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We consider the continuous-wave (cw) propagation through a fiber Bragg grating that is uniformly doped with
two-level resonant atoms. Wave propagation is governed by a system of nonlinear coupled-mode Maxwell-Bloch
(NLCM-MB) equations. We identify modulational instability (MI) conditions required for the generation of
ultrashort pulses in both anomalous and normal dispersion regimes. From a detailed linear stability analysis, we
find that the atomic detuning frequency has a strong influence on the MI. That is, the atomic detuning frequency
induces nonconventional MI sidebands at the photonic band gap (PBG) edges and near the PBG edges. Especially
in the normal dispersion regime, MI occurs without any threshold condition, which is in contrast with that of
conventional fiber Bragg gratings. We also perform a numerical analysis to solve the NLCM-MB equations. The
numerical results of the prediction of both the optimum modulation wave number and the optimum gain agree
well with that of the linear stability analysis. Another main result of the present work is the prediction of the
existence of both bright and dark self-induced transparency gap solitons at the PBG edges.
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I. INTRODUCTION

Modulational instability (MI) is one of the fundamental
phenomena in nonlinear physics. It finds plenty of applications
in many branches of physics. For instance, in nonlinear
fiber optics, this phenomenon is essential, as it helps to
generate ultrashot pulses (USPs). In MI, a continuous or a
quasicontinuous wave undergoes a modulation of its amplitude
or phase in the presence of noise or any other weak perturbation
[1–13]. The perturbation can originate from either a quantum
noise or a frequency-shifted signal wave. The former and latter
are referred to as spontaneous MI and induced MI, respectively.
MI occurs under the combined action of group velocity
dispersion and self-phase modulation, and this condition is
essentially the same for soliton pulse generation. To get more
insight, MI may be analyzed in both temporal and frequency
domains. In the temporal domain, breakup of the perturbed cw
takes place owing to MI (cw undergoes exponential growth),
and as a result there is formation of a train of USPs. In the
frequency domain, the generation of high-repetition-rate pulse
trains resulting from MI can be identified by the growth of
a cascade of sidebands. MI in optical fibers was predicted by
Hasegawa and Brinkman [3] and experimentally demonstrated
by Tai et al. [4]. Lots of work on MI has been carried
out in the context of optical fiber communications [1]. Very
recently, through the MI process, nonconventional sidebands
induced by self-induced transparency (SIT) have been reported
in a fiber that is uniformly doped by two-level resonant
atoms [14]. McCall and Hahn [15] showed that if the energy
difference between the two levels of the medium matches the
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optical wavelength, then coherent absorption and re-emission
light occurs. Consequently, the medium becomes optically
transparent at this wavelength in the physical process of SIT.
SIT solitons are coherent optical pulses propagating through a
resonant fiber without loss and distortion. Theoretically, SIT
soliton propagation in optical fibers doped with erbium was
first shown by Maimistov et al. [16–18] and experimentally
demonstrated in Refs. [19] and [20].

From a practical point of view, a special type of fiber
called fiber Bragg grating (FBG) is better than a conventional
telecommunication fiber, as FBG offers a huge amount of
dispersion [1,7,8,21]. As in fibers, MI has also been studied
in a FBG at low and high power levels for anomalous (upper
branches) and normal (lower branches) dispersion regimes,
respectively [1,7,8]. MI has been observed experimentally in
an apodized grating structure wherein a single pulse has been
converted into a train of USPs [9,10]. In addition to temporal
instabilities, spatial instabilities have also been studied in a
nonlinear bulk medium with Bragg gratings in the presence of
Kerr-type nonlinearity [11]. The impact of non-Kerr nonlin-
earity in terms of MI has also been studied in an FBG where
the system possesses cubic-quintic nonlinearities [21]. At this
juncture it should be pointed out that in the aforementioned
conventional FBGs, MI in the normal dispersion regime
has threshold conditions [1,7,8]. To overcome this problem,
dynamic grating has been proposed wherein the occurrence of
MI was demonstrated experimentally without any threshold
condition in the normal dispersion regime [12,13]. Very
recently, the role of nonlinearity management in terms of MI
has also been investigated, in Refs. [22] and [23].

So far, for PBG structured materials, dynamic grating has
been the only choice to achieve MI in a normal dispersion
regime with low power without any threshold condition. In
general, from the implementation point of view, it may be
difficult to achieve USPs in the normal dispersion regime of
dynamic FBGs. However, keeping this in mind, we propose
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to use FBGs doped uniformly with two-level resonant atoms,
with which MI can be achieved in a normal dispersion regime
at low power and without any threshold condition. In this work,
we investigate the occurrence of MI for both anomalous and
normal dispersion regimes. Especially, we show that there is no
threshold condition for occurrence of MI in the normal disper-
sion regime. In the detailed analysis, we find that the SIT effect
induces nonconventional sidebands in uniformly doped FBGs.
In addition, we discuss the formation of SIT solitons near the
photonic band gap (PBG) edge. Nonconventional sidebands
induced by the SIT effect in the normal dispersion regime and
the generation of SIT solitons in terms of the resulting MI are
considered to be the main themes of the present paper.

The paper is laid out as follows. In Sec. II, we discuss
the necessary theoretical model to describe the propagation
of cw in FBGs doped uniformaly with two-level atoms. In
Sec. III, we apply linear stability analysis (LSA) to identify MI
conditions near the edges of the PBG in both anomalous and
normal dispersion regimes. In addition, we perform the dint
numerical simulation of nonlinear coupled-mode Maxwell-
Bloch (NLCM-MB) equations and then compare MI gain
spectra produced by the LSA with MI gain spectra generated
by numerical simulation. The next natural step is to discuss
the generation of SIT Bragg solitons in terms of the resulting
MI maximum gain. We analytically discuss the generation of
periodic (cnoidal) waves as well as bright and dark SIT Bragg
solitons near the PBG edges in Sec. IV. We conclude in Sec. V.

II. THEORETICAL MODEL

The dynamical behavior of forward (q+) and backward
(q−) propagation of the modes of an electric field in an FBG
uniformly doped with two-level resonant atoms [25–27] is
governed by the following coupled-mode equations:

i
∂q+
∂z

+ i
∂q+
∂t

+ δq+ + κq−

+ γ (|q+|2 + 2|q−|2)q+ + �P+ = 0, (1a)

−i
∂q−
∂z

+ i
∂q−
∂t

+ δq− + κq+

+ γ (2|q+|2 + |q−|2)q− + �P− = 0, (1b)

where q± and P± are the slowly varying envelopes of the
electric field and the resonant polarization, respectively, z is
the propagation coordinate, t is the local time, δ is the pulse
wave number that detunes from the exact Bragg resonance, κ is
the linear coupling coefficient, γ (=n2ωB/cAeff) is self-phase
modulation, Aeff is the effective core area, � = ωB/(2ncε0),
n is the linear index of refraction, and ε0 is the vacuum per-
mittivity. The Bloch equations for the resonant polarization P

and the population difference W [=(N1 − N2)/ND], induced
by an electromagnetic field Q, are given by [25–27]

∂P

∂t
= i�P − iRWQ, (2a)

∂W

∂t
= i

R

2
(QP ∗ − Q∗P ), (2b)

where � (=ωr − ωB) is the frequency detuning from the
transition frequency of the resonant atoms ωr to the incoming
radiation frequency ωB (=2πc/λB), ND (=N1 + N2) is the

doped density, N1 and N2 are the ground-state and upper-state
population densities of the two-level atoms, respectively, R =
µ/h̄, where µ is the dipole matrix element of the individual
atom and h̄ is Planck’s constant divided by 2π , and λB is the
Bragg wavelength of the grating. In this paper, we consider the
homogeneous broadening energy levels of the resonant atoms.
The resonant polarization P and the population difference W

satisfy the following normalization condition [14,17]:

W 2 + |P | 2 = 1, (3)

which reflects the conservation of probability in the sense that
the total probability of an atom’s being found in either the upper
or the lower levels is equal to unity. The steady-state solution
of Eqs. (2a) and (2b) can be written in the following form:

P = RW

�
Q, (4a)

W = ±
(

1 − |Q|2
2ps

)
, (4b)

where ps = (�/R)2. Here, we have assumed that the
field intensity |Q|2 is sufficiently small compared with ps

(|Q|2 � ps). The steady-state solution of P and W is obtained
so that Eq. (3) is satisfied automatically. Without field-induced
polarization, the two-level system population is not inverted,
hence the lower sign must be chosen in Eq. (4b) [36]. A
general Fourier expansion will lead to an infinite number of
coupled equations. In the spirit of the slowly varying envelope
approximation, we obtain a closed set of equations by keeping
only the leading terms, namely [25]:

Q = q+eikBz + q−e−ikBz, (5a)

P = P+eikBz + P−e−ikBz, (5b)

W = W0 + W1e
2ikBz + W ∗

1 e−2ikBz. (5c)

Upon substituting Eq. (5) into Eq. (2), we obtain the following
coupled equations [24,25]:

∂P+
∂t

− i�P+ + iR(q+W0 + q−W1) = 0, (6a)

∂P−
∂t

− i�P− + iR(q−W0 + q+W ∗
1 ) = 0, (6b)

∂W0

∂t
− i

R

2
(q+P ∗

+ + q−P ∗
− − q∗

+P+ − q∗
−P−) = 0, (6c)

∂W1

∂t
− i

R

2
(q+P ∗

− − q∗
−P+) = 0. (6d)

The steady-state solutions of Eqs. (6a)–(6d) can be found
through Eq. (4). Equations (1) and (6) are the governing
equations, from which we obtain the necessary conditions
for the occurrence of MI in both normal and anomalous
dispersion regimes.

III. LINEAR STABILITY ANALYSIS

In this section, we use LSA to investigate the occurrence of
MI. Thus, the prime aim of LSA is to perturb the cw solution.
Then we analyze whether this small perturbation grows or
decays with propagation. It is obvious that LSA is valid as long
as the perturbation amplitude remains low compared with the
cw beam amplitude. The steady-state solutions of Eqs. (1) and
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(6) can be written as follows:

q± = U±eiφz, (7a)

P± = ϒ±U±eiφz, (7b)

Wj = sj , (7c)

where j = 0,1, U+ =
√

p0/(1 + f 2), U− =√
p0/(1 + f 2) f , ϒ± = (R/�)s±, s0 = −[1 − (p0/2ps)],

s1 = f U 2
+/(2ps), s+ = −{1 − [(1 + 2f 2)s1/f ]}, s− =

−{1 − [(2 + f 2)s1/f ]}, and p0 is the total power. Here,
f = q−/q+ can be positive or negative. For values of |f | < 1,
the backward wave dominates. On substituting Eqs. (7)
into Eqs. (1a) and (1b), we obtain the following nonlinear
dispersion relation:

φ = − κ

2f
(1 − f 2) − 1

2
(1 − f 2)H + 1

2
(ϒ+ − ϒ−)�, (8a)

δ = − κ

2f
(1 + f 2) − 3

2
γp0 − 1

2
(ϒ+ + ϒ−)�, (8b)

where H ≡ γp0/(1 + f 2) is an effective nonlinear parameter.
Here, we ensure that the preceding nonlinear dispersion
relation leads to the conventional FBG case if we switch off
the SIT effect (� = 0) [1]. In addition, the resulting nonlinear
dispersion relation reduces to the linear dispersion relation
when the nonlinear effect is turned off (p0 = 0). Now, through
this linear dispersion relation, we explore the role of dopants,
that is, SIT effect by means of dispersion curve. Figures 1(a)
and 1(b) describe the linear (p0 = 0) dispersion curves for
FBG uniformly doped with two-level resonant atoms and con-
ventional FBG. In Figs. 1(a) and 1(b), dotted, dashed, and dot-
dashed lines illustrate the dispersion curves of uniformly doped
FBG for � = ±1012 Hz, � = ±1013 Hz, and � = ±1014 Hz,
respectively, and the solid lines represent the dispersion curves
of the conventional FBG [for � = 0 in Eq. (8)]. For compar-
atively lower values of the atomic detuning parameter �, the
dispersion curves do undergo shift-up [Fig. 1(a)] or shift-down
[Fig. 1(b)], depending on the negative or positive sign of �.
For instance, for � = ± 1014 Hz, the linear dispersion curves
[dot-dashed lines in Figs. 1(a) and 1(b)] nearly close to the
conventional FBG. From Figs. 1(a) and 1(b), it is very clear
that the characteristics of the linear dispersion curves have been
dramatically changed by the atomic detuning frequency �. The
detuning parameter δ of the cw beam from the Bragg frequency
determines the values of f , which in turn fixes the values of
φ in Eqs. (8a) and (8b). The group velocity (VG) inside the
grating also depends on f and is given by VG = dδ/dq = (1 −
f 2)/(1 + f 2). The upper (f < 0) and lower (f > 0) branches
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FIG. 1. Linear dispersion relation curve for κ = 20 cm−1, � = 0
(solid line), � = ±1012 Hz (dotted line), � = ±1013 Hz (dashed
line), � = ±1014 Hz (dot-dashed line), and p0 = 0. The solid
curve represents the linear dispersion relation for conventional FBG
(� = 0).

of the dispersion curve represent the anomalous and normal
dispersion regimes, respectively. Two edges of the PBG occur
at f = ±1.

A. Modulational instability gain spectra

The LSA of steady-state solutions can be examined by
introducing perturbed fields of the following form:

q± = [U± + a± cos(Kz + t)

+ ib± sin(Kz + t)]eiφz, (9a)
P± = ϒ±[U± + c± cos(Kz + t)

+ id± sin(Kz + t)]eiφz, (9b)
W0 = s0[1 + w0 cos(Kz + t)], (9c)

W1 = s1[1 + w+ cos(Kz + t) + iw− sin(Kz + t)], (9d)

where a±, b±, c±, d±, w0, and w± are real amplitudes of
infinitesimal perturbations, K is the perturbed wave number,
and  is the respective eigenvalue. Substituting expressions
(9a)–(9d) into Eqs. (1)–(6) and performing the linearization,
we obtain the 11 nontrivial equations for the perturbed fields
a±, b±, c±, d±, w0, and w±, which can be written in an 11 ×
11 matrix form. This set has a nontrivial solution only when the
11 × 11 determinants formed by the coefficient matrix vanish
as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m11 0 0 0 0 0 m17 −κ m19 0 0
0 m22 0 0 0 0 κ m28 0 m210 0
0 0 m33 0 0 0 s0 −s1 s+ 0 m311
0 0 0 m44 0 0 −s1 s0 0 s− 0
0 0 0 0 m55 0 m57 m58 m59 m510 0
0 0 0 0 0 m66 m67 m68 m69 m610 0

m71 m72 m73 0 0 0 m77 0 0 0 0
m81 m82 0 m84 0 0 0 m88 0 0 0
−s0 s1 −s+ 0 0 m96 0 0 m99 0 0
s1 −s0 0 −s− 0 0 0 0 0 m1010 0

m111 m112 m113 m114 0 0 0 0 0 0 m1111

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (10)

053802-3



B. KALITHASAN et al. PHYSICAL REVIEW A 81, 053802 (2010)

where

m11 = −m77 ≡ K − , m17 ≡ f κ + �Rs+
�

,

m19 = −m73 ≡ −�Rs+
�

,

m22 = m88 ≡ K + , m28 ≡ − κ

f
− �Rs−

�
,

m210 = m84 ≡ �Rs−
�

,

m33 = −m99 ≡ s+
�

, m311 = −m96 ≡ −s1U−,

m44 = m1010 ≡ s−
�

,

m55 ≡ s0, m57 = −m59 ≡ −R2 U+s1

�
,

m58 = m510 ≡ −R2 U−s+
�

,

m66 = m1111 ≡ s1,

m67 = −m610

f
= −m111 = −m114

f
≡ −R2 U−s−

2�
,

m68 = −f m69 = m112 = f m113 ≡ R2 U+s+
2�

,

m71 ≡ 2H − f κ − �Rs+
�

,

m72 = m81 ≡ κ + 4f H, m82 ≡ 2Hf 2 − κ

f
− �Rs−

�
.

It is well established that MI occurs when there is an
exponential growth rate (gain) in the amplitude of the perturbed
wave, which in turn implies the existence of a nonvanishing
imaginary part in the complex parameter . For the case
of FBG uniformly doped with two-level resonant atoms, MI
occurs when there is exponential growth in the amplitude of the
perturbed wave, which implies the existence of a nonvanishing
largest imaginary part in the complex parameter G(K) ≡ .
For ϒ± = 0, the eigenvalue in Eq. (10) is tantamount to that
found in [1] and [7].

Here, we aim to display the MI gain spectra, as functions of
K , �, f , and H , for both the anomalous (upper branch for f <

0) and the normal (lower branch for f > 0) dispersion regimes.
We examine here various kinds of behaviors that arise when
the sign and the magnitude of the atomic resonant detuning pa-
rameter � are varied. For demonstration purposes, we consider
the following physical parameters: γ = 0.002 W−1 m−1, κ =
20 cm−1, λB = 1.55 × 10−6 m, ε0 = 8.854 × 10−12 F m−1,
µ = 1.4 × 10−32 Cm, h̄ = 1.0545 × 10−34 J s, and ND =
8 × 1024 m−3. Here, we carry out the MI analysis for different
values of the atomic resonant detuning parameter, � = ±1012,
±1013, and ±1014 Hz, as we are interested in investigating
the influence of the atomic resonant detuning parameter.
Figures 2(a)–2(d) represent the MI gain spectra for both the
PBG edge and near the PBG edge for various values � in the
range ±1012 to ±1014 Hz. Figures 2(a) and 2(c) illustrate
the MI gain spectra at the PBG edge and near the PBG
edge, respectively, for a negative sign of the atomic resonant
detuning parameter �, with various values (−1012 to −1014

Hz), whereas Figs. 2(b) and 2(d) show the MI gain spectra
for a positive sign of � (1012 to 1014 Hz). The solid lines in
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FIG. 2. MI gain spectrum obtained from the LSA for the anoma-
lous dispersion regime (upper branch) for κ = 20 cm−1, H = 0.5κ ,
ϒ± = 0 (solid line), � = ±1012 Hz (dotted line), � = ±1013 Hz
(dashed line), and � = ±1014 Hz (dot-dashed line). The solid line
represents the MI gain spectrum of conventional FBG (ϒ± = 0).

Fig. 2 represent the MI gain spectra for the conventional FBG
(� = 0). When � = ±1014 Hz (dot-dashed lines), the MI gain
spectra coincide with conventional FBG. From this physical
process, we infer that the system ceases to hold the effect of
SIT for relatively higher values of the atomic resonant detuning
parameter, � = ±1014 Hz. Thus, the impact can be realized
only for relatively lower values of the atomic resonant detuning
parameter (|�| < 1014). In Figs. 2(a) and 2(c), dotted lines
illustrate that the corresponding optimum wave number (the
wave number at which maximum gain occurs) and the peak
gain (maximum gain) are relatively large for � = −1012 Hz.
However, increasing the magnitude of the negative values of
� leads to a shrinkage of the MI gain spectra, whereas both
the peak gain and the bandwidth decrease rapidly for � < 0.
From Figs. 2(b) and 2(d), it is obvious that both the MI gain and
the bandwidth of the MI gain spectra increase with the atomic
resonant detuning parameter, � (>1012 Hz). For � = 1012

Hz (dotted lines), all the wave numbers with a magnitude
below a certain values are stable, while all wave numbers with
a larger magnitude are unstable, which is in great contrast
with the conventional FBG [1,7,8]. Another important point
is that the MI bandwidth becomes infinite for � = 1012 Hz.
Here, we infer that the bandwidth is infinite for � � 1012 Hz,
whereas the bandwidth is finite when � > 1012 Hz. An infinite
bandwidth is not the signature of an ordinary MI process. In
other words, such a gain spectrum with infinite bandwidth
corresponds, in practice, to a system with a reduced ability to
generate the MI process. The dashed lines depict the MI gain
spectra for � = ±1013 Hz. In addition to the two-dimensional
(2D) plots in Fig. 2, the 3D plots in Figs. 3(a) and 3(b) represent
the MI sidebands for a low power (H < κ). The peak gain and
the bandwidth of the MI sidebands increase as the effective
nonlinear parameter H increases. Figures 2 and 3 clearly show
that the peak gain is relatively higher at the top of the PBG
(f = −1) than near the PBG edge (f < 0).

Now we turn to the MI process in the normal dispersion
(lower branch) regime. The purpose of this paper is to
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FIG. 3. MI gain spectrum obtained from the LSA for the
anomalous dispersion regime [(a) f = −1 and (b) f = −0.5] for
κ = 20 cm−1 and � = −1012 Hz.

overcome the finite threshold conditions for the conventional
FBG MI process in the normal dispersion regime. The
conventional FGB MI process has threshold conditions in the
normal dispersion regime as follows [7,8]. (i) The instability
required a finite threshold condition, H > κ/2, where H is
the effective nonlinear parameter. Thus, if the input power
is sufficiently low, then the continuous wave signal is stable
against small perturbations: only when the power exceeds
threshold condition (H > κ/2) is the signal unstable. (ii) For
f > 0.447, all the wave numbers with a magnitude below
a certain value are stable, while all wave numbers with a
larger magnitude are unstable. In this case, wave numbers
are infinite. Most of the unstable wave numbers are finite at
f > 0.447. Figures 4 and 5 represent the occurrence of MI
in the normal dispersion regime. Also, the resulting MI gain
spectra strongly depend on the atomic detuning parameter �

in the normal dispersion regime (Fig. 4). Figures 4(a)–4(d)
illustrate the following important features: One can easily see
that the MI gain spectra are close to the conventional FBG
for larger magnitude values of the atomic resonant detuning
parameter, |�| > 1012 Hz. From this physical process, we
conclude that the uniformly doped FBG system ceases to
hold the effect of SIT for � = ±1013 Hz (dashed lines) and
� = ±1014 Hz (dot-dashed lines). In this case, we find that
all wave numbers with a magnitude below a certain value
are stable, while all wave numbers of a larger magnitude
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FIG. 4. MI gain spectrum obtained from the LSA for the normal
dispersion regime (lower branch) for κ = 20 cm−1, H = 1.5κ , ϒ± =
0 (solid line), � = ±1012 Hz (dotted line), � = ±1013 Hz (dashed
line), and � = ±1014 Hz (dot-dashed line). The solid line represents
the MI gain spectrum of conventional FBG (ϒ± = 0).
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FIG. 5. MI gain spectrum obtained from the LSA for the normal
dispersion regime [(a) f = 1 and (b) f = 0.5]. The physical
parameters are κ = 20 cm−1 and � = −1012 Hz.

are unstable. This behavior confirms the similarity to the
conventional FBG where the MI process has a finite threshold
condition [1,7,8]. The role of the SIT effect can be realized
only close to resonance for � = ±1012 Hz (dotted lines). In
the normal dispersion regime, the SIT effect can be nullified
by large magnitude values of the atomic resonant detuning
parameter (|�| > 1012 Hz), which means that uniformly doped
FBG acts as a conventional FBG. In the normal dispersion
regime, the atomic resonant detuning parameter � can induce
nonconventional MI sidebands where there is no threshold
condition [dotted lines in Figs. 4(a) and 4(c)]. Here, we observe
that all wave numbers are unstable with finite wave number and
the instability exists even at an offset wave number (K = 0). In
general, the nonconventional MI processes have a substantial
advantage over the ordinary conventional MI process, that is,
they offer more possibilities to obtain a large MI bandwidth.

Figures 5(a) and 5(b) show that the MI gain spectra can
occur without any threshold conditions such as low power
(H < κ) and all wave numbers are unstable in the normal
dispersion regime. The peak value of the gain spectrum grows
and the sidebands broaden as the effective nonlinear parameter
H increases, which is represented in Fig. 5. From this physical
process, the MI gain spectra depend strongly on the input
power. Figures 5(a) and 5(b) represent the MI gain spectra
at the bottom (normal dispersion regime) of the PBG edge
(f = 1) and near the PBG edge (f = 0.5), respectively.

Near the resonance, � = −1012 Hz [dotted lines in
Figs. 4(a), 4(c), and 5], we find nonconventional MI processes
in the lower branch (normal dispersion regime) of uniformly
doped FBG, which are induced by the atomic detuning
parameter �. In this case, the MI process differs qualitatively
from conventional FBG in two respects. The first of these is that
this MI process has no threshold, which in turn implies that the
continuous wave is unstable. The second major difference is
the shape of the MI gain spectrum. In the lower branch, all wave
numbers with all values are unstable, and instability can occur
at a finite wave number. Thus, such kind of abnormal behavior
should be contrasted with the conventional FBG where the MI
process has a threshold.

B. Comparison with modulational instability spectra obtained
from direct simulations

In the previous section, MI was analyzed by means of LSA.
Here, we aim to compare the predictions with direct simulation
of the NLCM-MB equations, adding small initial perturbations
to cw states, for the cases of both the anomalous and the
normal dispersion regimes. It is shown by the typical examples
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FIG. 6. MI gain spectra (a1, b1) obtained from the LSA for
the anomalous dispersion regime and (a2, b2) restored from direct
simulations of the NLCM-MB equations. The physical parameters
are κ = 20 cm−1, H = 0.5κ , and � = −1012 Hz.

displayed in Figs. 6 and 7 that the gain spectra, especially
the optimum wave number and the peak gain, as predicted by
the LSA, agree with their counterparts that can be extracted
from direct numerical results (Table I). The stability of the
steady-state solution given by Eq. (7) was tested by adding
small initial perturbations to it. Simulations of NLCM-MB
equations with such initial conditions were performed (using
Matlab) by means of the split-step Fourier method. The MI
gain was extracted from results of simulations which show
the growth of the intensity fluctuations seeded by the small
initial perturbations.

IV. GENERATION OF SELF-INDUCED TRANSPARENCY
SOLITONS NEAR PHOTONIC BAND

GAP EDGES ( f = ±1)

Having discussed the MI conditions, we proceed to find
the optimum gain with a minimum power, which will be
utilized to discuss the generation of SIT solitons near the
PBG of uniformly doped FBG. Gap and Bragg solitons have

TABLE I. Optimum wave number (Kopt) and peak gain (Gpeak)
obtained from Figs. 6 and 7.

Kopt (cm−1) Gpeak (dB/cm)

S. no. f LSA NLCM-MB LSA NLCM-MB

1 −1.0 48.00 48.00 34.05 34.05
2 −0.5 47.00 47.00 23.74 23.74
3 0.5 15.00 15.00 15.14 15.14
4 1.0 06.75 06.75 07.57 07.57
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FIG. 7. MI gain spectra (a1, b1) obtained from the LSA for
the normal dispersion regime and (a2, b2) restored from direct
simulations of the NLCM-MB equations. The physical parameters
are κ = 20 cm−1, H = 0.5κ , and � = −1012 Hz.

been extensively investigated by many research groups in
FBG [28–31] and investigations of these exciting entities
are still alive. In uniformly doped FBGs, the grating-induced
dispersion balances with both the material Kerr nonlinearity
and the resonant effects determined by the Bloch equations.
The resulting solitons are known as SIT Bragg solitons,
which are essentially distortionless optical pulses. Because
of the balance based on the pure grating dispersion, the
doping concentration and the atomic detuning frequency can
dramatically change the characteristics of a SIT Bragg soliton
when the carrier frequency is close to the original edges
of the band gap. Distortionless SIT Bragg soliton pulses
have been investigated in a uniformly doped nonlinear PBG
structure [25–27]. The authors found both the gap SIT solitons
in a periodic array of thin layers of resonant two-level atoms
separated by half-wavelength nonabsorbing dielectric layers,
that is, a resonantly absorbing Bragg reflector [32–36].

Mantsyzov and Kuzmin [37] studied nonlinear pulse
propagation in a discrete 1D medium made of two-level atoms.
Kozhekin and Kurizkai [33] extended the model just discussed
to a continuous medium in which thin layers of resonant atoms
were placed at regular intervals inside the periodic dielectric
medium. Aközbek and John [25] investigated the properties
of SIT solitary waves in a 1D nonlinear periodic structure
doped uniformly with resonant two-level atoms. In addition,
they reported SIT gap solitons whose central frequency was
detuned near the PBG edge. It has been mentioned that
these SIT solitons could be useful in optical communications
and optical computing since the dopant density and atomic
detuning frequency dramatically change the characteristics of

053802-6



GENERATION OF SELF-INDUCED-TRANSPARENCY GAP . . . PHYSICAL REVIEW A 81, 053802 (2010)

SIT gap solitons. Recently, Tseng and Chi [26] investigated
the existence of a moving SIT pulse train in a uniformly
doped PBG structure. These authors reduced the NLCM-MB
equations into equivalent NLCM equations called effective
NLCM equations. They solved the effective NLCM equa-
tions and investigated the aforementioned pulse-train soliton
solutions in a uniformly doped nonlinear periodic structure.
Following similar work, they also discussed the coexistence
of a SIT soliton and a Bragg soliton in a nonlinear PBG
medium doped uniformly with inhomogeneously broadening
two-level atoms. For this purpose, they derived the effective
nonlinear Schrödinger equation (NLS) equation from the
effective NLCM equations to discuss the SIT Bragg soliton
near the PBG structure.

In this section, we discuss how to generate SIT solitons
near a PBG edge. If the grating parameters are nearly constant
over the spectral bandwidth of the pulse and the central
frequency of the incident pulse is close to but outside the
grating stop band, NLCM-MB equations can be reduced to
nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) equations
having the following form [25,26]:

i
∂q

∂t
− β

g

2

2

∂2q

∂z2
+ γg|q|2q + �P = 0, (11a)

∂P

∂t
− i�P + iRqW = 0, (11b)

∂W

∂t
− i

3R

4
(qP ∗ − q∗P ) = 0, (11c)

where β
g

2 = 1/κ and γg = 3γ . To start with, we consider the
general solution of the form q(z,t) = A(χ )ei(kz−ωt), P (z,t) =
[u(χ ) + iv(χ )]ei(kz−ωt), and W (z,t) = η(χ ), where χ ≡ t −
(z/V ), V is the soliton velocity, k the wave number, and ω the
frequency of the solution sought. Upon substituting this ansatz
into Eqs. (11a)–(11c) and separating the real and imaginary
parts, we obtain

−
(

β
g

2

2V 2

)
d 2A

dχ2
+ γgA

3 +
(

β
g

2 k2

2
+ ω

)
A + �u = 0,

(12a)(
1 + kβ

g

2

V

)
dA

dχ
+ �v = 0, (12b)

du

dχ
+ (� + ω)v = 0, (12c)

dv

dχ
− (� + ω)u + RAη = 0, (12d)

dη

dχ
−

(
3

2

)
RAv = 0. (12e)

Further, substituting v from Eq. (12b) into Eq. (12e), we can
eliminate the population variable,

η = −1 −
(

3R
(
1 + kβ

g

2

/
V

)
4�

)
A2 (13)

and inserting u, v, and η from Eqs. (12a), (12b), and (13) into
Eqs. (12c) and (12d), we arrive at a second-order equation:

d 2A

dχ2
= α11A + α12A

3, (14a)

d 2A

dχ2
= α21A − α22A

3, (14b)

where

α11 ≡ 2V 2(� + 2ω) + V k[V k + 2(� + ω)]βg

2

β
g

2

,

α12 ≡ 2γgV
2

β
g

2

,

α21 ≡ V 2
[
(� + ω)

(
β

g

2 k2 + 2ω
) − 2R�

]
2V 2 + (2kV + � + ω)βg

2

,

α22 ≡ V
[
3R2

(
V + kβ

g

2

) − 4V (� + ω)γg

]
2[2V 2 + (2kV + � + ω)]βg

2

.

We can derive the solitary-wave solutions from Eqs. (14a)
and (14b). It is clear that Eqs. (14a) and (14b) can be
equivalent only under the following conditions: α11 = α21 and
α21 = −α22. The integration of Eq. (14b) produces an equation
for the traveling wave,(

dA

dχ

)2

= α21A
2 − 1

2
α22A

4 + 2C, (15)

where C is an arbitrary integration constant. Equation (15)
can be solved in terms of the Jacobi elliptic functions. In
particular, the choice of C = m2(1 − m2)α2

21/(2m2 − 1)2α22

yields a solution for cnoidal waves (written in terms of elliptic
functions cn, sn, and dn, which depend on modulus m):

q(z,t) = √
p0 cn

[
t − (z/V )

T0
,m

]
ei(kz−ωt),

P (z,t) =
√

p0

�

(
�1 cn

[
t − (z/V )

T0
,m

]

− �2cn3

[
t − (z/V )

T0
,m

]
(16)

− i

(
V + kβ

g

2

V T0

)
sn

[
t − (z/V )

T0
,m

]

× dn

[
t − (z/V )

T0
,m

])
ei(kz−ωt),

W (z,t) = −1 −
(

3Rp0 (V + kβ2)

2V �

)
cn2

[
t − (z/V )

T0
,m

]
,

where we have defined

T0 ≡
√

2m2 − 1

α21
,

�1 ≡ (m2 + m − 1)βg

2

2V 2T 2
0

− β
g

2

2
k2 + ω,

�2 ≡ γgp0 + m(m + 1)βg

2

2T 2
0 V 2

,

and the elliptic modulus is implicitly determined by power p0

through the following relation:

p0 ≡ 2m2α21

(2m2 − 1)α22
.
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FIG. 8. (a) Intensity profile of the cn (m = 0.4) solution and
(b) intensity profile of the bright (m = 1) SIT soliton solution, for
f = −1, p0 = 2 W, k = 12 m−1, ω = 0.7 Hz, and V = 0.4 m s−1.

Parameter T0, which determines the period of the cnoidal-wave
solution, can be expressed in terms of p0 as

T0 =
√

2m2

p0α22
. (17)

Figure 8(a) displays a typical example of the local power
distribution corresponding to the cn solution in the anomalous
(top PBG edge) dispersion regime. Further, Fig. 8(b) shows the
profile of the bright SIT gap soliton, which is obtained from
solution (16) in the limit of m = 1. Actually, these soliton
solutions were reported in Refs. [14] and [25]. Similarly, if
the integration constant is chosen to be C = −(mα21)2/(m2 +
1)2α22, Eq. (15) generates another exact periodic solution in
terms of function sn:

q(z,t) = √
p0 sn

[
t − (z/V )

T0
,m

]
ei(kz−ωt),

P (z,t) = −
√

p0

�

(
σ1 sn

[
t − (z/V )

T0
,m

]

+ σ2sn3

[
t − (z/V )

T0
,m

]
(18)

+ i

(
V + kβ

g

2

V T0

)
cn

[
t − (z/V )

T0
,m

]

× dn

[
t − (z/V )

T0
,m

] )
ei(kz−ωt),

W (z,t) = −1 −
(

3Rp0
(
V + kβ

g

2

)
2V �

)
sn2

[
t − (z/V )

T0
,m

]
,

where the following relations should be imposed on the
parameters:

p0 ≡ 2m2α21

(m2 + 1)α22
, T0 ≡

√
m2 + 1

α21
,

σ1 ≡ (m + 1)βg

2

2V 2T 2
0

+ β
g

2

2
k2 + 2ω,

σ2 ≡ γgp0 − m(m + 1)βg

2

2V 2T 2
0

.

The intensity distribution in the sn solution, in the
anomalous dispersion regime, is displayed in Fig. 9(a). In
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FIG. 9. (a) Intensity profile of the sn (m = 0.4) solution and
(b) intensity profile of the dark (m = 1) SIT soliton solution, for
f = −1, p0 = 2 W, k = 12 m−1, ω = 0.7 Hz, and V = 0.4 m s−1.

addition, in Fig. 9(b) we show the profile of the limit solution
with m = 1, which corresponds to a dark SIT gap soliton in
the anomalous dispersion regime. Similarly, we can generate
the cnoidal solutions, as well as their limit forms, for m = 1,
which corresponds to the bright and dark SIT gap solitons in
the case of the normal (bottom PBG edge) dispersion (βg

2 > 0)
regime. Our results describe that both bright and dark SIT gap
solitons can be generated in the cases of the anomalous and
normal dispersion regimes [14]. This should be contrasted
with the well-known situations in Ref. [38], where bright
and dark SIT gap solitons exist, solely with the anomalous
and normal dispersion regimes. On the contrary, it is known
that bright and dark solitons coexist in the model based
on a periodic array of narrow layers of resonant two-level
atoms, which simultaneously plays the role of the Bragg
reflector [34,35]. It is noteworthy that a Painlevé analysis
could not reveal the existence of dark solitons in the NLS-MB
system [39], while the present results make it possible to find
them in both cases, normal and anomalous dispersion.

From an experimental viewpoint, we have calculated impor-
tant and interesting physical parameters such as pulse power
(p0) and pulse width (T0). Based on the arguments, we believe
that SIT gap solitons could be generated experimentally
in FBG uniformly doped with resonant two-level atoms.
Experimental observation of SIT gap solitons in uniformly
doped FBG is an attractive subject, which could lead to
practical expansions of gap solitons in the vast area of
light-wave systems. In contrast to the fiber SIT soliton, SIT
gap solitons can be realized experimentally since uniformly
doped FBGs have a length of only a few centimeters, owing
to the large dispersion; this is long enough for generating SIT
gap solitons.

V. CONCLUSION

By means of MI analysis, we have identified the MI
conditions required to generate USPs in uniformly doped
two-level FBG systems. It should be pointed out that there
is a threshold condition for the occurrence of MI in the normal
dispersion regime of a conventional FBG, whereas in the case
of dynamic grating the same thing can be achieved without
any threshold condition. However, this is difficult to realize
practically. Keeping this in mind, we proposed and identified
MI conditions, in the normal dispersion regime, which do not
require any power threshold condition. Thus it is quite possible
to achieve MI in the normal dispersion regime of a uniformly
doped FBG, which is in contrast to conventional FBG. We have
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also performed a numerical analysis to solve the governing
NLCM-MB equations. The numerical results of the prediction
of the optimum modulation wave number and optimum gain
agree well with those of the LSA. In addition, the generation
of periodic and exact (bright and dark) SIT gap solitary waves
has been investigated at the PBG edges (f = ±1). We have
also derived a relation between the total input power and the
pulse width, which demonstrates the possibility of generating
SIT gap solitary waves.
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