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Critical entropies for magnetic ordering in bosonic mixtures on a lattice
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We perform a numeric study (Worm algorithm Monte Carlo simulations) of ultracold two-component bosons
in two- and three-dimensional optical lattices. At strong enough interactions and low enough temperatures the
system features magnetic ordering. We compute critical temperatures and entropies for the disappearance of the
Ising antiferromagnetic and the xy-ferromagnetic order and find that the largest possible entropies per particle are
∼0.5kB . We also estimate (optimistically) the experimental hold times required to reach equilibrium magnetic
states to be on a scale of seconds. Low critical entropies and long hold times render the experimental observations
of magnetic phases challenging and call for increased control over heating sources.

DOI: 10.1103/PhysRevA.81.053622 PACS number(s): 67.85.Hj, 67.85.Fg

I. INTRODUCTION

At the moment, one of the prominent focuses and major
challenges of experiments with ultracold gases is the realiza-
tion of configurations which can be used to study quantum
magnetism [1,2]. Though interesting and fundamental on its
own, better understanding of (frustrated) magnetic systems is
further motivated by its relevance to high-Tc superconductivity
and applications to quantum-information processing. Direct
studies of condensed matter spin systems experimentally are
limited by the lack of control over interactions, geometry,
frustration, and contaminating effects of other degrees of
freedom. A new approach consists of using ultracold atoms in
optical lattices (OL) provided that the system is driven toward
regimes where it is possible to map the corresponding (Bose-)
Hubbard Hamiltonian to spin models.

Striking advances in experimental techniques (e.g., high
controllability and tunability of Hamiltonian parameters) and,
more recently, single site and single-particle imaging [3–6],
brought forward the idea, originally proposed by Feynmann,
of quantum simulation or emulation [7]. In the last decade, a
considerable amount of theoretical and experimental research
has been devoted to the objective of using ultracold lattice
bosons and fermions to address many outstanding condensed
matter problems via Hamiltonian modeling. Perhaps the
biggest remaining experimental challenge consists of reaching
low enough temperatures or entropies for the observation
of ordered magnetic states. Theoretical insight on optimal
conditions for such observations is greatly needed. While
Mott-insulator (MI) phases of single-component bosonic
systems have been observed experimentally [8–10], and
finite-temperature effects have been extensively investigated
recently [11–15], the multi-component case is still a work
in progress [16,17] and, as of today, accurate results are
lacking.

In the present work, we address the issue for the case
of two-component bosonic systems. We obtain such impor-
tant numbers as critical temperatures and, more importantly
entropies, below which magnetic phases can be observed
experimentally. With these numbers in hand, we provide

rough estimates of hold times required for observing thermally
equilibrated ordered magnetic states.

We consider a homogeneous system of two-component
bosons in a cubic (square) lattice with repulsive inter species
interaction and half-integer filling of each component. This
system can be realized by loading OL with two different atomic
species (see, e.g., experiments at LENS with rubidium and
potassium mixtures [18,19]), or the same atomic species in two
different internal energy states (see, e.g., recent experiments
done at MIT [15] and experiments with state-dependent
OL’s done at Stony Brook University [20]). The inter- and
intraspecies interaction strengths, Uab ≡ U , Uaa , and Ubb

can be tuned via Feshbach resonance or by changing the
Wannier functions overlap (in the presence of state-dependent
lattices). If the intraspecies interactions Uaa and Ubb are made
much larger than any other energy scale, and the temperature
is low enough, the system is accurately described by the
two-component hard-core Bose-Hubbard Hamiltonian:

H = −ta
∑
〈ij〉

a
†
i aj − tb

∑
〈ij〉

b
†
i bj + U

∑
i

n
(a)
i n

(b)
i . (1)

Here a
†
i (ai),b

†
i (bi) are bosonic creation (annihilation) opera-

tors obeying the hard-core constraint a
†2
i = b

†2
i = 0, and ta ,tb

are hopping matrix elements for two species of bosons (A and
B), respectively; the symbol 〈· · ·〉 imposes the nearest-neighbor
constraint on the summation over site subscripts; n

(a)
i = a

†
i ai

and n
(b)
i = b

†
i bi .

Model (1) displays a very rich ground-state phase diagram
[21–23] (see Fig. 1). For strong enough interactions, the system
is incompressible in the particle-number sector (i.e., it is an
MI). The remaining degree of freedom describing the boson
type on a given site can be mapped onto the effective iso-spin
variable [21,22,24] and gives rise to two possible MI states: a
double checkerboard (2CB) solid phase, equivalent to the Ising
antiferromagnet, and a super-counter-fluid (SCF), equivalent
to a planar ferromagnet in the iso-spin terminology. For large
enough hoppings the MI state undergoes a transition to a
double-superfluid state (2SF). Finally, as it has been shown
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FIG. 1. (Color online) Phase diagram of model (1) on a square
lattice and half-integer filling factor of each component (z is the
coordination number). The 2CB-SCF first-order transition is repre-
sented by circles, the SCF-2SF second-order transition by squares, the
2CB-2SF first-order transition by stars, the 2CB-(CB + SF) second
order transition by diamonds, and the (CB + SF)-2SF first-order
transition by up triangles. Down triangles are benchmark points for
the disappearance of magnetic order in the cubic lattice. Lines are to
guide an eye.

recently [23], for strong asymmetry between the hopping
amplitudes and relatively weak interspecies interaction a
solid phase in the heavy component [25] is stabilized via
a mechanism of inter-site effective interactions mediated by
the (light) superfluid component. In what follows we will
focus on the magnetic states, namely the Ising antiferromagnet
and the (xy-)ferromagnet. We present the first precise results,
based on path integral Monte Carlo (PIMC) simulations by the
Worm algorithm [26], for transition lines to magnetic phases
in two and three dimensions (2D and 3D) at zero and finite
temperature, and discuss experimental parameters required for
reaching them.

II. GROUND STATE

We begin with results for the ground state. In Fig. 1 we show
the complete zero-temperature phase diagram of model (1) for
the 2D system calculated in Ref. [23]. We also sketch (dashed
line) the transition line for the disappearance of magnetic
order for the 3D system by computing benchmark transition
points (down triangles) for the strongly anisotropic and
isotropic limits. These points correspond to the disappearance
of the insulating Ising and the (xy-)ferromagnetic phases,
respectively. While, as expected, the 3D case is better captured
by the mean-field theory [22,23], the discrepancy between
mean-field and Monte Carlo results is still sizable: ∼50%.

These results provide quantitative guidance for experi-
mentally achieving the regime of quantum magnetism. In
experiments with two different species this can be done
by using Feshbach resonances [18] or by loading species-
dependent lattices in order to reach the desired ta,b/U value;
in the case of the same species but different internal states
one can load state-dependent lattices and tune the interspecies
interaction by changing the overlap of Wannier functions of
the two components.

III. FINITE-TEMPERATURE RESULTS

Turning to the issue of reaching magnetic phases in realistic
experimental setups—with an adiabatic protocol of turning on
the optical lattice—we look for highest possible values of the
critical entropy for the appearance of magnetically ordered
states. The critical values of temperature come as a natural
“by-product” of simulations. In what follows we use tb � ta
as the energy unit.

A. Critical temperatures

We start with the Ising antiferromagnet-to-normal transi-
tion. It belongs to the d-dimensional Ising universality class,
the order parameter being the staggered magnetization along
the z axis or, equivalently, in bosonic language, the structure
factor (which is the square of the order parameter):

S
(a,b)
K =

∑
r,r′

exp[iK·(r − r′)]

〈
n

(a)
r n

(b)
r′

〉
N (a)N (b)

, (2)

with K the reciprocal-lattice vector of the CB solid, that is,
K = (π,π ) in 2D and K = (π,π,π ) in 3D, n

(a,b)
r the filling

factor at the site r, and N (a,b) the total number of particles A,
B. In the vicinity of the transition point, the structure factor
scales as

SK(τ,L) = ξ− 2β

ν f (ξ/L) = L− 2β

ν g(τL
1
ν ) , (3)

where ξ is the correlation length, τ = (T − Tc)/tb is the
reduced temperature, L is the system size, assumed to be large
enough to neglect higher-order corrections to the universal
scaling, f (x) and g(x) are universal scaling functions, and β

and ν are the critical exponent for the order parameter and
correlation length, respectively. For the 2D case 2β/ν = 1/4,
and for the 3D case 2β/ν = 1.0366(8) [27]. At the critical
point, the quantity SKL2β/ν is size independent, provided L

is appropriately large, and curves of different L’s intersect.
Figure 2 shows an example of the intersection for the case of
a 2D system, with parameters ta/tb = 0.285 and U/tb = 5.7,
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FIG. 2. (Color online) Finite-size scaling for the structure factor
in the 2D system (see text) for ta/tb = 0.285, U/tb = 5.7, and system
sizes L = 8,16,20,24,30. The critical temperature can be read from
the intersection of curves corresponding to different L’s. Lines are a
guide to the eye.
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FIG. 3. (Color online) Critical temperature for the Ising state
versus ta/U in the 2D system at fixed 2ztb/U = 0.1 and 0.2, squares
and circles, respectively. Lines are a guide to the eye.

and system sizes L = 8,16,20,24,30. The critical temperature
is Tc/tb = 0.1175(10).

Our results for critical temperatures in 2D are summa-
rized in Fig. 3. We have performed simulations at fixed
2zta/U = 0.1,0.2 and varying tb/U . Our data show that
the region with higher transition temperatures corresponds
to relatively weak interactions, but away from the transition
to the (CB + SF) ground state. For strong interactions, the
relevant energies (i.e., coupling of spin degrees of freedom
in the mapping to the quantum spin Hamiltonian) scale as
∝ U−1, and therefore require smaller temperatures in order to
stabilize magnetically ordered phases. On the other hand, for
weak enough interactions, the magnetic order will eventually
disappear in favor of the (CB + SF) phase. As we approach
this transition the magnetic order becomes weaker, therefore
lower temperatures are required to observe it though the effect
is rather moderate. The largest transition temperatures lie
somewhere in between these two limits, and with precise
numerical simulations it is possible to accurately pinpoint
the parameter region which is best suited for current exper-
iments. The largest critical temperatures we have observed are
Tc/tb ∼ 0.12.

In the 3D case, we have calculated Tc in the region where
we expect it to be large, U/tb = 11, ta/tb = 0.1. We have
found Tc/tb = 0.175(15). The 3D simulations are far more
demanding computationally than in 2D, and the calculation of
the full zero- and finite-temperature phase diagram in 3D is
beyond the scope of this work.

We now turn to the melting of the xy-ferromagnetic state.
In bosonic language, it corresponds to the SCF-to-normal
transition where SCF is characterized as the superfluid state
with the composite order parameter describing the condensate
of pairs consisting of particles of one component and holes
of the other one, with zero net particle flux. The transition
is of the d-dimensional U(1) universality class, meaning
that in 2D it is of the Kosterlitz-Thouless (KT) type. In
Fig. 4 we show an example of how transition points for
the 2D system are calculated. In order to locate the critical
temperature we employ finite-size arguments following from
KT renormalization-group flow for the superfluid stiffness ρs ,
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FIG. 4. (Color online) (Main plot) Superfluid stiffness of the
particle-hole composite object in the SCF (xy-ferromagnetic) state
with ta = tb and U/tb = 11 for system sizes L = 10,20,40 triangles,
circles, and squares, respectively. (Inset) Scaling of the finite-size
“critical temperature” (see text).

the latter being measured from statistics of fluctuations of
winding numbers [28]:

ρs = 〈W2〉
βLd−2

, (4)

where W is the vector of world-line winding numbers in the
SCF sector. For our purposes, it is sufficient to define ρs up to
a global prefactor; that is why our Eq. (4) contains no other
factors.

In terms of world-line windings, the universal Nelson-
Kosterlitz jump translates into the abrupt change of 〈W2〉 at the
critical point from 4/π in the SCF phase to zero in the normal
phase. In a finite system, the universal jump is smoothed out
and winding numbers go to zero continuously (see the main
plot in Fig. 4). If one defines the finite-size critical point Tc(L)
by the condition 〈 W2[Tc(L)] 〉 = 4/π , then the flow of Tc(L)
to the thermodynamic limit answer Tc = Tc(∞) is given by
Tc(L) − Tc ∝ 1/(ln L)2; see the inset in Fig. 4.

We have found the following critical temperatures:
Tc/tb = 0.141(5) for U/tb = 11, ta/tb = 1; Tc/tb = 0.104(5)
for U/tb = 13, ta/tb = 1; Tc/tb = 0.101(5) for U/tb = 11,
ta/tb = 0.8; Tc/tb = 0.14(1) for U/tb = 9.4, ta/tb = 0.6.
Critical temperatures seem to decrease as we go toward
the Heisenberg point and the effective iso-spin couplings
decrease (see argument above). Unlike the Ising-normal
transition, the highest transition temperature we have found
lies close to the SCF-2SF T = 0 transition line. In fact, across
this transition line the superfluid stiffness of the particle-hole
composites and the transition temperature to the normal state
remain finite. As discussed in Ref. [29], at finite temperature
the SCF-2SF boundary moves in the direction of the 2SF
ground state thus implying the following sequence of events: as
temperature is increased in the vicinity of the quantum critical
point the 2SF state first undergoes a transition to the SCF state
which then turns normal at a much higher temperature.

In the 3D case, the transition point can be obtained from
the finite-size scaling of ρs . Similarly to Eq. (3), one has

ρs(τ,L) = ξ−1f (ξ/L) = L−1g(τL
1
ν ) . (5)
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The critical temperature is extracted from the intersection of
ρs(τ,L)L curves. We have done simulations for the system
parameters U/tb = 21, ta/tb = 1 and found Tc/tb = 0.208(7).

B. Entropy curves

Entropy curves S(T ) are calculated starting from the energy
data. We first use spline interpolation of data points to obtain
a smooth curve E(T ). We then calculate entropy by using two
different numerical procedures: (i) We obtain the specific heat
cV by differentiating the spline and then calculate the entropy
by numerical integration of cV/T . (ii) We avoid numerical
derivatives by using

S(T ) = E(T ) − E(0)

T
+

∫ T

0

E(T ) − E(0)

T 2
dT , (6)

and numerical integration. The agreement of the two meth-
ods is very good (within 0.5%). Uncertainties in entropies
come therefore from the ones in critical temperatures and
finite-size effects. Examples of entropy curves in the Ising
antiferromagnetic state are shown in Fig. 5, for U/tb = 5.7,
ta/tb = 0.1425 in 2D, and U/tb = 11, ta/tb = 0.1 in 3D. We
find critical entropies per particle Sc(kB)/N ∼ 0.25 ± 5% and
0.5 ± 20% in 2D and 3D, respectively. These entropies are
relatively large and definitely within the realm of what can
be achieved with bosonic BECs. In Fig. 6 we show entropy
curves for the xy-ferromagnetic state. The critical entropy
in 2D for U/tb = 11, ta/tb = 1 is Sc(kB)/N ∼ 0.033 ± 5%,
about an order of magnitude smaller than for the 3D value
Sc(kB)/N ∼ 0.35 ± 10% obtained for U/tb = 21, ta/tb = 1.
This is explained by the specifics of the KT transition when
the SF density jumps to zero discontinuously at the critical
point (i.e., when the system thermodynamics is still dominated
by the dilute phonon gas). Correspondingly, at the transition
temperature the thermal energies and entropies are low. Our
thermodynamic data confirm that this is precisely what is
happening for the 2D system: energy scales with temperature
as ∝ T 3 (which implies that entropy is ∝ T 2) all the way up
to temperatures T < Tc.
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FIG. 5. (Color online) Entropy curves for the Ising antiferromag-
net in 2D for U/tb = 5.7, ta/tb = 0.142 and 3D for U/tb = 11,
ta/tb = 0.1, solid and dashed lines, respectively. Dotted lines are
a guide to the reading of critical entropies.
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FIG. 6. (Color online) Entropy curves for the xy ferromagnet in
2D for U/tb = 11, ta/tb = 1 and 3D for U/tb = 21, ta/tb = 1, solid
and dashed lines, respectively. Dotted lines are a guide to the reading
of critical entropies.

IV. MINIMAL EXPERIMENTAL HOLD TIMES

Finally, we estimate minimal hold times required to
observe ordered magnetic phases under typical experimental
conditions.

For a cubic lattice and using a harmonic approximation
around the minima of the optical lattice potential [30], the
tunneling matrix elements and on-site interaction energies are
given by

ta,b ≈ 4√
π

(
E

(a,b)
R V 3

a,b

) 1
4 exp

(−2
√

Va,b/E
(a,b)
R

)
, (7)

U ≈ 4
√

h̄√
π

a(ab)
s mω3/2 1

2νab

, (8)

Ua,b ≈
√

2h̄

π
a(aa,bb)

s (ma,bωa,b)3/2 1

mab

, (9)

where

mω = maωambωb

maωa + mbωb

, (10)

and

ωa,b =
√

4E
(a,b)
R V

a,b
0 /h̄ (11)

is the harmonic oscillator frequency,

E
(a,b)
R = h̄2k2

2ma,b

(12)

is the atomic recoil energy, ma,b and νab are the bare
and reduced masses, respectively, and a(aa,bb)

s and a(ab)
s are

the intra- and interspecies scattering lengths. The hard-core
limit can be achieved if, for example, a(aa,bb)

s 
 a(ab)
s , or by

manipulation of the overlapping of Wannier functions, whereas
resonances are not available. For 87Rb-41K mixtures [18] and
away from resonances one has aRb-K = 163a0, aRb = 99a0,
and aK = 65a0 (a0 is the Bohr radius). One can then use
Feshbach resonances to tune scattering lengths to the hard-core
limit. This can be done by either using the resonance for
interspecies collisions (it is possible to tune the scattering
length through the zero point crossing [18,19], thus realizing
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the hard-core constraint) or by exploiting resonances for
collisions within the same species. As we will see below, the
latter case corresponds to shorter experiment hold times.

To estimate the hold time texpt required for the observation
of the magnetic phases we look at the lowest dynamic
energy scale in the system which is ta in our case. Clearly,
unless a condition texpt 
 h/ta is satisfied, one may not even
discuss thermally equilibrated normal states, not to mention
low-temperature ordered ones. If Tc is smaller than ta , we
consider texpt 
 h/Tc as the minimal requirement. As we have
seen, the optimal experimental parameters for both Ising and
xy phases result in min (ta,Tc) ∼ 0.1tb, and in what follows we
will use this energy scale for the estimate of the hold time.

Let us consider laser beams with λ =1064 nm and discuss
the mixtures of Rb atoms in states |1,−1 〉 and |2,−2 〉 [15,20],
for which a(ab)

s = 98.09a0. For the melting of the Ising state
we require U/tb ∼ 11 and ta/tb ∼ 0.1 which translates into
the optical lattice depths Va/E

(a)
R ∼ 19.5 and Vb/E

(b)
R ∼ 9,

and the final result texpt 
 0.2 s. For the melting of the
(xy-)ferromagnet we require U/tb ∼ 21, ta ∼ tb, or, in terms of
the lattice depths, Va/E

(a)
R = Vb/E

(b)
R ∼ 12, which implies that

texpt 
 0.035 s. For the case of 87Rb-41K mixtures, the best-
case scenario corresponds to aRb-K = 163a0 and aRb,aK 

aRb-K achieved via Feshbach resonances for intraspecies colli-
sions. We consider the b species to be 87Rb. A similar analysis
of the Ising antiferromagnetic case leads to Va/E

(a)
R ∼ 19.5,

Vb/E
(b)
R ∼ 6, and texpt 
 0.08 s. For the xy-ferromagnetic

case we have Va/E
(a)
R ∼ 11.5 and Vb/E

(b)
R ∼ 8.6 and texpt 


0.015 s. If, instead, one tunes the interspecies scattering length
to, for example, aRb-K ∼ 35a0, this implies Va/E

(a)
R ∼ 26.2,

Vb/E
(b)
R ∼ 10.6, texpt 
 0.25 s for the Ising antiferromag-

net, and Va/E
(a)
R ∼ 17.3, Vb/E

(b)
R ∼ 13.6, texpt 
 0.05 s for

the (xy-)ferromagnet. Smaller interspecies scattering lengths
would require even longer hold times, hence it results experi-
mentally more feasible to enforce the hard-core limit by tuning
the intraspecies scattering lengths.

From these estimates we conclude that observing ordered
magnetic phases will be experimentally challenging since the
required time scales might have to exceed seconds (with some
advantage for dealing with the 87Rb-41K mixture). Increasing
the sample stability and suppressing various heating mecha-
nisms (three-body losses, background vacuum, spontaneous
scattering of lattice photons, and technical noises such as

beam alignment, intensity fluctuations, mechanical vibrations)
has to be achieved. To appreciate the problem, we mention
the heating rate (entropy per particle) of ∼1kB/s observed
recently in a typical experiment in the optical lattice [11]. It
is also important to realize that the hard-core limit studied
in the present work corresponds to the best-case (i.e., largest
critical entropies) scenario. The Mott-insulator region, where
the magnetic order is realized, shrinks as one moves away form
the hard-core limit [22], implying lower critical temperatures
or entropies.

V. CONCLUSION

We have addressed numerically (by worm algorithm Monte
Carlo simulations) the problem of magnetic ordering in the
two-component Bose-Hubbard model in the intraspecies hard-
core limit, for 2D and 3D cases, at finite temperature. The
emphasis of the study is on revealing the optimal parameters
for (and analyzing the feasibility of) experimentally achieving
the transitions to Ising antiferromagnetic (or checkerboard
solid) and xy-ferromagnetic (or super-counter-fluid) phases.
We have identified the optimal experimental conditions,
corresponding to maximal critical entropy per particle. On the
basis of our data, we have estimated minimal experimental
hold times required to reach equilibrium magnetic states.
These times have to be on a scale of seconds which renders
the experimental observations of magnetic phases challenging
and calls for increased control over heating sources.

Our results—optimal Hamiltonian parameters with cor-
responding values of critical entropies, temperatures, and
minimal hold times—can be directly used for guiding and
benchmarking the ongoing experiment on creating optical
lattice emulators.
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