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Rayleigh-Taylor instability in binary condensates
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We propose a well-controlled experimental scheme to initiate and examine the Rayleigh-Taylor instability in
two-species Bose-Einstein condensates. We identify the 85Rb-87Rb mixture as an excellent candidate to observe
experimentally. The instability is initiated by tuning the 85Rb-85Rb interaction through a magnetic Feshbach
resonance. We show that the observable signature of the instability is the damping of the radial oscillations. We
also propose a semianalytic scheme to determine the stationary state of binary condensates with the Thomas-Fermi
approximation for axisymmetric traps.
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I. INTRODUCTION

Rayleigh-Taylor instability (RTI) sets in when a lighter
fluid supports a heavier one in a gravitational field or when
a lighter fluid pushes a heavier one. It leads to turbulent
mixing of the two fluids as the perturbations at the interface
grow exponentially. It is present across a wide spectrum of
phenomena in nature. The turbulent mixing in astrophysics,
inertial confinement fusion, and geophysics originates from
RTI. In superfluids RTI sets up crystallization waves at the
superfluid-solid interface. This has been observed in 4He [1].
Despite the ubiquitous nature and importance of the RTI,
controlled experiments are difficult and rare. However, we
show that two-species Bose-Einstein condensates (TBECs)
or binary condensates in a trap are ideal systems for a
controlled study of RTI in superfluids. In a recent work
[2], the magnetic-field-gradient-induced RTI at the interface
of TBEC, which consists of two hyperfine states of 87Rb,
was analyzed. In the present work we propose a different
mechanism to set up the RTI in TBECs and study the impact on
the collective excitations. The remarkable feature of TBECs,
absent in the single-component BECs, is the phenomenon of
phase separation. The TBECs, which are realized in a mixture
of two hyperfine states of 87Rb [3], are rich systems for
exploring nonlinear phenomena. Numerous theoretical works
have examined different aspects of TBECs. These include
stationary states [4–7], modulational instability [8–10], col-
lective excitations [11–14], and domain-wall solitons [15].
Another instability related to the RTI, which has attracted
growing interest, is the Kelvin-Helmholtz instability (KHI).
The prerequisites of the KHI are phase separation and relative
tangential velocities at the interface. Quantum KHIs have been
observed in experiments with 3He [16] and recently studied
theoretically for TBECs [17].

To initiate the RTI we consider a TBEC confined in
a harmonic trapping potential, where all the interatomic
interactions are repulsive. We choose the ground state in the
immiscible domain as the initial state. It is a phase-separated
configuration where the species with the stronger intraspecies
repulsive interaction surrounds the other [18,19]. Here the
trapping potential is an analog of the gravitational potential,
and we may consider the species with the stronger intraspecies
repulsive interaction as the lighter fluid. We then increase
the intraspecies repulsive interaction of the inner species by
increasing the scattering length through a Feshbach resonance.

A critical state is reached when the repulsive interactions of the
inner and outer species are equal. The system is unstable to any
further increase because the intraspecies repulsive interaction
of the inner species is higher. This is the quantum analog of the
RTI in fluid dynamics. As a case study, we choose the TBEC
of a 85Rb-87Rb mixture. In this system, the 85Rb intraspecies
interaction is tunable through a Feshbach resonance [20] and
was recently used to study the miscibility [21] of the TBEC.
More recently, the dynamical pattern formation during the
growth of this system was theoretically investigated [10]. The
other feature is that the interspecies 85Rb-87Rb interaction is
also tunable and well studied [22]. Considering the parameters
of the experimental realization, we choose the axisymmetric
(cigar-shaped) trap geometry.

II. PHASE-SEPARATED CIGAR-SHAPED TBECS

In the mean-field approximation, the TBEC is described by
a set of coupled Gross-Pitaevskii (GP) equations

⎛
⎝−h̄2

2mi

∇2 + Vi(ρ,z) +
2∑

j=1

Uij |ψj |2
⎞
⎠ ψi(ρ,z) = µiψi(ρ,z),

(1)

where i = 1,2 is the species index. Here Uii = 4πh̄2aii/mi ,
where mi is the mass and aii is the s-wave scattering length,
is the intraspecies interaction, and Uij = 2πh̄2aij /mij , where
mij = mimj/(mi + mj ) is the reduced mass, with aij as the
interspecies scattering length, is the interspecies interaction,
and µi is the chemical potential of the ith species. To study the
RTI, we consider the phase-separated state (U12 >

√
U11U22)

in the axisymmetric trapping potentials with coincident
centers,

Vi(ρ,z) = miω
2

2

(
α2

i ρ
2 + λ2

i z
2
)
, (2)

where ω is the smaller of the two radial trapping frequencies,
and αi and λi are the scaling factors of the radial and
axial trapping frequencies, respectively. In the present work,
we choose αi > λi to generate cigar-shaped potentials, and
Uij ’s are all positive. By neglecting the interspecies overlap,
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the Thomas-Fermi (TF) solutions of the densities ni(ρ,z) =
|ψi(ρ,z)|2 are

|ψi(ρ,z)|2 = [µi − Vi(ρ,z)]

Uii

. (3)

The chemical potentials µi are fixed through the normalization
conditions. When αi � λi , the interface of the phase-separated
state is planar and the species having a larger scattering length
sandwiches the other one [18]. This is clearly visible in the
first column of Fig. 3, which shows the typical ground-state
density profile of the cigar-shaped TBEC.

For further analysis, let z = ±L1 be the planes separating
the two components and ±L2 be the spatial extent of the outer
species along the z axis. The density distributions n1 and n2 of
the TBEC are

n1(ρ,z) = µ1 − V1(ρ,z)

U11
, −L1 < z < L1, (4)

n2(ρ,z) = µ2 − V2(ρ,z)

U22
, L1 < |z| < L2. (5)

This assumes no spatial overlap between the two species. The
problem of determining the stationary state is then equivalent
to calculating L1. Theoretically, L1 can be determined by
minimizing the total energy of the TBEC with a fixed number
of particles of each species. If Ni and ρi are the number of
atoms and the radial size of the ith species, respectively, then

Ni = 2π

∫ ρi

0
ρ dρ

∫ Li

−Li

dz|ψi(ρ,z)|2. (6)

From the TF approximation

N1 = 2π

(
ω2L5

1m1λ
4
1

20U11α
2
1
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2
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3U11α
2
1

+ L1µ
2
1

ω2m1U11α
2
1

)
, (7)

N2 = 4π
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⎦ . (8)

The total energy of the binary condensate is

E =
∫

dV

[
V1(ρ,z)|ψ1(ρ,z)|2 + V2(ρ,z)|ψ2(ρ,z)|2

+ 1

2
U11|ψ1(ρ,z)|4 + 1

2
U22|ψ2(ρ,z)|4

]
. (9)

We minimize E numerically with Eqs. (7) and (8) as con-
straints to obtain the required value of L1. By substituting the
value of L1 back into Eqs. (7) and (8), we can determine µ1

and µ2. Thus Eqs. (7)–(9) uniquely define the stationary state
of the TBEC.

As mentioned earlier, we consider the parameters of the
recent experiment [21] with 85Rb and 87Rb as the first
and second species, respectively, in the case study. In the
experiment the radial trapping frequencies are identical (αi =
1), and the scale factors or the anisotropy parameters of
the axial trapping frequencies λ1 and λ2 are 0.022 and
0.020, respectively. The scattering lengths are a11 = 51a0,
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FIG. 1. (Color online) The variation in energy E with L1 in a
phase-separated regime. The upward arrow indicates the position of
minimum E at L1 = 32.3aosc. The inset shows the same plot along
with the variation of µ1 and µ2 with respect to L1, and the magenta
(light gray) and gray curves correspond to µ1 and µ2, respectively.

a22 = 99a0, and a12 = a21 = 214a0, and we take Ni = 50 000.
For this set of parameter values the plot in Fig. 1 shows
the variation of E as a function of L1. The value of L1

where the minimum of E occurs is 32.3aosc. Here the unit of
length aosc = √

h̄/m1ω with the radial trapping frequency ω =
130 Hz. This is in agreement with the numerical result 33.8aosc

calculated using the split-step Crank-Nicholson method with
imaginary-time propagation [23]. We refer to this state as
phase I, where 85Rb and 87Rb are at the center and flanks,
respectively.

We have also calculated the expressions for obtaining the
ground state for trapping potentials whose centers do not
coincide,

V1(ρ,z) = m1ω
2

2

(
α2

1ρ
2 + λ2

1z
2
)
, (10)

V2(ρ,z) = m2ω
2

2

[
α2

2ρ
2 + λ2

2(z − z0)2
]
, (11)

where z0 is the separation of the two trap centers along the z

axis. The expressions are much more complicated; however,
the numerical and semianalytic results are in agreement.

III. BINARY CONDENSATE EVOLUTION

In the fluid dynamics parlance, the gradient of the trapping
potentials is the equivalent of gravity and the dynamics of
the condensates is modeled as potential flows. The dynam-
ical evolution of the interface is then described through a
combination of the continuity equation, Euler’s equation,
and Bernoulli’s theorem with suitable boundary conditions
[24,25]. For a phase-separated TBEC with a planar interface
along the xy plane, a linear stability analysis shows that a
small perturbation at the interface has independent modes of
the form A(s)ei(kxx+kyy)+st . Here kx and ky are wave numbers
along x and y coordinates, s is the temporal decay constant, and
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A(s) is the amplitude of the mode. After solving the linearized
equations [24,25], we get

s = ±
⎛
⎝

√
k2
x + k2

ymω2λ2L1(n2 − n1)

n1 + n2

⎞
⎠

1/2

. (12)

The densities of the condensates n1 and n2 are at a point (ρ,L1)
on the interface. We recollect that the n1 and n2 refer to the
densities of the species at the center and flanks, respectively.
To simplify the analysis, we consider m1 = m2 = m and λ1 =
λ2 = λ while deriving relation (12).

The decay constant s is imaginary and the interface is stable
when n1 > n2 but it oscillates when perturbed. However, when
n1 < n2 the value of s is real and any perturbation, however
small, grows exponentially. This is the prerequisite for RTI in
binary condensates. From the TF approximation, this condition
is equivalent to a11 > a22(µ1 − V )/(µ2 − V ). Here V is the
trapping potential of the two species at the interface. In normal
fluids with RTI, the lighter fluid rises to the top as bubbles and
the heavier fluid sinks as fingerlike extensions until the entire
bulk of the lighter fluid is on top of the denser one. On the
other hand, binary condensates in a similar situation evolve in
a very different way.

To examine the dynamical evolution of the binary conden-
sate with RTI, we choose phase I (a11 < a22) as the initial
state. In this phase, the 87Rb BEC at the flanks is considered
as resting over the 85Rb BEC at the center. To set up a RTI,
we increase a11 until a11 > a22(µ1 − V )/(µ2 − V ) through
the 85Rb-85Rb magnetic Feshbach resonance [20]. However,
we maintain U12 >

√
U11U22 so that the TBEC remains in the

immiscible domain. This is an unstable state, and we refer
to this as phase Ia. The stationary state of the TBEC that
corresponds to the new parameters is phase separated and
similar in structure to the initial state but with the species
interchanged. Let us call the stationary state that corresponds
to the new parameters phase II. The binary condensate should
dynamically evolve from phase Ia to phase II. However, unlike
in normal fluids with RTI, there are no bulk flows of either 85Rb
or 87Rb atoms across the interface. Instead the condensates
expand with interference effects and modulations. At the same
time, there is also tunneling. These events occur due to the
coherence in the quantum liquids. To examine the evolution,
we solve the pair of time-dependent GP equations

ih̄
∂ψi(ρ,z)

∂t
=

⎛
⎝−h̄2

2mi

∇2 + Vi(ρ,z) +
2∑

j=1

Uij |ψj |2
⎞
⎠ ψi(ρ,z),

(13)

which describe the dynamical evolution of the TBEC. During
evolution the density profiles are approximated as

ni(ρ,z) = n
eq
i (ρ,z) + δni(ρ,z). (14)

Here n
eq
i (ρ,z) and δni(ρ,z) are the equilibrium density and

density fluctuations arising from the increase in a11, respec-
tively. From the hydrodynamic approximations, δni(ρ,z) or
the collective modes follow the equations

mi

∂2

∂t2
δni = ∇ni · ∇

2∑
j=1

Uij δnj + ni∇2
2∑

j=1

Uij δni. (15)

Consider δni(ρ,z,t) = bi(t)ρl exp(±ilφ) as the form of the
solution. Here bi(t) subsumes the time-dependent part of the
solution arising from the temporal variation of the amplitude
and l is an integer. Then as ∇2δni = 0, only the first term
on the right-hand side remains in the equation. The profile of
the interface acquires a complex pattern as it evolves under the
influence of the RTI. This increases the area of the interface and
couples the two species more strongly through the interspecies
interaction. Furthermore, as the inner species expands and
penetrates in the outer species, the density decreases and
hence the mean-field energy decreases. This damps the radial
oscillations of the inner component. In the miscible phase, the
evolution equation simplifies to

b̈i = − lω2

Uii

(Uiibi + Uijbj ). (16)

We can also get a similar set of coupled equations
for the other form of the collective modes δni(ρ,z,t) =
bi(t)zρl−1 exp[±i(l − 1)φ]. In this case, the prefactor is (l −
1 + λ2

i ) instead of l. In either of the cases, the equations are
similar to two coupled oscillators. For the phase-separated
state, the form of the TF solutions is significantly different
from the miscible solution. We resort to numerical schemes
to solve the coupled-GP equations with RTI. An analytical
description is difficult because the interface geometry evolves
to a highly complex structure.

IV. NUMERICAL RESULTS

A. TBEC evolution with RTI

As mentioned earlier, to examine the evolution of TBEC
with RTI, we choose the phase-I state as the initial state.
We then change a11 to 80a0, 102a0, 200a0, 306a0, 408a0,
and 780a0; the last value is in the miscible parameter
region. The dynamical variables, which are the coarse-grained
representatives of the evolution, are ρrms and zrms, the rms
radial and axial sizes, respectively.

When a11 is increased to 80a0, the 85Rb condensate oscil-
lates radially to accommodate excess repulsion energy. This
is the only available degree of freedom as tight confinement
along the z axis, arising from 87Rb at the flanks, restricts axial
oscillations. In the TF approximation, the effective potential is
Veff = V + (µ2 − V )U12/U22. The angular frequency of the
oscillation is ≈0.32ω. This is close to one of the eigenmodes
of the Bogoliubov equations. The temporal variation of ρrms

is shown as the plots in the inset in Fig. 2. These show that
the oscillations of the 87Rb are sympathetically initiated and
arise from the coupling between the two condensate species.
The oscillations are more prominent with a smaller number of
atoms.

There is a change in the nature of oscillations when the new
value of a11 is such that a11 > a22(µ1 − V )(µ2 − V ). The
corresponding stationary state has 87Rb and 85Rb at the core
and flanks, respectively. The ρrms oscillation frequency is the
same as in the a11 < a22 case, but there is a temporal decay of
the amplitude until it equilibrates. This is due to the expansion
of 85Rb along the z axis and is an unambiguous signature of
the RTI. The expansion is clearly discernible in the density
profile of the condensates shown in Fig. 3. The main plot
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FIG. 2. (Color online) The temporal variation of ρrms for 85Rb and
87Rb when a11 is changed from 51a0 to 408a0. In the main plot, the
upper and lower black curves correspond to the evolution of 85Rb and
87Rb, respectively. The magenta (light gray) and red (gray) curves
correspond to evolution with loss terms. The plot in the inset shows
the variation in ρrms of 85Rb (gray) and 87Rb (black) without loss
terms.

in Fig. 2 shows a temporal variation of ρrms for a11 = 408a0

close to the miscible domain. There is a strong correlation
between the decay rate and the nature of oscillations. For
a11 marginally larger than a22, the 85Rb condensate tunnels
through the 87Rb condensate, whereas at larger values the 85Rb
condensate expands and spreads into the 87Rb condensate.

A dramatic change in the nature of the coupled oscillations
occurs when U12 <

√
U11U22, that is, when the TBEC is in the

miscible domain. The 85Rb condensate expands through the
87Rb cloud, and the two species undergo radial oscillations
which have a beat pattern. Figure 4 shows the ρrms when
a11 is increased to 780a0. Besides the radial oscillations,
which are to be expected when a11 > a22(µ1 − V )/(µ2 − V ),
the axial size zrms increases steadily. This accommodates the
excess repulsion energy along the axial direction. Along with
the oscillations, there are density fluctuations reminiscent of
modulational instability. It must be mentioned that in earlier
works [8,9] modulational instability in the miscibility domain
was analyzed in depth. For the present case, the detailed
analysis of modulational instability will be the subject of a
future publication.

FIG. 3. (Color online) Evolution of the TBEC with RTI. The
first and second rows are density profiles of 85Rb and 87Rb BECs,
respectively, after increasing a11 to 408a0. Starting from the left, the
density profiles are at 0, 24.5, 49.0, and 73.5 ms after the increase
of a11.
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FIG. 4. (Color online) The variation in ρrms for 85Rb and 87Rb
with time when a11 is increased from 51a0 to 780a0. In the main
plot, the upper and lower black curves correspond to the evolution of
85Rb and 87Rb, respectively. The magenta (light gray) and red (gray)
curves correspond to the evolution with the loss terms.

B. Evolution with loss terms

We also study the effect of loss terms, which arise from
inelastic collisions, on the evolution of the condensate. There
are two types of inelastic collisions that lead to the loss of
atoms from the trap: dipolar relaxation where the two atoms
change their spin states after binary collision and three-body
recombination where three atoms collide, resulting in the
formation of a diatomic molecule. To model the effect of loss
of atoms from the trap, we add the phenomenological loss term

−ih̄

2

⎛
⎝ 2∑

j=1

K2(ij )|ψj (r,z)|2 + K3i |ψi(r,z)|4
⎞
⎠ (17)

to the right-hand side of Eq. (13). Here K2(ii) and K2(ij )

with j �= i are the two-body dipolar loss rate coefficients for
collisions between same and different species, and K3i are the
three-body recombination loss rate coefficients.

In the experiment by Papp et al. [21], it is possible to vary
a11 from 51a0 to 900a0 by tuning the magnetic field in the
range 164.6–158.6 G [26]. In this range of the magnetic field,
K2(22) and K2(12) = K2(21) are approximately constant [27].
Based on a previous work [27], the inelastic two-body loss rate
coefficients of the 85Rb-87Rb TBEC in a magnetic field of 161
G are K2(11) � 10−14 cm3 s−1, K2(22) � 4.5 × 10−17 cm3 s−1,
and K2(12) = K2(21) � 1.6 × 10−16 cm3 s−1. For K2(11), the
maximum value occurs when a11 is 51a0 and decreases at
most by an order of magnitude for higher values of a11.

For the inelastic three-body loss rate coefficients, the value
of K31 is minimum when a11 is 51a0 [20] and changes by more
than two orders of magnitude for higher values of a11, but K32

remains constant. From previous works, rate coefficients for
85Rb and 87Rb are 1.7 × 10−27 cm6 s−1 (near resonance) and
3.8 × 10−29 cm6 s−1 [28], respectively. Between the two loss
mechanisms, within a magnetic field range of 158–162 G the
two-body losses of 85Rb dominate over three-body losses [20].
Taking these factors into account, we consider the previously
mentioned loss rates as the appropriate values when a11 is
increased to 408a0 and 780a0 in our numerical simulations.
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For the case of a11 increased to 80a0, we consider K2(11) �
2.5 × 10−14 cm3 s−1 and K31 = 3.8 × 10−31 cm6 s−1 while
the other loss rate coefficients remain unchanged. We find that
when the RTI sets in, the nature of oscillations of ρrms do not
change significantly with the inclusion of the loss term. The
maximum change is ≈4% and this is evident from Figs. 2 and
4. This implies that the decay of the ρrms oscillation amplitude
can be mainly ascribed to the RTI and not to the loss of atoms
from the trap.

V. CONCLUSIONS

We have examined the onset of the Rayleigh-Taylor
instability in TBEC and identified the observable signature in
the dynamics. We have specifically chosen the experimentally
well-studied 85Rb-87Rb mixture as a case study and propose

observing RTI with the 85Rb-85Rb Feshbach resonance. By
starting from a11 < a22, the RTI sets in when the TBEC is tuned
to a11 > a22(µ1 − V )/(µ2 − V ) in the TF approximation. The
damping of ρrms oscillations of 85Rb, the species at the core,
marks the onset of RTI. To analyze the stationary state, we have
proposed a semianalytic scheme, applicable when λ � 1, to
minimize the energy functional with the TF approximation.
The results are in excellent agreement with the numerical
results. In the parameter regime λ � 1 the interface is also
planar and the RTI is more prominent.
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