation
in flat space, but in the presence of an attracting (σ = 1) or
repulsive (σ = −1) potential

V (η) = m2 − σ
4

cos2
σ η

. (12)

Therefore the exact potential is not harmonic as found in (5).

A. Positively curved space

We start with the linear or low-power case (γ0 → 0), where
the stationary solutions of (3) are rescaled spherical functions
as u(η,ξ ) = (cos η)1/2Ym

l (η + π/2,ξ ) [14], which we denote
|l,m〉. Hence, for a given frequency we find 2l + 1 localized
solutions with l ∈ N, m ∈ Z, |m| � l, and β2 = l(l + 1). As
shown in Figs. 2(a) and 2(b) these linear modes branch off,
as a nonlinear continuation, in 2l + 1 nonlinear modes. In
the focusing case each maximum of the linear mode evolves
into a separate hump, which all together form a lattice of
l − m + 1 bright solitons. Bright solitons of opposite phase,
which would repel each other in flat space, are bound together
by the focusing effect of positive curvature. As discussed, using
the symmetries of these spaces we are also able to introduce a
velocity and a position of the solitonic solution and can study
collisions (see Fig. 3).

In contrast, in the defocusing case the excitation tends to
spread. Phase jumps of the linear solutions are transformed into
l − m dark solitons which are embedded in a Thomas-Fermi
sea. This background, as shown in Fig. 2(b), is well explained
by the Thomas-Fermi approximation

γ0|u0(η)|2 ∼
(

β2 + 1

4

)
cos η − m2 − 1

4

cos η
, (13)

for |η| � arccos[(m2 − 1/4)/(β2 + 1/4)].
To analyze the linear stability of the multihump solitons

we perturb a given stationary solution u0(η) with propagation
constant m by a small (ε � 1) linear fluctuation, that is,

m
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FIG. 2. (Color online) Branching of the first linear modes |100,m〉
(a) for the focusing and (b) for the defocusing case. Numerically
calculated solitons are displayed in the insets for m = 300 (a) and m =
60 (b). The dashed (red) curve in (b) shows the Thomas-Fermi ap-
proximation of |u0(η)|. The power P = 1/m

∫
Im(u∗∂ξu)/(cos2 η)dη

is conserved, that is, dP/dξ = 0.

u(η,ξ ) = [u0(η) − εχ (η,ξ )]exp(imξ ). By linearizing (3), in
the case of positive curvature, we obtain the Hamilton system
∂ξ� = JH�, with

H =

⎛
⎜⎜⎜⎝

L −γ (η)u2
0 im 0

−γ (η)u∗2
0 L 0 −im

−im 0 − cos2 η 0

0 im 0 − cos2 η

⎞
⎟⎟⎟⎠ ,

J =
(

0 12

−12 0

)
,

L = −∂2
η − β2 − 1

4
− 1

4 cos2 η
− 2γ (η)|u0|2,

and � = (χ,χ∗,�,�∗)T . The canonical momentum is found
to be � = − cos−2 η(∂ξχ + imχ ). Now, setting �(η,ξ ) =
�(η)exp(i�ξ ), we find the linear eigenvalue problem

i�� = JH�. (14)
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FIG. 3. (Color online) Collision between translated one-hump
(η0 = 0.025,v0 = 0) and two-hump (η0 = −0.025,v0 = 0) solitons
[see Fig. 2(a)], with l = 104 and m = l + 10, for focusing nonlinearity
(paraxial propagation). Stationary solutions were translated with the
use of the symmetry (8) and, therefore, are solutions as well. Hence
the solitons are robust with respect to collisions. The color illustrates
|u(η,ξ )|.

Therefore the soliton is said to be stable if all eigenvalues
� of (14) are real. It is interesting to look at the zero modes,
which are � = 0 solutions of (14). In flat space there are two
zero modes corresponding to the breaking of translation and
phase invariance [15]. In positively curved space, simple flat
translation invariance is not present. However, there is still
a kind of translational symmetry realized. We consider an
infinitesimal symmetry transformation (10) with η0 = ε � 1.
This is given by η → η − cos ξε and ξ → ξ − sin ξ tan ηε.
Here ε is the analog to an infinitesimal shift of the transverse
position of the soliton in flat space. Hence, if u0(η) exp(imξ )
is a solution, this is also the case for u(η,ξ ) = [u0(η) −
εχ±(η,ξ )]exp(imξ ), with

χ±(η,ξ ) = 1

2

[
du0

dη
±

(
m ∓ 1

2

)
tan(η)u0(η)

]
e±iξ . (15)

From this we deduce that in the case of positively curved
space, the translation mode du0/dη known from flat space
appears as a stable linear mode with an eigenvalue � = ±1.
This corresponds, when expressed as the real lengths x and
z, to � = ±1/R. For R → ∞ we obtain � = 0 the flat case.
Note that the symmetry (9) gives no further linear independent
modes.

To analyze the stability behavior further we discuss the
linear or low-power case (γ0 = 0), where the soliton just
corresponds to a linear mode with the propagation constant
m. For this case we find the eigenfunctions

�+ = (1,0, − i(m + �) cos−2 η,0)T |l,m + �〉,
(16)

�− = (0,1,0,i(m − �) cos−2 η)T |l,m − �〉,
with the total spectrum −(m + l) � � � m + l and � ∈
Z. The key aspect is, now, that we always have twofold
degenerated eigenvalues in the spectrum (see Fig. 4).

By continuation to nonlinear modes, these real degenerated
eigenvalues could interact with each other and become
complex, even for defocusing nonlinearity (see Figs. 5 and
6). Therefore, due to this degeneracy multiple-hump solitons
can become unstable. This picture is confirmed by the Krein
criteria [15], since the Krein signature of the two corresponding
eigenfunctions �+ and �− is different for all values of m and l.

|l, l |l, l − 1 |l, l − 2 |l, 0· · ·

|l, l − 2 l, l − 1 |l, l· · ·|l, 0Ψ+

Ψ−

|l, l |l, l − 1 |l, l − 2 |l, 0· · ·

|l, l − 2 l, l − 1 |l, l· · ·|l, 0

Re(Ω)
1−1 2−2 0· · · · · · ll − 1 · · ·−(l − 1)−l · · ·

Ψ−

Ψ+

FIG. 4. (Color online) Degenerated eigenvalues � = m −
l, . . . ,l − m. For m = l only � = 0 is twofold degenerated. For
m = l − 1 the two spectra are shifted against each other by the
modulus of 1. Therefore we find three degenerated eigenvalues for
m = l − 1, and so on. We are only interested in fluctuations, which
are propagating with the soliton, thus −m < Re(�) < m.

Physically the Krein signature is the sign of the energy of the
corresponding mode. Usually the interaction of positive and
negative energy modes leads to instabilities, that is, complex
eigenvalues [16].

m

Im
(Ω

)

55 60 65 70 75 80 85 90 95 100
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Re(Ω)

Im
(Ω

)

−5−4−3−2−1 0 1 2 3 4 5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
m = 96.5

Re(Ω)

Im
(Ω

)

−5−4−3−2−1 0 1 2 3 4 5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
m = 57.1

(I)

(II)
(III)

m = 96.5

m = 57.1

unstable solitons

(a)

m

Im
(Ω

)

100 150 200 250 300
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Re(Ω)

Im
(Ω

)

−5−4−3−2−1 0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Re(Ω)

Im
(Ω

)

−8 −6 −4 −2 0 2 4 6 8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
m = 150

m = 98.5

(III)
(I)

(II)

unstable solitons

m = 98.5

m = 150

(b)

(c)

|l, l |l, l − 1 |l, l − 2 |l, l − 3 |l, l − 4 |l, 0· · ·

|l, l − 4 |l, l − 3 |l, l − 2 |l, l − 1 |l, l

Re(Ω)
1−1 2−2 3−3 0

|l, l − 5

|l, l − 5

|l, l − 6

|l, l − 6· · ·|l, 0

(I)(II) (II)(I)

l − 3−(l − 3)

quasi-translational
mode

unstable modes unstable modes

· · · · · ·

FIG. 5. (Color online) Instabilities for the branch |100,97〉. In
both cases, defocusing (a) and focusing (b), (I) arises from the
linear modes |100,97 ± 2〉, whereas (II) arises from |100,97 ± 3〉
[see (c) for l = 100]. Therefore (II) breaks the parity symmetry of
the underlying soliton. (III) Second collision of the two eigenvalues
of (I). For |100,98〉 only (II) is not present. Branches |100,99〉 and
|100,100〉 are stable.
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FIG. 6. (Color online) Oscillatory instability in the defocusing
case, for the branch |l,l − 3〉 with l = 104 and m = l − 7 (paraxial
propagation). Initially random noise of the order ∼10−2 was added.
The color illustrates |u(η,ξ )|.

However, additional symmetries can prevent such a transi-
tion. This is indeed the case for the m = l − 1 double-hump
soliton. Here, the degeneracy of � = ±1 cannot lead to an
instability of the soliton, since the quasitranslation mode (15)
is always present as a mode with a real eigenvalue. Therefore
the rotational symmetry forbids the annihilation of the two
linear modes present at � = 1 or � = −1. This explains the
stability of the double-hump soliton, where solitons with more
than two humps are usually unstable for both signs of the
nonlinearity. Interestingly, a similar stability scenario was also
observed for Bose-Einstein condensates which are confined in
a harmonic trap [17].

B. Negatively curved space

The case of negative curvature is quite different. Here, there
are no localized solutions at all, since in the limit η → ±∞
we find the asymptotic u0(η) ∼ exp(±i

√
β2 − 1/4η). Now we

launch a bright Schrödinger soliton, u0(η) = √
2κ/ cosh(κη)

with κ =
√

m2 − β2, which would be stable in flat space. In
negatively curved space we observe strong radiation emanating
from the beam. Analogously to [18] the ambient radiation
arises from the self-induced nonlinear tunneling of the bright

ηa ηb

E = β2 − 1
4

0.99 × 108

1.0 × 108

−0.1 −0.05 0 0.05 0.1

V
eff

(η
)

η

FIG. 7. (Color online) Effective potential for the propagation
of a bright soliton in negatively curved space [(blue) curve]. The
horizontal (red) line shows the associated energy. The parameters are
l = 104 and m = l + 3.5.
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0 2π 4π 6π 8π 10π

0.1

0

−0.1
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FIG. 8. (Color online) Evaporation of a bright soliton in nega-
tively curved space (paraxial propagation). Parameters are l = 104

and m = l + 3.5. The color illustrates |u(η,ξ )|.

soliton through a potential barrier. This effective potential is
given by

Veff(η) = m2 + 1
4

cosh2 η
− 2κ2

cosh η cosh2 κη
, (17)

if we interpret the nonlinear interaction γ (η)|u0(η)|2 to be a
self-induced potential. Now we consider (11) as the motion of
a quantum mechanical particle in the potential (17) with the
energy E = β2 − 1/4.

Following standard WKB considerations [19], we can find
the tunneling probability of the bright soliton, as ln � =
−2ImS, where ImS = ∫ ηb

ηa

√
Veff(η) − Edη is the imaginary

part of the classical action S and ηa,ηb are the classical
turning points, satisfying Veff(ηa,b) = E (see Fig. 7). In the
limit m and β large, we can neglect the second term in (17),
since it mainly contributes a constant shift to ImS, and find
ln � ∼ −π (m − β). This shows that the soliton tunneling rate
is very low for large propagation constants. Therefore the
soliton can stabilize itself for some time. However, tunneling
then, finally, leads to evaporation or even explosion of the
beam (see Fig. 8).

Regarding experimental observation of soliton evaporation,
for example, in a repulsive harmonic trap, one faces the
difficulty that the center of mass of the soliton is unstable [18].
We use the symmetries of the negatively curved space and
consider an infinitesimal translation (10) of the bright soliton,
that is, η → η − cosh ξε and ξ → ξ + sinh ξ tanh ηε. Hence,
compared to (15) the translation mode is shifted to � = ±i/R

and seems to induce an instability as well. However, this
interpretation is wrong in a translationally invariant space,
since this exponential growth just reflects the exponential
increase in the separation between neighboring geodesics in
negatively curved space [8]. This means that the center of mass
is stable and the beam always remains on top of the potential.
Therefore soliton evaporation in negatively curved space will
always occur, for any initial position and velocity of the bright
soliton.

VI. CONCLUSION

In conclusion, we have analyzed, numerically and ana-
lytically, the existence and stability of solitons in spaces of
constant curvature. Employing symmetry arguments we could
naturally generalize the notion of solitons known from flat
space and define respective soliton parameters, such as velocity
and position. In positively curved space we found localized
solutions even in the defocusing case and stable double-hump
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solitons for focusing and defocusing nonlinearity. Both are
not present in flat space. In the case of a negatively curved
space, no localized solution exists. Even nonlinearity cannot
withstand the spreading of negatively curved space, and a
Schrödinger bright soliton which is quite robust in flat space

decays after a finite length due to a nonlinear tunneling process.
Furthermore, we have shown that translation modes known as
neutral or zero modes in flat space occur as an oscillation or
exponential divergency in curved space, where they describe
the motion along geodesics.
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