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Optimal collinear Gaussian beams for spontaneous parametric down-conversion
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I investigate the properties of spontaneous parametric down-conversion (SPDC) involving collinear Gaussian
spatial modes for the pump and the photon collection optics. Approximate analytical and numerical results
are obtained for the peak spectral density, photon bandwidth, pair collection probability, heralding ratio, and
spectral purity as a function of crystal length and beam-focusing parameters. I address the optimization of these
properties individually as well as jointly, and find focusing conditions that simultaneously bring the pair collection
probability, heralding ratio, and spectral purity to near-optimal values. These properties are also found to be nearly
scale invariant, that is, ultimately independent of crystal length. The results obtained here are expected to be
useful for designing SPDC sources with high performance in multiple categories for the next generation of SPDC
applications.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) is a
process widely used to produce both entangled photon pairs
and heralded single photons. SPDC photon sources play a key
role in quantum cryptography, optical quantum computing,
quantum metrology, and in fundamental studies of quantum
mechanics. In many applications, a nonlinear optical crystal
is pumped by a focused laser beam and the emitted SPDC
light is collected into a pair of optical waveguides, such
as an integrated optical circuit [1] or a fiber network [2].
Efforts over the past decade have led to some very bright
SPDC sources [3,4]. As brightness has improved, interest has
progressed from simply making SPDC sources brighter to
controlling other properties of the emitted photons, such as the
spectral entanglement in each photon pair [5–8]. While several
papers in recent years [9–16] have addressed the question of
how to focus the pump and/or collection optics optimally,
some important questions remain. Since different studies
have invoked slightly different assumptions and optimized
slightly different measures, it is not clear how pump and/or
collection focusing simultaneously affects all the quantities
that are generally of interest, and what trade-offs (if any) exist
between these quantities. Furthermore, the scaling laws for
the optimized quantities and optimal parameter values are not
readily apparent (e.g., whether it is possible to halve the crystal
length and, through a change of beam parameters, obtain
similar performance).

To address such questions, I present here a study of
SPDC for the case in which the pump and collecting optics
define collinear Gaussian spatial modes. While the theory is
general, the envisioned context is SPDC in a periodically
poled nonlinear crystal with emission in the visible or
telecommunication spectral range (a common and useful
configuration). In this study I consider five properties of
the collected biphoton state that are commonly of interest:
the joint spectral density, the photon bandwidths, the pair
collection probability, the heralding ratio (photon pair to single
photon collection ratio), and the spectral entanglement. These
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properties are calculated—in some cases analytically, in some
cases numerically—as functions of experimental parameters,
yielding predictions for the absolute values of the properties as
well as for the parameter values that optimize each property.
Additionally, this study reveals several scaling laws and shows
that some properties can be jointly optimized while others
require a trade-off. Of the many results presented here, a few
appear to differ from the predictions of others.

The paper is organized as follows: Section II establishes
the foundational equations describing Gaussian optical modes
and the quantum physics of SPDC. Sections III–VII de-
rive expressions for the five properties mentioned above
and discuss their dependence on experimental parameters.
Section VIII discusses the results of this study in light of
prior works, and Sec. IX summarizes the main conclusions.

II. SPDC WITH GAUSSIAN SPATIAL MODES

SPDC is the lowest-order effect of parametric interaction
between a strong pump (p) field and two other fields,
designated as signal (s) and idler (i), initially in the vacuum
state. The quantum Hamiltonian governing this interaction is

Ĥ =
∫

ε0(χ (2)(r) : Ê+(r,t)Ê−(r,t)Ê−(r,t) + H.c.) d3r,

(1)

where r = (x,y,z) is the spatial coordinate, t is time, χ (2)(r)
is the nonlinear susceptibility tensor, and Ê+(r,t) = Ê−(r,t)†

is the positive-frequency part of the electric-field quantum
operator. In canonical treatments, the field is expanded in terms
of an orthonormal set of modes. Since the interest here is in
SPDC involving Gaussian spatial modes, I choose a modal
expansion containing a Gaussian mode for each frequency ω.
It will be sufficient to consider just these Gaussian modes until
Sec. VII. In this case Ê+(r,t) may be written as

Ê+(r,t) =
∫ ∞

0
dω

√
h̄ω

2ε0
Eω(r)e−iωt âω(t) + irrelevant

non-Gaussian modes, (2)
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where Eω(r) is the electric-field function for the (Gaussian)
mode of frequency ω and â†

ω(t) is the operator that creates a
photon in that mode.

The state resulting from the interaction (1) is obtained
by applying the operator exp[− i

h̄

∫ ∞
−∞ dt Ĥ (t)] to the initial

state. The part of the state corresponding to SPDC, that is, the
creation of a single pair of photons, is just the first-order term:

|�SPDC〉 = − i

h̄

∫ ∞

−∞
dt Ĥ (t) |initial〉. (3)

The insertion of Eqs. (1) and (2) into (3) gives

|�SPDC〉 = −i

∫ ∞

0
dωsdωi ψ(ωs,ωi)â

†
ωs

â†
ωi

|vac〉, (4)

where |vac〉 is the vacuum state of the signal and idler and

ψ(ωs,ωi) =
√

2π2h̄Np

ε0λpλsλi
s(ωp)O(ωs,ωi) (5)

is the SPDC amplitude. Here ε0 is the vacuum permittivity,
λj = 2πc/ωj is the free-space wavelength of field j (j =
p,s,i), and ωp = ωs + ωi. The pump field has been assumed
to be in a coherent state with independent spectral and spatial
dependence. Accordingly, the operator âωp has been replaced
by the complex amplitude a(ωp) = s(ωp)

√
Np , where s(ωp) is

the pump spectral amplitude [with
∫ |s(ω)|2 dω = 1] and Np is

the mean number of pump photons (the pump energy divided
by h̄ωp). The quantity

O(ωs,ωi) ≡
∫

medium
χ (2)(r) : Eωp (r)E∗

ωs
(r)E∗

ωs
(r) d3r (6)

is the spatial overlap of the pump, signal, and idler modes
in the medium, which generalizes the sinc phase-matching
function encountered in plane-wave treatments of SPDC [17].
The medium is taken to be a bulk material of length L centered
at the origin, with a cross section large enough to contain the
mode functions. The material may be ferroelectrically poled
so that χ (2)(r) alternates sign with spatial period �.

The properties of the SPDC state can be calculated once
particular forms are chosen for the pump spectrum s(ωp) and
the mode functions Eωj

(r). Consideration will be restricted to
modes of the form

E(r) = e√
π/2

w

q
exp

(
−x2 + y2

q
+ ikz

)
, (7)

which describes a linearly polarized, paraxial Gaussian beam
with waist at the origin, propagating along the z axis in an
optically uniform medium. Here w is the waist size, e is the
polarization unit vector, k = 2πnω/c is the wavenumber, n

is the refractive index, and q = w2 + 2iz/k. This choice is
in part motivated by the fact that some of the best SPDC
sources in existence involve Gaussian beams copropagating
along one of the principle refractive axes of a transparent
crystalline material, such as potassium titanyl phosphate or
lithium niobate. (The anisotropy of the refractive index may be
safely ignored in such cases.) Additionally, symmetry indicates
that the spatial overlap is largest when the modes copropagate
and have their waists colocated at the center of the crystal.
This leaves the waist sizes wp,ws,wi as the free parameters for
mode optimization.

Using modes of the form (7), the mode overlap (6) is

O =
√

εχ
(2)
eff

(π/2)3/2

∫
wpwswi

qpq∗
s q∗

i

exp

[
−(x2+y2)

(
1

qp
+ 1

q∗
s

+ 1

q∗
i

)

+ i(
k + mK)z

]
dx dy dz. (8)

Here 
k = kp − ks − ki is the wavenumber mismatch, K =
2π/� is the poling spatial frequency, m is the order of quasi-
phase-matching, χ

(2)
eff ≡ χ (2) : epesei is the effective nonlinear

coefficient, and ε is an efficiency factor that includes Fresnel
loss and the Fourier coefficient of the mth harmonic of the
poling spatial function. Integrating over x and y yields

O =
√

8ε

π
χ

(2)
eff wpwswi

∫ L/2

−L/2

exp[i(
k + mK)z]

q∗
s q∗

i + qpq∗
i + qpq∗

s

dz. (9)

Before proceeding, it will be convenient to rewrite (9) in
terms of dimensionless quantities. The primary independent
variables are the phase mismatch

� ≡ (
k + mK)L (10)

and the focal parameters

ξj ≡ L

kjw
2
j

, (11)

where ξj � 1 (�1) means that field j (j = p,s,i) is focused
strongly (weakly) relative to the length of the crystal.

I also define the auxiliary quantities

A± ≡ 1 + ks

kp

ξs

ξp
± ki

kp

ξi

ξp
, (12)

B± ≡
(

1 − 
k

kp

) (
1 + ks + 
k

kp − 
k

ξp

ξs
± ki + 
k

kp − 
k

ξp

ξi

)
, (13)

C ≡ 
k

kp

ξ 2
p

ξsξi

A+
B2+

, (14)

and the aggregate focal parameter

ξ ≡ B+
A+

ξsξi

ξp
. (15)

The quantities A+, B+, and ξ are independent and uniquely
determine ξs, ξi, and ξp. C is determined by A+ and B+. Note
that A±, B±, and C do not depend on the absolute values
of the focal parameters, but on the focus of the signal and
idler relative to the pump. In terms of these dimensionless
quantities, Eq. (5) may be written as

ψ(ωs,ωi) =
√

8π2εh̄nsniNpL

ε0np

χ
(2)
eff

λsλi

s(ωp)√
A+B+

×
∫ 1

−1

√
ξ exp(i�l/2)

1 − iξ l − Cξ 2l2
dl. (16)

Equation (16) will be the starting point for analysis in
Secs. III–VI.

Four approximations will be invoked throughout this work
in order to simplify analysis and yield more useful results.
These approximations are reasonable for typical bulk SPDC
sources, which may be defined as having the following
characteristics: the length of the medium is �1 mm and its
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refractive index is �1.5, the parametric interaction is quasi-
phase-matched with a first-order grating of period � � 5 µm,
and emission is in the visible or telecommunication spectral
range, with λs � 1.6 µm and λp � 0.8 µm. When assessing
the accuracy of approximate formulas, these values will be
considered as representing the worst typical case. I will
also consider a “reference source” consisting of degenerate
type-II SPDC in 10-mm periodically poled potassium titanyl
phosphate (PPKTP) with a 750-nm pump. This is similar to
several sources that have been demonstrated to have good
performance [3,4,18].

One approximation that will be used liberally is

1 ± 
k

kj

≈ 1. (17)

This approximation is motivated by the fact that efficient SPDC
occurs when 
k ≈ −mK, where mK/kj is typically much
smaller than 1.

Another approximation that will prove convenient is

C ≈ 0. (18)

The actual value of C depends in a complicated way upon the
experimental parameters, but can be shown to obey the bound

|C| � |
k|kp

4kski
=

∣∣∣∣ �kp

4kskiL
− mKkp

4kski

∣∣∣∣ (19)

when (17) is valid. One then has |C| � 0.1 near-phase-
matching conditions, which turns out to be small enough to
make (18) a fair approximation over the range of focusing
that is desirable with respect to the five properties of the state
considered here.

The third approximation is that the frequency dependence
of (16) is determined essentially by the pump spectrum s(ωp)
and the frequency dependence of the wave mismatch 
k. That
is, I take

A±,B±,ξj ,

√
εnsni

np

χ
(2)
eff

λsλi
≈ const (20)

over the range of (ωs,ωi) for which the amplitude is ap-
preciable. For (20) to hold, the bandwidths of the photons
must be much smaller than an optical frequency. Type-II
and nondegenerate type-I SPDC sources typically satisfy
this condition, but frequency-degenerate type-I sources and
sources made of very short crystals, which tend to have large
bandwidths, may not.

Finally, after Sec. III it will be assumed the wave mismatch

k has a predominantly linear frequency dependence,

δkj ≈ n′
j

c
δωj , (21)

where n′
j ≡ c ∂kj/∂ω is the group index of mode j and δωj

(δkj ) denotes a shift from the nominal frequency (wavenum-
ber) of mode j . Again, this approximation is generally valid
for type-II and nondegenerate type-I SPDC sources, but not
for frequency-degenerate type-I sources.

The impact of these approximations, particularly (18), will
be addressed more fully in the context of each major result.

III. JOINT SPECTRAL DENSITY

The joint spectral density |ψ(ωs,ωi)|2 is the expected
number of photon pairs, per signal bandwidth per idler
bandwidth, emitted into the Gaussian collection modes. If
the collected photons pass through spectral filters of narrow
bandwidth, the effective brightness of the source is determined
by the joint spectral density at the filter frequencies. Let us
now consider the problem of maximizing this quantity, that
is, finding the values of ξp,ξs,ξi,� that maximize |ψ(ωs,ωi)|2
given the frequencies ωp,ωs,ωi and crystal length L. From
(16), it is apparent that maximization determines certain values
(Amax

+ ,Bmax
+ ,ξmax,�max). The beam parameters ξp,ξs,ξi are then

complicated functions of (kp,ks,ki,A
max
+ ,Bmax

+ ,ξmax,�max) via
relations (10)–(15). However, substantially more informative
results can be obtained if the l2 term in (16) is neglected. With
C ≈ 0 [approximation (18)], the function to be maximized is

1√
A+B+

∫ 1

−1

√
ξ exp(i�l/2)

1 − iξ l
dl. (22)

The two factors are independent and can be maximized
separately. A+B+ can be written as

A+B+ =
(

1 − 
k

kp

)
(1 + Xsrs + Xiri)

(
1 + Xs

rs
+ Xi

ri

)
,

where

Xj ≡ kj

kp

√
1 + 
k/kj

1 − 
k/kp
, (23)

rj ≡ ξj

ξp

√
1 − 
k/kp

1 + 
k/kj

. (24)

The maximum of (A+B+)−1/2 occurs at rs = ri = 1. Invoking
approximation (17) gives

ξs ≈ ξi ≈ ξp ≈ ξ (25)

and

max
1√

A+B+
≈ 1

2
. (26)

The second factor in (22),

F (ξ,�) ≡
∫ 1

−1

√
ξ exp(i�l/2)

1 − iξ l
dl, (27)

requires numerical evaluation and is plotted in Fig. 1. [Note
that for ξ � 1, F is proportional to the usual phase-matching
function sinc(�/2).] The maximum value of F is 2.06 . . .

at ξ = 2.84 . . ., � = −(1.04 . . .)π . This result, together with
(26), yields the maximum spectral amplitude

max
ξ,�

|ψ(ωs,ωi)| ≈ 1.03

√
8π2h̄εnsni

ε0np

χ
(2)
eff

λsλi

√
NpLs(ωp), (28)

which is obtained under the conditions

ξs ≈ ξi ≈ ξp ≈ 2.84, (29)

� ≈ −1.04π. (30)

It should be noted that these are precisely the conditions
which have long been known to maximize the efficiency
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FIG. 1. (Color online) The spatial overlap factor F (ξ,�) defined
in Eq. (27). The cross marks the location of the peak.

of sum-frequency generation and parametric amplification
with Gaussian beams [19]. The spectral density |ψ(ωs,ωi)|2
is proportional to the number of pump photons Np and to
the crystal length. [In contrast, for the case of collimated
(plane wave) interaction, the spectral density would grow
quadratically with the crystal length.] It may also be noted that,
for all other factors being equal, short-wavelength sources are
brighter than long-wavelength sources.

Because it may not always be possible to implement or
verify condition (29) accurately, it is worth examining how
sensitive the peak spectral density is to the focal parameters.
Specifically, I compare max� |ψ |2, which is a function
of (ξp,ξs,ξi), to the global maximum value maxξ,� |ψ |2. I
constrain the parameter space by the condition ξs = ξi, which
is not only optimal in regard to the spectral density but, as
will be shown in later sections, is also optimal or near-optimal
for other quantities of interest. Figure 2 shows the relative
brightness max� |ψ |2/ maxξ,� |ψ |2 as a function of ξp and
ξs = ξi. It can be seen that the regime of good focusing is
rather broad: the waist size (and correspondingly, the angular
divergence) must be made smaller or larger by roughly a factor
of 5 to reduce the peak spectral density to half its maximum
value. Over this range the optimal phase � (not shown) varies
from −π/2 to −3π/2, meaning that the frequency of the
peak shifts slightly with focusing. If the signal and idler focus
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FIG. 2. (Color online) Peak joint spectral density, normalized to
the global maximum, as a function of the pump and photon mode
focus.

are fixed, the optimal pump focus is given by ξp = ξs(= ξi).
However, if the pump focus is fixed, the optimal signal and
idler focus are given by ξs = ξi ≈ √

2.84ξp.
These results are robust to approximation: for the worst

case defined in Sec. II, the “optimal” values given in (29)
and (30) differ from the true optimal values by 5% and 10%,
respectively, but, due to the broadness of ψ as a function of
these parameters, they yield an amplitude that is within 1% of
the actual maximum value.

IV. PHOTON BANDWIDTH WITH MONOCHROMATIC
PUMPING

SPDC photons are sometimes employed in systems with
limited optical bandwidth. In designing sources for such
systems it is helpful to know how the photon bandwidths
depend on the design parameters. One case of particular
interest is when the pump bandwidth is chosen to maximize
the spectral purity of the photons. That case will be addressed
in Sec. VI. Another particularly interesting case is that of
monochromatic pumping, which will be addressed now.

With a monochromatic pump, and under approximation
(20), the spectral dependence of (16) arises primarily from
the dispersion of the phase mismatch � = (
k + mK)L. The
phase mismatch may be expanded as Taylor series in δωs and
δωi, the deviation of the signal and idler frequencies from their
nominal values. Assumption (21) then gives

� ≈ �0 +
(

n′
p

c
(δωs + δωi) − n′

s

c
δωs − n′

i

c
δωi

)
L, (31)

where �0 is the phase mismatch at the nominal frequencies.
Monochromatic pumping constrains the frequencies to δωs =
−δωi, yielding

� ≈ �0 + (n′
s − n′

i)L

c
δωs. (32)

The fact that � is (approximately) a linear function of ωs means
that the photon bandwidth 
ωs (= 
ωi) can be expressed in
terms of a dimensionless “phase mismatch bandwidth” 
�,
which is the width of |ψ |2 when expressed as function of �.

Under approximation C ≈ 0, |ψ |2 is proportional to
|F (ξ,�)|2. The full width at half- maximum (FWHM) of
|F (ξ,�)|2 (see Fig. 1) was calculated numerically and is
plotted as the solid line in Fig. 3. I find that the behavior
of 
� in this case is captured well by the heuristic formula


� ∼ 2π max(1,ξ/10), (33)

shown as the dashed line. Combining (32) and (33) yields the
photon bandwidths


ωs = 
ωi ∼ 2πc

|n′
s − n′

i|
max

(
1

L
,

1

10b

)
(34)

where b ≡ L/ξ is the aggregate confocal length of the modes
(reducing to kpw

2
p when ξs = ξi = ξp). When focusing is weak

to moderate (ξ � 10), the photon bandwidth is determined by
the crystal length (the well-known 1/L dependence). But when
the focusing is strong (ξ � 10), the bandwidth is larger [20]
and determined instead by the confocal length, going as 1/b.
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FIG. 3. (Color online) The normalized photon bandwidth as a
function of focusing. The dashed line is the heuristic formula (33).

The reason that tightly focusing the pump increases the
bandwidth can be understood as follows: At negative values of
the phase mismatch (i.e., away from the nominal wavelengths),
the photon spatial distribution in the far field takes the form
of a ring [21]. With a collimated pump, a certain change
in wavelength makes the ring radius larger than that of the
collection modes, and photons of those wavelengths are not
collected. But when the pump is tightly focused, the rings
are spatially broadened and the photons partially overlap
the collection mode [22]. The larger the spatial broadening,
the larger the wavelength change must be for the photon
distribution to lie outside the collection mode.

Owing to the approximation C = 0, the bandwidth plotted
in Fig. 3 is not exact. For the reference source, the error in 
ωs

is �3% for ξ � 10 and �10% over the range 10 � ξp � 100.
For the worst typical case, the error is �3% for ξ � 1 but
increases to 10% at ξ = 10 and varies between 30% and 50%
over the range 10 � ξp � 100. Thus bandwidth predictions
may not be highly accurate in the regime of focus-induced
spectral broadening. Nevertheless, even in the worst case the
approximate SPDC state |ψ̃〉 (calculated with C = 0) has a
large overlap with the exact state |ψ〉 [calculated using (19)]:
the fidelity 〈ψ̃ |ψ〉2/〈ψ̃ |ψ̃〉〈ψ |ψ〉 is 0.999 at ξ = 1, 0.97 at ξ =
10, and 0.91 at ξ = 100. Also, the heuristic formula 
� ∼
2π max(1,ξ/ξ0) remains as accurate as shown in Fig. 3 for a
suitably chosen value of ξ0.

V. PAIR COLLECTION PROBABILITY

When SPDC photons are collected without spectral filter-
ing, maximizing the pair collection probability

Psi =
∫

|ψ(ωs,ωi)|2dωsdωi (35)

is usually more important than maximizing the peak spectral
density. (In most experiments, Psi is proportional to the
coincident photodetection rate, or the probability of detecting
a pair of photons following any given pump pulse.) Under
approximation (20), the dominant spectral dependence arises
from s(ωp) and 
k. The phase mismatch (31) may be written
as

� ≈ �0 +
(

2n′
p − (n′

s + n′
i)

2c
δωp − n′

s − n′
i

2c
δω−

)
L, (36)

where ω− = ωs − ωi. Then dωsdωi = (dω−dωp)/2 =
d�dωp c/(|n′

s − n′
i|L), giving

Psi = c

|n′
s − n′

i|L
∫

|ψ |2 dωpd� (37)

= 8π2h̄cεnsni

ε0np|n′
s − n′

i|

(
χ

(2)
eff

λsλi

)2
Np

A+B+

∫ ∣∣∣∣s(ωp)

×
∫ 1

−1

√
ξ exp([i�l/2)]

1 − iξ l − Cξ 2l2
dl

∣∣∣∣
2

dωpd�. (38)

Under the approximation C ≈ 0, the only place � appears is
in the exponential function. Using

∫
exp[i�(l − l′)/2] d� =

4πδ(l − l′) and
∫ |s(ωp)|2dωp = 1, one obtains

Psi ≈ 32π3h̄cεnsni

ε0np|n′
s − n′

i|

(
χ

(2)
eff

λsλi

)2
Npξ

A+B+

∫ 1

−1

dl

1 + ξ 2l2
, (39)

which may be directly integrated to give

Psi ≈ 64π3h̄cεnsni

ε0np|n′
s − n′

i|

(
χ

(2)
eff

λsλi

)2
arctan(ξ )

A+B+
Np. (40)

Formula (40), plotted as the dashed line in Fig. 4, sug-
gests that the pair probability can only be optimized in an
asymptotic sense—that there are no finite values of ξp,ξs,ξi

that maximize Psi. In reality, the asymptotic behavior holds
only as long as ξkp/(4Lkski) � 0.1. With very tight focusing
or very short crystals, the approximation C = 0 breaks down,
causing Psi to peak near its asymptotic value (solid lines in
Fig. 4). In the worst typical case the pair probability error
|1 − 〈ψ̃ |ψ̃〉/〈ψ |ψ〉| is �4% for ξ � 1, �13% for ξ � 10,

and �20% for ξ � 100. For the reference source described
above, the pair probability error is �1.5% for ξ � 100. In any
case, Psi evidently has an upper bound

Psi � 8π4h̄cεnsni

ε0np|n′
s − n′

i|

(
χ

(2)
eff

λsλi

)2

Np (41)

that cannot be exceeded, no matter how long the crystal. (This
somewhat surprising result will be discussed in Sec. VIII.) For
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FIG. 4. (Color online) Dependence of the pair collection proba-
bility on the aggregate focus. The dashed line is Eq. (40) normalized
by its asymptotic maximum. The solid lines are calculated using
“worst case” values for the parameter C [see the discussion sur-
rounding Eq. (19)] and normalized by the same factor.
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FIG. 5. (Color online) Dependence of the pair collection proba-
bility on the focus of the pump and photon modes.

type-II SPDC sources made of PPKTP or periodically poled
lithium niobate (PPLN), Eq. (41) predicts that brightnesses
exceeding 10−9 collected pairs per pump photon should be
achievable—roughly an order of magnitude brighter than the
brightest existing sources.

The dependence of Psi on ξp and ξs = ξi is shown in Fig. 5.
If the signal and idler focus are fixed, the optimal pump focus
is given by ξp = ξs(= ξi). If instead ξp is fixed, the optimal
value of ξs is nearly equal to ξp for ξp � 10 and slightly larger
than ξp for ξp � 10.

VI. SPECTRAL PURITY

A number of applications of SPDC photons, including
the generation of multiphoton entangled states for quantum
computing [23–26], involve interference between photons
from separate (and nominally identical) SPDC sources. The
success of such applications depends not only on the efficiency
of SPDC photon production, but also on the degree of mutual
coherence of photons from independent sources [27,28].
This coherence, which is directly related to the interference
visibility, is given by the single-photon purity

ρ =
∑

j σ 2
j(∑

j σj

)2 , (42)

where

ψ(ωs,ωi) =
∑

j

√
σjuj (ωs)vj (ωi) (43)

is the Schmidt decomposition [29] of the collected biphoton
state. The single-photon purity is inversely related to the degree
of entanglement between the signal and idler frequencies,
with ρ = 1 corresponding to no spectral entanglement. (Note
that any spatial entanglement present in the emitted state is
discarded upon postselecting photon pairs that couple into the
Gaussian collection modes.)

It is natural to ask whether the parameters that yield
high source brightness also yield high spectral purity. Under
approximations (20) and (21), the frequency-dependent part
of ψ(ωs,ωi) is s(ωp)F (ξ,�). Since the purity depends only
on the shape of ψ(ωs,ωi), and not on its location or extent
within the (ωs,ωi) plane, ωs and ωi may be replaced with
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FIG. 6. (Color online) Dependence of the spectral purity of the
collected photons on the mode focus. The numbers accompanying
each line are the group velocity angle θ defined in Eq. (44). Solutions
for θ � 45◦ mirror those for θ � 45◦.

the dimensionless variables ωs/� and ωi/�, where � ≡
c/(n′

s − n′
i)L. Given a particular functional form for the pump

spectrum, the purity may then be computed as a function of
(ξ,θ,
ωp/�) where 
ω is the pump bandwidth and

tan θ = n′
s − n′

p

n′
p − n′

i

(44)

is the slope, in the (ωs,ωi) plane, of the line characterized
by � = 0. Note that since ξ is the only relevant focusing
parameter, we are free to set ξs ≈ ξi ≈ ξp to maximize the
brightness at a given (ξ,θ,
ωp/�). Also, note that the
brightness is independent of the pump bandwidth when
approximation (21) is valid.

The spectral purity obtainable with a Gaussian pump
was determined by computing s(ωp)F (ξ,�) over a grid of
sufficient extent and resolution in the (ωs/�,ωi/�) plane
for various parameter values (ξ,θ,
ωp/�). For each set of
parameter values, singular value decomposition was applied
to the matrix of computed values to determine {σj } and
ρ. Numerical optimization was then used to determine the
value of 
ωp/� that maximizes ρ at each (ξ,θ ). In Fig. 6
these optimized values of ρ are plotted as a function of
ξ (=ξp) for several different values of θ . For θ = 45◦, the
peak purity is 0.94 and occurs at ξ = 2.2. As θ decreases
to 0◦,ρ asymptotically increases to 1 for all values of ξ ,
although the optimal pump bandwidth becomes infinite in
this limit. Below 0◦,ρ drops rapidly. Solutions for θ � 45◦
mirror those for θ � 45◦, with the signal and idler exchanging
roles.

These results can be understood as follows. The purity is di-
rectly related to the factorability of ψ(ωs,ωi) ∝ s(ωp)F (ξ,�)
into separate functions of ωs and ωi. When the pump function
s(ωp) is Gaussian, complete factorability can be achieved
if and only if the phase-matching function F (ξ,�) is also
Gaussian with orientation 0 � θ � π/2 [5]. But F (ξ,�) is
not Gaussian: for ξ � 1 it is a sinc function, which has
oscillating side lobes, while for ξ � 1 it has large skew. In both
these regimes, the purity is reduced. F (ξ,�) is most nearly
Gaussian for ξ ∼ 2, which becomes the regime of greatest
purity.
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By comparing Figs. 2 and 4, one sees that in the regime of
peak purity (ξ ∼ 2) the spectral intensity is close to its peak
value and the total collection probability is more than 70%
of its asymptotic maximum (41). Thus, high spectral purity
(�94%) can be obtained with focusing conditions that also
yield relatively high brightness, provided 0 � θ � 90◦ (which
amounts to the requirement that n′

p lie between n′
s and n′

i).
An explicit evaluation of the accuracy of these results in

view of approximation (18) was not performed. However, it
may be noted that the results of this section are based on a
decomposition of an approximate state which, as discussed at
the end of Sec. IV, has a high degree of overlap with the actual
state.

VII. SINGLE-PHOTON COLLECTION AND
HERALDING RATIO

In some applications of SPDC, the detection of a photon in
the signal mode is used to indicate the (probable) presence of
a photon in the idler mode. (Although the photons are always
emitted in pairs, conditions generally allow one photon to be
emitted into a spatial mode defined by the collection optics
while its partner is emitted into a noncollected spatial mode.)
In such applications it is desirable to have a high heralding
ratio ηs ≡ Psi/Ps, where Ps is the probability that a photon is
emitted into the signal collection mode, regardless of the mode
its partner is in. Since the probability of collecting both photons
cannot exceed the probability of collecting one of the photons,
the heralding ratio can be at most unity. In applications that
treat signal and idler photons symmetrically, the quantity ηsi ≡
Psi/

√
PsPi is often the metric of choice. In this work ηs will

be called the signal heralding ratio and ηsi will be called the
symmetric heralding ratio.

To obtain the signal collection probability Ps, the joint
collection probability must be summed over a complete set of
spatial modes for the idler photon. The Laguerre-Gauss modes

E(n,l)(r; ω) = e√
π/2

(
wi

qi

)l+1 (
q∗

i

qi

)n

Ll
n

(
2w2

i ρ
2

|qi|2
)

× exp

(
−ρ2

qi
+ ikiz + ilφ

)
(45)

form such a set, where Ll
n is the (n,l) associated Laguerre

polynomial, ρ =
√

x2 + y2, and tan φ = x/y. The fundamen-
tal mode with n = l = 0 is just the Gaussian mode introduced
in Sec. II. Since the pump and signal mode are azimuthally
symmetric, the spatial overlap vanishes unless the idler mode
is also azimuthally symmetric (l = 0). Thus the spatial overlap
involving the nth idler mode is

On =
√

εχ
(2)
eff

(π/2)3/2

∫ L/2

−L/2

∫ ∞

0

wpwswi

qpq∗
s q∗

i

(
qi

q∗
i

)n

Ln

(
2w2

i ρ
2

|qi|2
)

× exp

[
−ρ2

(
1

qp
+ 1

q∗
s

+ 1

q∗
i

)
+ i(
k + mK)z

]
× 2πρ dρ dz. (46)

With the Laguerre polynomial expansion formula Ln(x) =∑n
j=0(−1)j n!

(n−j )!j !j !x
j and a bit of work, one can

obtain

On =
√

8ε

π
χ

(2)
eff wpwswi

∫ L/2

−L/2

exp[i(
k + mK)z]

q∗
s q∗

i + qpq∗
i + qpq∗

s

×
(

q∗
s qi + qpqi − qpq

∗
s

q∗
s q∗

i + qpq∗
i + qpq∗

s

)n

dz. (47)

Applying definitions (10)–(14) and making the approximation
C ≈ 0 yields

On ≈ χ
(2)
eff

√
2ε

π

kski

kp
L

√
ξsξi

ξp

∫ 1

−1

exp(i�l/2)

A+ − ilB+ξsξi/ξp

×
(

A− + ilB−ξsξi/ξp

A+ − ilB+ξsξi/ξp

)n

dl. (48)

In analogy with formulas (35) and (5), the signal photon
probability may be written as Ps = ∫ ∑∞

n=0 |ψn(ωs,ωi)|2
dωsdωi, where ψn = √

2π2h̄Np/ε0λpλsλis(ωp)On(ωs,ωi).
Following the approach taken in Sec. V, we have

Ps ≈ 8π2h̄cεnsniNp

ε0np|n′
s − n′

i|

(
χ

(2)
eff

λsλi

)2
ξsξi

ξp

×
∞∑

n=0

∫ ∣∣∣∣
∫ 1

−1

exp(i�l/2)

A+ − ilB+ξsξi/ξp

×
(

A− + ilB−ξsξi/ξp

A+ − ilB+ξsξi/ξp

)n

dl

∣∣∣∣
2

d� (49)

= 32π3h̄cεnsniNp

ε0np|n′
s − n′

i|

(
χ

(2)
eff

λsλi

)2

ξs

∫ 1

−1

dl

A2
s + (Bsξs)2l2

, (50)

where

As = 2

√(
1 + ks

kp

ξs

ξp

)
ki

kp
, (51)

Bs = 2

(
1 − 
k

kp

)√(
1 + ks + 
k

kp − 
k

ξp

ξs

)
ki + 
k

kp − 
k
. (52)

Integration yields the signal collection probability

Ps ≈ 64π3h̄cεnsni

ε0np|n′
s − n′

i|

(
χ

(2)
eff

λsλi

)2 arctan
(

Bs
As

ξs

)
AsBs

Np. (53)

The corresponding formula for the idler probability Pi can
be obtained by interchanging the labels s and i everywhere.
Equation (53) is very similar to Eq. (40) and holds under
essentially the same conditions. Like Psi, the signal probability
Ps is (to first approximation) an asymptotically increasing
function of focal parameters, with an upper bound

Ps � 32π4h̄cεnsni

3ε0np|n′
s − n′

i|

(
χ

(2)
eff

λsλi

)2

Np. (54)

Also like Psi, Ps is locally maximized by taking ξs ≈ ξp (see
Fig. 5); however, Ps varies more slowly with ξs and ξp than
Psi (Fig. 7). The fact that Ps is broader than Psi means that
collection of the signal in a nonoptimal Gaussian mode projects
the idler onto a mode that does not couple well to a Gaussian
mode of any size (i.e., a mode that is not Gaussian). Note also
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FIG. 7. (Color online) Dependence of the signal collection prob-
ability on the focus of the pump and signal modes for near-degenerate
SPDC (ks ≈ ki ≈ kp/2).

that (53) is independent of ξi as it should be (the parameters of
the idler collection mode should be irrelevant when one does
not care whether the idler is collected).

If one takes ξs = ξi = ξp, which locally maximizes both
Psi and Ps, the signal heralding ratio reduces to the simple
expression

ηs = ki

kp

(
ks

kp
+ 1

)
. (55)

An analogous expression exists for ηi. These expressions give
ηs = ηi = 0.75 for near-degenerate SPDC (for which ks ≈
ki ≈ kp/2) and values less than 0.75 for the nondegenerate
case. However, higher heralding ratios are possible with dif-
ferent focusing conditions. The optimal source configuration
with regard to both heralding and brightness is not a single set
of parameter values, but a curve in parameter space that has the

property that ηs (or ηsi, if that is of interest) cannot be increased
without decreasing Psi, and vice versa. Numerical methods
were used to find the values (ξs,ξi,ξp) that maximize either ηs

or ηsi at 50 values of Psi covering the range from 0 to max Psi.
The resulting points are plotted versus ξp in Fig. 8 for the case
ks ≈ ki ≈ kp/2. Figure 8 shows that it is possible to achieve
very high heralding ratios, but only with a substantial reduction
in brightness: a factor of at least 4 to achieve ηs � 0.95 and
a factor of at least 10 to achieve ηsi � 0.95. That is, there is
a trade-off between brightness and the heralding ratio, which
is somewhat worse for symmetric heralding than asymmetric
heralding. Both ηs and ηsi approach unity in the limit that the
pump is collimated (ξp → 0). In this limit the best trade-off be-
tween Psi and ηsi is achieved with ξs = ξi � ξp, while the best
trade-off between Psi and ηs is achieved with ξi ≈ 3ξs ≈ 3ξp.
The trade-offs between Psi and ηs or ηsi are found to be slightly
worse in the nondegenerate case than the near-degenerate case.

VIII. DISCUSSION

Perhaps the most significant finding of this study is that
there exist focusing conditions (ξp,ξs,ξi ∼ 2.5) that simultane-
ously bring the brightness, heralding ratio, and spectral purity
to substantial fractions of their maximal values. Whenever n′

p

lies between n′
s and n′

i, a spectral purity of at least 0.94 can
be obtained with at least 74% of the maximum achievable
brightness, while the heralding ratio is at least 0.75 (for
near-degenerate SPDC). Maximum brightness can be achieved
with tighter focusing at the cost of reducing the spectral purity
(to 0.7 at worst). The worst trade-off is between brightness and
the heralding ratio: focusing conditions that yield a symmetric
(asymmetric) heralding ratio of 0.95 or better reduce the
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FIG. 8. (Color online) (a) and
(b) Simultaneous optimization of the
total collection probability Psi and
the symmetric heralding ratio ηsi.
(c) and (d) Simultaneous optimization
of Psi and the signal heralding ratio ηs.
Panels (b) and (d) plot the focal pa-
rameters that yield the optimal curves
shown in (a) and (c), respectively. In
(a) and (c) the collection probability
goes with the left axis and the herald-
ing ratio goes with the right axis.
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brightness to 10% (25%) of its maximal value; however, the
spectral purity remains 0.84 or better.

Another notable finding of this study is that many important
properties of the collected SPDC state are essentially scale
invariant. To the extent that the parameter C [see (14)] is
negligibly small, the joint collection probability, heralding
ratios, and spectral purity are determined by the dimensionless
ratios L/kjw

2
j and 
ωpL/c. Changing the crystal length has

no effect on these three quantities if the pump duration and
confocal ranges are also scaled by the same factor. In the end,
the crystal length merely sets the bandwidth of the system, with
longer crystals yielding (or requiring) smaller bandwidths. The
idea that a longer crystal does not yield a brighter source is
perhaps surprising, since longer crystals yield higher SPDC
efficiencies when the pump is collimated or weakly focused.
Why this is not so for optimally focused sources may be
understood by noting that, although a shorter crystal has a
shorter interaction length (which decreases the spatial mode
overlap), it also allows the modes to be focused more tightly
(which increases the mode overlap). Of course, this argument
does not hold for arbitrarily short crystals; at some point, the
focusing becomes so strong and the bandwidths become so
large that the paraxial approximation implicit in (7), as well
as approximations such as (20), break down. At the other
extreme, very long crystals may also show worse than expected
performance due to the challenge of manufacturing very long
crystals of high quality.

Some of the results obtained here appear to agree with
prior works, while others appear to differ from prior works.
The focusing condition ξs = ξi = ξp = 2.84 which maximizes
the joint spectral density of SPDC is the same as that found
by Boyd and Kleinman for maximizing second-harmonic
generation (SHG) [19]. This makes sense, since SHG with
a monochromatic Gaussian input beam produces a monochro-
matic Gaussian second-harmonic field; optimization of SHG
then amounts to finding the parameters of the Gaussian modes
that maximize the spatial overlap, which is precisely what was
done in Sec. III. More recently, Ljunggren and Tengner [14]
have performed numerical studies yielding the optimizing
conditions 2ξp = 1.7, 2ξs = 2ξi = 2.3, and the prediction that
the optimized joint probability goes as

√
L (rather than being

independent of L as claimed here). These discrepancies may
be due to two key differences in approach: In [14], optimal
focusing conditions are obtained for � = 0, whereas here
and in [19] the condition � = −1.04π is found to yield a
slightly higher spectral density. Additionally, [14] employs a
plane-wave approach in which the diffraction of the pump
mode is effectively ignored; this approximation is also made
in [13], [11], and [15]. In the present study the pump is
treated as a diffracting paraxial beam. Experiments to date
are insufficient to resolve these differences as they cover a
limited range of crystal lengths and focal parameters, and
are complicated by poor repeatability (changing the focus of
a beam, or replacing a crystal with one of different length,
generally necessitates realignment).

The results of this study are intended to be useful for
designing and predicting the approximate performance of a
promising class of SPDC sources. A number of points should
be kept in mind, however. Firstly, all the results presented
here apply to the collected part of the biphoton state; many

features of the emitted SPDC light are lost or substantially
altered when the state is projected onto the Gaussian collection
modes. Secondly, while care was taken to confirm the general
viability of the approximations employed, it is not difficult to
envision sources that would violate the assumptions of this
analysis and exhibit quantitatively or qualitatively different
performance. In particular, results obtained here may not
be reliable for very short sources (L � 1 mm), sources
with very short poling periods (� � 5 µm), and/or sources
employing quasi-phase-matching of order m > 1. Thirdly,
certain physical details deemed inconsequential—such as
the vector diffraction of the Gaussian beams, the optical
anisotropy of nonlinear crystals, and the proper normalization
of electromagnetic modes quantized in a dielectric—were
simply ignored. Fourthly, a limitation of this study is that
it does not apply to angle-tuned sources in which beam walk-
off plays a role. However, since walk-off decreases spatial
overlap, it is not clear that such sources could achieve better
overall performance than the collinear sources considered here.
Finally, of all the results obtained here, only those in Sec. III
are potentially applicable to frequency-degenerate type-I
sources. The quadratic relationship between frequency and
phase mismatch in these sources substantially complicates
analysis; however, the possibility that these sources might
have different scaling laws makes them potentially worth a
comparable study.

IX. SUMMARY

In summary, I have presented here a theoretical study of
SPDC addressing multiple properties of the emitted photons
that are important in various applications. Analysis was
restricted to the promising class of SPDC sources involving
focused, collinear Gaussian modes for the pump field and col-
lected photons. Analytical and numerical calculations yielded
approximate predictions for the peak spectral density, photon
bandwidths, absolute pair collection probability, heralding
ratio, and spectral purity. A scaling law was found which shows
most of these properties to be ultimately independent of crystal
length. It was also found that such sources can simultaneously
exhibit high brightness (predicted 10−9 pairs per pump
photon), high spectral purity (�0.94), and a moderately high
heralding ratio (�0.75) when the confocal ranges of the modes
are on the order of half the crystal length. Higher heralding
ratios can be achieved, at the cost of significantly reduced
brightness, by focusing the modes less tightly. The results of
this study are applicable to “typical” SPDC sources, excluding
sources of very short length, very short poling period, or very
large bandwidth. Frequency-degenerate type-I sources, which
often do not satisfy these criteria, may be amenable to a similar
kind of study.
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