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Trapped two-component Fermi gases allow the investigation of the so-called BCS-BEC crossover by tuning
the interspecies atom-atom s-wave scattering length a(aa) from attractive to repulsive, including vanishing and
infinitely large values. Here, we numerically determine the energy spectrum of the equal-mass spin-balanced
four-fermion system—the smallest few-particle system that exhibits BCS-BEC crossoverlike behavior—as a
function of a(aa) using the stochastic variational approach. For comparative purposes, we also treat the two-
and three-particle systems. States with vanishing and finite total angular momenta as well as with natural and
unnatural parities are considered. In addition, the energy spectrum of weakly attractive and weakly repulsive
gases is characterized by employing a perturbative framework that utilizes hyperspherical coordinates. The
hyperspherical coordinate approach allows the straightforward assignment of quantum numbers and furthermore
provides great insight into the strongly interacting unitary regime.
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I. INTRODUCTION

Few-body systems show rich behaviors that range from
the realization of highly correlated states to weakly bound
Borromean states, and they have long been of great interest to
chemists as well as nuclear and atomic physicists. To date,
the determination of the entire energy spectrum, or parts
thereof, of small bosonic or fermionic systems consisting
of four or more constituents remains a challenge despite the
ever increasing computational resources. Recently, significant
progress has been made in the theoretical characterization of
weakly bound bosonic tretramers [1–6]. In particular, for each
Efimov trimer, there exist two tetramer states [4,5], which
dissociate into four free bosons at critical negative scattering
lengths. The ratio of the scattering length at which the trimer
state becomes unbound and that at which the first or second
tetramer state becomes unbound has been predicted to be
universal [5]. Recently, this prediction has been confirmed
by loss rate measurements on the negative scattering length
side [7]. Working with an atomic Cs sample at temperatures
just above the transition temperature to quantum degeneracy,
the Innsbruck group [7] was able to observe enhanced losses
at magnetic field strengths that correspond quite well to
the theoretically predicted scattering length ratios [5]. By
now, several groups have reported experimental evidence for
universal four-boson physics [7–9].

While the universal properties of few-boson systems
interacting through short-range potentials depend on two
atomic physics parameters, i.e., the two-body s-wave scat-
tering length a(aa) and a three-body parameter (see, e.g.,
Ref. [10]), the universal properties of dilute equal-mass
two-component Fermi gases interacting through short-range
potentials with interspecies s-wave interactions depend only
on the s-wave scattering length [11–28]. Experimentally, small
two-component Fermi gases can be realized by loading a
deep three-dimensional optical lattice with a deterministic
number of atoms per lattice site [29–31]. If the tunneling
between neighboring sites is negligible, each lattice site can
be treated as an independent, approximately harmonically
confined few-fermion system.

This paper determines and characterizes the energy spec-
trum of three- and four-particle equal-mass two-component
Fermi gases as a function of the s-wave scattering length
under spherically symmetric harmonic confinement. For this
confining geometry, the total angular momentum Ltot and the
total parity �tot are good quantum numbers throughout the
entire BCS-BEC crossover (BEC stands for Bose-Einstein
condensate). The three-fermion spectra have been discussed
previously [32–35] and are included here primarily for
illustrative and comparative purposes. Our calculations follow
two distinctly different avenues. On the one hand, we numer-
ically determine the energy spectrum of few-fermion systems
throughout the entire crossover. For the four-fermion system,
we employ the stochastic variational approach [35–41]. In
contrast to previous studies [35,40–43], we utilize basis
functions with well-defined angular momentum and parity and
determine the eigenenergies for a range of angular momenta.
On the other hand, we determine the eigenspectrum semi-
analytically within first-order degenerate perturbation theory.
While necessarily limited to small |a(aa)|, this approach allows
the classification of a large portion of the energy spectrum
in terms of appropriate quantum numbers. To characterize
the energy spectrum in the weakly interacting regime, we
employ hyperspherical coordinates [20,44–51] and write the
noninteracting wave functions in the relative coordinates as a
product of a hyperangular channel function and a hyperradial
weight function. The eigenenergies of the noninteracting
system have, in general, large degeneracies, which are partially
lifted by the two-body interactions. The energy splittings can,
to leading order, be calculated perturbatively. Compared to
calculations that utilize Cartesian single-particle coordinates,
one distinct advantage of the hyperspherical approach is
that certain features carry over, with some modifications,
to the strongly interacting unitary regime [20,35,42,50,52].
Our numerically determined spectra at unitarity can thus be
interpreted within the hyperspherical framework.

The remainder of this manuscript is organized as follows.
Section II A introduces the system Hamiltonian under study
and provides other background information. Section II B
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discusses the hyperspherical framework and its implications
for the noninteracting, weakly interacting, and strongly inter-
acting three- and four-fermion systems. The numerical basis
set type expansion approaches for the three- and four-fermion
problems are discussed in Secs. II C and II D, respectively.
Section III summarizes our numerical and semianalytical per-
turbative results for the three- and four-fermion systems. We
discuss the degeneracies and quantum numbers of the energy
levels throughout the BCS-BEC crossover. Furthermore, we
characterize the energy spectrum at unitarity and present a
simple model that predicts the energy spectrum of the three-
fermion system and a subset of the energy spectrum of the
four-fermion system at unitarity. Lastly, Sec. IV summarizes
our main results.

II. THEORETICAL BACKGROUND

This section introduces the system Hamiltonian and dis-
cusses our approaches to determining the eigenspectrum of
equal-mass two-component Fermi gases perturbatively and
numerically.

A. System Hamiltonian and other background information

We consider small equal-mass two-component Fermi gases
under external harmonic confinement consisting of N atoms
with mass m and position vectors �rj , measured with respect to
the center of the trap. Our model Hamiltonian H reads

H = H ni + Vint(�r1, . . . ,�rN ), (1)

where the noninteracting Hamiltonian H ni is given by

H ni =
N∑

j=1

[
− h̄2

2m
∇2

�rj
+ Vtrap(�rj )

]
, (2)

and the external spherically symmetric harmonic confining po-
tential Vtrap is characterized by the angular trapping frequency
ω,

Vtrap(�rj ) = 1
2mω2�r2

j . (3)

The potential Vint accounts for the short-range two-body
interactions Vtb between unlike atoms,

Vint(�r1, . . . ,�rN ) =
N↑∑
j=1

N∑
k=N↑+1

Vtb(�rj − �rk), (4)

where the number N↑ of spin-up atoms and the number N↓
of spin-down atoms add up to the total number of atoms,
i.e., N↑ + N↓ = N . For spin-imbalanced systems, N↑ denotes
the number of atoms of the majority species, and N↓ that of
the minority species. Throughout, we assume that the two-
body potential Vtb is characterized by the s-wave atom-atom
scattering length a(aa) and possibly a range parameter r0. The
different functional forms of Vtb employed in our calculations
are discussed below. The goal of this paper is to determine and
interpret the eigenenergies E(N↑,N↓) of the Hamiltonian H ,
Eq. (1).

If the atom-atom scattering length a(aa) is negative and
small in absolute value, i.e., |a(aa)| � aho, where aho denotes
the oscillator length associated with the atom mass m,

aho =
√

h̄

mω
, (5)

then the Fermi system behaves like a weakly attractive atomic
gas. In this case, the energy shifts due to the interactions
can be described, to leading order, within first-order degen-
erate perturbation theory that treats H ni as the unperturbed
Hamiltonian and Vint as the perturbation [35,41]. It is then
convenient to parametrize the two-body potential Vtb(�rjk) by
Fermi’s pseudopotential VF(�rjk) [53],

VF(�rjk) = 4πh̄2

m
a(aa)δ(�rjk), (6)

which allows an analytical evaluation of the matrix elements
and, if employed within first-order perturbation theory, does
not lead to divergencies. In general, multiple eigenfunctions
ψni

j of the noninteracting atomic system are degenerate, and
the first-order energy shifts E(1) are obtained by solving the
determinantal equation

det(V int − E(1)I ) = 0, (7)

where I denotes the identity matrix and the matrix elements
(V int)jk are given by

(V int)jk = 〈
ψni

j

∣∣Vint

∣∣ψni
k

〉
. (8)

Here, j and k run from 1 to gni, where gni denotes the degen-
eracy of the eigenenergy Eni(N↑,N↓) under consideration.

The possibly most direct approach for constructing the
eigenfunctions ψni

j is to write the ψni
j as a product of two

determinants, one for the spin-up atoms and one for the spin-
down atoms. The determinants themselves are constructed
from the single-particle wave functions φSP

np,lp,mp
(�rp), p =

1, . . . ,N↑ or p = N↑ + 1, . . . ,N , which are eigenfunctions
of the single-particle harmonic oscillator Hamiltonian H SP

p ,

H SP
p = − h̄2

2m
∇2

�rp
+ Vtrap(�rp). (9)

Above, np, lp, and mp denote the single particle radial,
orbital angular momentum and projection quantum numbers,
respectively. For a given energy Eni(N↑,N↓) of the noninter-
acting many-body system, the single-particle wave functions
φSP

np,lp,mp
(�rp) have to be chosen such that their eigenenergies

obey the constraint

Eni(N↑,N↓) =
N↑∑
p=1

(
2np + lp + 3

2

)
h̄ω

+
N∑

p=N↑+1

(
2np + lp + 3

2

)
h̄ω, (10)

with the additional restriction that the sets of quantum
numbers (np,lp,mp) and (nq,lq,mq) differ by at least one entry
for p �= q, where p,q = 1, . . . ,N↑ or p,q = N↑ + 1, . . . ,N .
Following this approach, the first-order energy shifts E(1)

of the energetically lowest-lying gaslike state for systems
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with N↑ − N↓ = 0, ± 1 and up to N = 20 atoms have been
calculated [35].

Although in principle straightforward, the outlined con-
struction of the wave functions of the noninteracting Fermi gas
and their use in evaluating the energy shifts E(1) has several
disadvantages. The number of degenerate states of the nonin-
teracting system increases rapidly with increasing energy. For
example, for the three-particle system with (N↑,N↓) = (2,1),
the lowest four energies Eni(2,1) = 11h̄ω/2, 13h̄ω/2, 15h̄ω/2,
and 17h̄ω/2 of the noninteracting system have degeneracies
gni = 3,18,73, and 228, and the determination of the energy
shifts thus requires the construction and diagonalization of
increasingly large interaction potential matrices V int. Fur-
thermore, the outlined construction includes center-of-mass
excitations and does not take advantage of the fact that the
total angular momentum Ltot, the corresponding z-projection,
and the parity �tot of the system are good quantum numbers.
Lastly, the antisymmetrization is accomplished through the
use of determinants, leading to N↑! × N↓! terms for each ψni

j .
This paper pursues an alternative approach and writes

the noninteracting wave functions in terms of hyperspherical
coordinates [20,44–51]. This approach separates off the center-
of-mass degrees of freedom, treats one angular momentum
at a time, and ensures the proper antisymmetry of the wave
function by utilizing angular momentum algebra. Using the
wave functions of the noninteracting atomic Fermi gas,
written in terms of hyperspherical coordinates, we are able to
semianalytically determine the first-order energy shifts for a
large portion of the spectrum of weakly interacting equal-mass
two-component atomic Fermi gases with N = 3 and 4 (see
Secs. II B and III).

When a(aa) is positive and small (a(aa) � aho), diatomic
bosonic molecules can form, and, if this happens, the Fermi
system behaves like a weakly repulsive molecular Bose gas.
In this limit, the dimers or diatomic molecules can, to a good
approximation, be treated as bosonic point particles with mass
2m [16,35,41,54,55] and internal energy Edimer; as detailed
below, this internal energy accounts for the presence of the
external confinement. The effective model systems for N =
3 and N = 4 then consist of two particles: an atom and a
dimer in the three-particle case and two dimers in the four-
particle case [35,41,54–56]. Separating off the center-of-mass
motion, the dynamics are governed by the relative effective
Hamiltonian H eff ,

H eff = − h̄2

2µ(k)
∇2

�r + 1

2
µ(k)ω2�r2 + V

(k)
F,reg(�r), (11)

where k stands for ad (atom-dimer) and dd (dimer-dimer)
for the three- and four-fermion systems, respectively, and the
position vector �r denotes the atom-dimer and dimer-dimer
distance vector for the three- and four-fermion systems,
respectively. The reduced masses µ(ad) and µ(dd) of the
atom-dimer and dimer-dimer systems are defined as µ(ad) =
2m/3 and µ(dd) = m. In this model, the atom-molecule and
molecule-molecule interactions are conveniently described
through Fermi’s regularized pseudopotential V

(k)
F,reg(�r) [57],

V
(k)

F,reg(�r) = 2πh̄2

µ(k)
a(k)δ(�r)

∂

∂r
r, (12)

with effective atom-dimer and dimer-dimer scattering lengths
a(ad) and a(dd), respectively [23,35,56,58–60],

a(ad) ≈ 1.179 066 234 9a(aa) (13)

and [35,41,54]

a(dd) ≈ 0.608a(aa). (14)

The s-wave (leff = 0) eigenenergies Eeff of H eff are readily
obtained by solving the transcendental equation [61]

a(k)

a
(k)
ho,µ

= �
(− Eeff

2h̄ω
+ 1

4

)
2�

(− Eeff
2h̄ω

+ 3
4

) , (15)

where

a
(k)
ho,µ =

√
h̄

µ(k)ω
. (16)

Since Fermi’s regularized zero-range potential V
(k)

F,reg only acts
at r = 0, the eigenstates of H eff with nonvanishing angular
momentum leff do not feel the interaction, and the correspond-
ing eigenenergies coincide with those of the noninteracting
system. Figure 1 shows the relative eigenenergies Erel(1,1)
obtained by solving Eq. (15) for k = aa as a function of
aho/a

(aa) [in this case, Eeff = Erel(1,1) and µ(k) = m/2]. From
Eq. (15) one finds at unitarity Eunit,rel(1,1) = (2neff + 1/2)h̄ω

for s-wave states. The eigenenergies Eeff of the effective
atom-dimer and dimer-dimer systems can be obtained from
Fig. 1 by appropriately scaling the horizontal axis.

Within the effective two-particle model, the relative en-
ergies Erel(2,1) and Erel(2,2) of the three- and four-fermion
systems are given by Erel(2,1) = Eeff + Edimer and Erel(2,2) =
Eeff + 2Edimer, where the second terms on the right-hand
sides account for the internal molecular binding energy of
the dimer(s) in the presence of the trap [35,41]. Edimer is
given by the lowest energy solution of Eq. (15) with k = aa

and µ(aa) = m/2 (see solid line in Fig. 1). For a(aa) � aho,
the size of the dimer—given to first order by a(aa)—is much
smaller than the trap size, and Edimer approaches the free-space
result Efree

dimer = −h̄2/[m(a(aa))2]. As a(aa) increases, the role of
the confinement becomes increasingly more important, and
the lowest energy solution of Eq. (15) starts to deviate from
Efree

dimer. Expanding Eq. (15) about the noninteracting energies

-5 0 5
a

ho
 / a

(aa)

-5

0

5

10

E
re

l(1
,1

) 
/ E

ho

FIG. 1. Relative s-wave energies Erel(1,1) of the trapped atom-
atom system, obtained by solving Eq. (15) for k = aa, as a function
of aho/a

(aa). The lowest s-wave eigenenergy (solid line) is referred to
as Edimer in the text. Here, Eho denotes the harmonic oscillator energy,
Eho = h̄ω.
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(2neff + 3/2)h̄ω, the s-wave energies Eeff can be approximated
as [61]

Eeff ≈
(

2neff + 3/2 + 2�(neff + 3/2)√
π�(neff + 1)�(3/2)

a(k)

a
(k)
ho,µ

)
h̄ω

(17)

for small |a(k)|. Alternatively, this result can be obtained by
treating the atom-dimer and dimer-dimer interactions within
first-order perturbation theory.

Lastly, we discuss the angular momentum Lrel of the three-
and four-fermion systems implied by the effective model
Hamiltonian H eff . If Eeff is taken to be one of the positive
energy solutions of Eq. (15), then the total relative angular
momentum Lrel of the three- and four-fermion systems is 0 and
the states have natural parity, i.e., �rel = +1. If Eeff is taken
to be an eigenenergy of H eff with finite angular momentum
leff , i.e., Eeff = (2neff + leff + 3/2)h̄ω with neff = 0,1, . . . ,

then the total relative angular momentum of the three- and
four-fermion systems is Lrel = leff and the states have, as
above, natural parity, i.e., �rel = (−1)Lrel . These observations
are used below to interpret Figs. 5 and 10.

B. Hyperspherical coordinate approach

The hyperspherical framework serves two distinct purposes
in this paper. It allows (i) the construction of noninteracting
wave functions with good quantum numbers and (ii) the
classification of the energy spectrum at unitarity. This section
first treats the noninteracting Fermi gas using hyperspherical
coordinates and then reviews how the formalism, with some
modifications, carries over to the infinitely strongly interacting
unitary Fermi gas.

To construct the eigenfunctions of the noninteracting Fermi
gas, we write the many-body Hamiltonian H ni, Eq. (2),
in hyperspherical coordinates [20,44–51]. We first separate off
the center-of-mass vector �Rc.m. and then divide the remaining
3N − 3 coordinates into 3N − 4 hyperangles, collectively
denoted by �	 (see below for their definition), and the
hyperradius R,

R2 = 1

N

N∑
j=1

(�rj − �Rc.m.)
2. (18)

Using these coordinates, the Hamiltonian H ni can be written
as

H ni = H c.m. − h̄2

2M

(
∂2

∂R2
+ 3N − 4

R

∂

∂R

)

+ 
2

2MR2
+ 1

2
Mω2R2, (19)

where the center-of-mass Hamiltonian H c.m. is given by

H c.m. = −h̄2

2M
∇2

�Rc.m.
+ 1

2
Mω2R2

c.m., (20)

and M denotes the total mass of the system, i.e., M = Nm.
In Eq. (19), 
 denotes the so-called grand angular momentum
operator [44] that accounts for the kinetic energy associated

with the hyperangles �	. The eigenfunctions ψni of the
Hamiltonian H ni separate (see, e.g., Refs. [20,44,50]),

ψni(�r1, . . . ,�rN ) = GNc.m.,Lc.m.,Mc.m.
( �Rc.m.)Fq,λ(R)�λ,χ ( �	).

(21)

Here, the center-of-mass functions GNc.m.,Lc.m.,Mc.m.
( �Rc.m.) are

eigenfunctions of H c.m., i.e., three-dimensional harmonic
oscillator functions in the center-of-mass vector �Rc.m.,
with eigenenergies Ec.m. = (2Nc.m. + Lc.m. + 3/2)h̄ω, where
Nc.m. = 0,1, . . . , Lc.m. = 0,1, . . . , and Mc.m. = −Lc.m., −
Lc.m. + 1, . . . ,Lc.m.. The hyperspherical harmonics �λ,χ ( �	),
or so-called channel functions, are eigenfunctions of the
operator 
2 [44],


2�λ,χ ( �	) = h̄2λ(λ + 3N − 5)�λ,χ ( �	), (22)

where λ can take the values 0,1,2, . . . . The quantum number
χ denotes the degeneracy for each λ [44],

χ = (3N + 2λ − 5)(3N + λ − 6)!

λ!(3N − 5)
. (23)

In deriving Eq. (23), no symmetry constraints have been
enforced. Below, we discuss the construction of the hyper-
spherical harmonics and the reduction of the degeneracy
χ due to symmetry constraints for the three- and four-
fermion systems. Since the center-of-mass coordinates and
the hyperradius are unchanged under the exchange of �rj and
�rk (j,k = 1, . . . ,N), the symmetry constraints affect only the
�λ,χ ( �	) and neither GNc.m.,Lc.m.,Mc.m.

( �Rc.m.) nor Fq,λ(R).
Plugging Eq. (21) into the Schrödinger equation H niψni =

Eni(N↑,N↓)ψni and dividing out the center-of-mass and
hyperangular contributions, we obtain an effective hyperradial
Schrödinger equation [20,50](

− h̄2

2M

∂2

∂R2
+ h̄2Kni(Kni + 1)

2MR2
+ 1

2
Mω2R2

)
F̄q,λ(R)

= [Eni(N↑,N↓) − Ec.m.]F̄q,λ(R), (24)

where

F̄q,λ(R) = R(3N−4)/2Fq,λ(R), (25)

and

Kni = λ + 3N − 6

2
. (26)

Noticing that the effective hyperradial Schrödinger equa-
tion, Eq. (24), is formally identical to the Schrödinger
equation for the three-dimensional harmonic oscillator with
angular momentum Kni [20,50], the eigenenergies Eni,rel,
Eni,rel(N↑,N↓) = Eni(N↑,N↓) − Ec.m., and the corresponding
eigenfunctions F̄q,λ(R) are readily written down,

Eni,rel = (
2q + Kni + 3

2

)
h̄ω (27)

with q = 0,1, . . . , and

F̄q,λ(R) = NqKniR
Kni+1 exp

(
− R2

2a2
M

)
L(Kni+1/2)

q

(
R2

a2
M

)
.

(28)
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The normalization constant NqKni is chosen such that∫ ∞

0
|F̄q,λ(R)|2dR = 1, (29)

leading to

NqKni =
√

2Kni+2

(2Kni + 1)!!
√

πL
(Kni+1/2)
q (0)a2Kni+3

ho,M

, (30)

where L
(Kni+1/2)
q denotes the associated Laguerre polynomial.

The harmonic oscillator length aho,M = √
h̄/(Mω) can be

interpreted as being associated with an effective mass M

particle that moves along the hyperradial coordinate R. The
quantity Kni depends on λ and can be thought of as an
effective angular momentum quantum number; it should be
noted, though, that the Kni are, in general, neither equal to the
total angular momentum Ltot nor equal to the relative angular
momentum Lrel of the two-component Fermi gas.

The explicit construction of the hyperspherical harmonics
�λ,χ ( �	) requires the hyperangles �	 to be specified. The
hyperangles �	 can be defined in many different ways, and
here we employ definitions that allow a straightforward
antisymmetrization of the �λ,χ ( �	). To this end, we introduce
a set of mass scaled Jacobi vectors �ui , i = 1, . . . ,N − 1,
where [44,45]

�ui =
√

M

µi

�ρi. (31)

Table I lists the Jacobi coordinates �ρi and the associated
reduced masses µi employed in this paper for the treatment
of atomic two-component equal-mass three- and four-fermion
systems. These Jacobi vectors have particularly convenient
properties under the exchange of identical fermions. For the
(N↑,N↓) = (2,1) system, the Jacobi vector �ρ1 changes sign
under the exchange of the two spin-up fermions, while �ρ2

remains unchanged. For the (N↑,N↓) = (2,2) system, the
exchange of the two spin-up fermions leads to a sign change
of �ρ1 while �ρ2 and �ρ3 remain unchanged, the exchange of
the two spin-down fermions leads to a sign change of �ρ2

while �ρ1 and �ρ3 remain unchanged, and the simultaneous
exchange of the two spin-up fermions and the two spin-down
fermions leads to a sign change of �ρ1 and �ρ2 while �ρ3 remains
unchanged. These properties of the Jacobi vectors make
the construction of properly antisymmetrized hyperspherical
harmonics �λ,χ ( �	) for the three- and four-fermion systems
comparatively simple. In terms of the mass-scaled Jacobi
vectors �ui , the 3N − 4 hyperspherical angles �	 are defined
as �	 = (�u1/R, . . . ,�uN−1/R) and the hyperradius R, Eq. (18),
can be rewritten as R2 = ∑N−1

i=1 �u2
i [44,45].

TABLE I. Definition of the Jacobi vectors �ρi and the associated
reduced masses µi used in our construction of the hyperspherical
harmonics �λ,χ for the two-component equal-mass atomic Fermi gas
with (N↑,N↓) = (2,1) and (2,2).

(N↑,N↓) �ρ1 �ρ2 �ρ3 µ1 µ2 µ3

(2,1) �r1 − �r2
�r1+�r2

2 − �r3
m

2
2m

3

(2,2) �r1 − �r2 �r3 − �r4
�r1+�r2

2 − �r3+�r4
2

m

2
m

2 m

TABLE II. Characterization of the hyperspherical harmonics
�λ,χ ( �	) for the (N↑,N↓) = (2,1) system with λ � 5. In determining
χ , only hyperspherical harmonics that change sign under the
exchange of the two spin-up atoms were counted.

λ χ Kni Lrel �rel

1 3 5/2 1 −1

2 5 7/2 2 +1
2 3 7/2 1 +1
2 1 7/2 0 +1

3 14 9/2 3 −1
3 5 9/2 2 −1
3 6 9/2 1 −1

4 18 11/2 4 +1
4 14 11/2 3 +1
4 15 11/2 2 +1
4 3 11/2 1 +1
4 1 11/2 0 +1

5 33 13/2 5 −1
5 18 13/2 4 −1
5 28 13/2 3 −1
5 10 13/2 2 −1
5 9 13/2 1 −1

Following Avery [44], we construct a complete set of
hyperspherical harmonics �λ,χ ( �	), which are simultaneous
eigenfunctions of the operators 
2, L2

rel, Lrel,z, and �rel.
Although the explicit functional forms of the �λ,χ ( �	) are
needed in our perturbative treatment, we restrict ourselves
here to summarizing the degeneracies of the noninteracting
eigenfunctions for the (N↑,N↓) = (2,1) and (2,2) systems (see
Tables II and III).

Table II shows the degeneracies χ and quantum numbers of
the hyperspherical harmonics for the (N↑,N↓) = (2,1) system
with λ up to 5; in constructing Table II, only hyperspherical
harmonics that change sign under the exchange of the two spin-
up atoms were counted. This symmetry constraint reduces the
degeneracy of each λ manifold tremendously. Equation (23)—
applicable to a system without symmetry constraints—gives
1, 6, 20, and 50 for λ = 0,1,2, and 3, while Table II shows
that the degeneracies are reduced to 0, 3, 9, and 25. Table II
can be readily constructed by considering the angular mo-
mentum operators �l1 and �l2 associated with the Jacobi vectors
�ρ1 and �ρ2, and by taking into account that �l1 and �l2 couple
to �Lrel [44]. Since �ρ1 is the Jacobi vector that connects
the two spin-up fermions, l1 can only take odd values;
l2, in contrast, is not restricted by symmetry constraints,
implying l2 = 0,1, . . . . For a given λ, the allowed (l1,l2)
combinations are determined by λ = l1 + l2 + 2p, where
p = 0,1, . . . [44,51]. Since the (l1,l2) = (0,0) combination is
symmetry-forbidden, the smallest allowed λ value is 1. For
λ = 1, the only possible (l1,l2) combination is (1,0), resulting
in Lrel = 1, �rel = (−1)l1+l2 = −1, and a degeneracy of χ = 3
(corresponding to three different projection quantum numbers
ML). For λ = 2, the only possible (l1,l2) combination is (1,1),
leading to Lrel = 0,1,2, and �rel = +1. The degeneracy χ is
9 (1, 3, and 5 states for Lrel = 0, 1, and 2, respectively). For
λ = 3, the allowed (l1,l2) combinations are (3,0), (1,2), and

053615-5



K. M. DAILY AND D. BLUME PHYSICAL REVIEW A 81, 053615 (2010)

TABLE III. Characterization of the hyperspherical harmonics
�λ,χ ( �	) for the (N↑,N↓) = (2,2) system with λ � 5. In determining
χ , only hyperspherical harmonics that change sign under the
exchange of the two spin-up atoms and the two spin-down atoms
were counted.

λ χ Kni Lrel �rel

2 5 5 2 +1
2 3 5 1 +1
2 1 5 0 +1

3 7 6 3 −1
3 10 6 2 −1
3 9 6 1 −1
3 1 6 0 −1

4 27 7 4 +1
4 28 7 3 +1
4 35 7 2 +1
4 12 7 1 +1
4 3 7 0 +1

5 33 8 5 −1
5 54 8 4 −1
5 77 8 3 −1
5 50 8 2 −1
5 27 8 1 −1
5 2 8 0 −1

(1,0), leading to Lrel = 3 (7 states), Lrel = 3,2,1 (15 states),
and Lrel = 1 (3 states), respectively; thus, the degeneracy χ is
25. Following this reasoning, the remaining entries in Table II
can be verified.

Table III summarizes the degeneracies and quantum num-
bers for the (N↑,N↓) = (2,2) system. Similar to the three-
fermion case, Table III is constructed by realizing that the
angular momentum quantum numbers l1 and l2 associated with
the Jacobi vectors �ρ1 and �ρ2 can only take odd values and that
l3, where l3 denotes the angular momentum quantum number
associated with the Jacobi vector �ρ3, can take any value. For
a given λ, the allowed (l1,l2,l3) combinations are determined
by λ = l1 + l2 + l3 + 2p + 2q, where p,q = 0,1, . . . [44,51].
Since both l1 and l2 have to be odd, the smallest allowed λ value
is 2. In this case, l1 = l2 = 1 and l3 = 0. The λ = 2 manifold
thus consists of nine states [�l1, �l2, and �l3 can couple so that
Lrel = 2 (5 states), 1 (3 states), and 0 (1 state)]. For λ = 3,
the only possibility is (l1,l2,l3) = (1,1,1), implying 27 states.
The angular momenta corresponding to these 27 states can be
obtained by first coupling �l1 and �l2 to an intermediate angular
momentum vector with quantum number 2, 1, or 0, and then
coupling the intermediate angular momentum vector and �l3 to
obtain �Lrel. The higher λ manifolds are treated following the
same scheme.

Knowing the allowed λ and χ values, the degener-
acy gni,rel of a given relative energy Eni,rel(N↑,N↓) of
the noninteracting trapped Fermi gas can be easily de-
termined using Eqs. (26) and (27). These degeneracies
are summarized in the second column of Tables IV
and V for the three- and four-fermion systems, respectively.
Alternatively [47,50], the relative energy Eni,rel(N↑,N↓) of
the noninteracting three- and four-fermion systems can be

TABLE IV. Coefficients c(1) for Fermi gas with (N↑,N↓) = (2,1).
The c(1) are defined through E(1) = c(1)(2π )−1/2h̄ωa(aa)/aho.

Eni,rel/(h̄ω) gni,rel Lrel �rel c(1)

4 3 1 −1 3

5 5 2 +1 3/2
5 3 1 +1 0
5 1 0 +1 15/4

6 7 3 −1 9/4
6 7 3 −1 0
6 5 2 −1 0
6 3 1 −1 3

16 (13 + √
41)

6 3 1 −1 3
16 (13 − √

41)
6 3 1 −1 0

written as Eni,rel(N↑,N↓) = ∑N−1
j=1 (2nj + lj + 3/2)h̄ω, where

nj = 0,1, . . . and where the allowed angular momentum
quantum numbers lj are determined by the symmetry re-
quirements (see above). Counting the possible combina-
tions of lj and nj values and taking the (2lj + 1) de-
generacy associated with each lj into account, gives the
same results as those reported in the second column of
Tables IV and V, and also allows—using Eqs. (26) and
(27)—an independent determination of the λ and χ values
given in the first two columns of Tables II and III.

So far, we have discussed the hyperspherical framework
for the noninteracting two-component Fermi gas. We now
review the modifications needed when applying this frame-
work to the infinitely strongly interacting unitary gas with
zero-range two-body interactions. The zero-range two-body
potential with infinite a(aa) does not establish a meaningful
length scale, leaving the oscillator length aho as the only
length scale in the problem. Using scale invariance arguments,
it has been shown [20] that a diverging s-wave scattering
length a(aa) implies that the wave function ψunit(�r1, . . . ,�rN ) at
unitarity separates in the same way as that of the noninteracting
system [see Eq. (21)]. It follows that Eq. (24) applies
not only to the noninteracting gas but also to the unitary
gas if Kni is replaced by Kunit and if λ is reinterpreted
as the eigenvalue of the hyperangular eigenequation that
takes the two-body interactions into account. In the following,
we use Kunit to denote the effective angular momentum of
the unitary gas. Note that Kunit depends on the eigenvalue of
the hyperangular eigenequation, i.e., there exists a Kunit for
each channel function �λ,χ ( �	); for notational convenience,
we do not explicitly indicate the dependence of Kunit on the
hyperangular quantum numbers.

The coefficients Kunit have been obtained for all states of the
three-fermion system [32] (see also Refs. [62–64] for earlier
work) and for the lowest 20 states with (Lrel,�rel) = (0,+1)
of the four-fermion system [65] by solving the hyperangular
Schrödinger equation that includes the two-body interactions
(see also Ref. [42]). The relative eigenenergies Eunit,rel of the
unitary gas are, similar to the noninteracting case, given by [20]

Eunit,rel = (2q + Kunit + 3/2)h̄ω, (32)

and Eqs. (28)–(30) remain valid if Kni is replaced by Kunit

(and if λ is reinterpreted as discussed above). In Sec. III,
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TABLE V. Coefficients c(1) for Fermi gas with (N↑,N↓) = (2,2).
The c(1) are defined through E(1) = c(1)(2π )−1/2h̄ωa(aa)/aho.

Eni,rel/(h̄ω) gni,rel Lrel �rel c(1)

13/2 5 2 +1 5
13/2 3 1 +1 4
13/2 1 0 +1 13/2

15/2 7 3 −1 7/2
15/2 5 2 −1 3
15/2 5 2 −1 2
15/2 3 1 −1 5
15/2 3 1 −1 1

8 (29 + √
41)

15/2 3 1 −1 1
8 (29 − √

41)
15/2 1 0 −1 0

17/2 9 4 +1 1
8 (27 + √

73)
17/2 9 4 +1 5/2
17/2 9 4 +1 1

8 (27 − √
73)

17/2 7 3 +1 1
4 (9 + √

17)
17/2 7 3 +1 3
17/2 7 3 +1 1

4 (9 − √
17)

17/2 7 3 +1 0
17/2 5 2 +1 5.892 52
17/2 5 2 +1 5.310 30
17/2 5 2 +1 4.613 21
17/2 5 2 +1 3.217 83
17/2 5 2 +1 3.215 49
17/2 5 2 +1 1.921 29
17/2 5 2 +1 1.454 35
17/2 5 2 +1 0
17/2 3 1 +1 4.505 66
17/2 3 1 +1 3
17/2 3 1 +1 1.731 67
17/2 3 1 +1 0.5126 68
17/2 3 1 +1 0
17/2 1 0 +1 7.408 48
17/2 1 0 +1 6.981 38
17/2 1 0 +1 15/4
17/2 1 0 +1 2.891 39

we determine a number of Kunit coefficients by solving the
full relative Schrödinger equation of the four-fermion system
for various Lrel > 0 and by then comparing the resulting
energy with the right-hand side of Eq. (32). Lastly, we note
that Eq. (32) implies that the excitation spectrum of the
trapped unitary two-component Fermi gas contains ladders
of excitation frequencies that are integer multiples of 2h̄ω,
independent of the actual values of Kunit [14,19,20].

C. Numerical treatment of the three-fermion system:
Lippmann-Schwinger equation

The trapped three-fermion problem with zero-range in-
teractions and arbitrary s-wave scattering length a(aa) has
been solved using a number of different semianalytical and
numerical approaches [33–35]. Here, we replace the regu-
larized zero-range pseudopotential V

(aa)
F,reg(�r), which describes

the interactions between atoms with opposite spins, by the
corresponding Bethe-Peierls boundary condition and employ
an approach developed by Kestner and Duan [33] that is

based on the Lippmann-Schwinger equation. This approach
reduces the three-body problem to solving a set of coupled
equations [33],

2�(−νj )

�
(−νj − 1

2

)cj +
B∑

k=1

djkck =
(

a
(aa)
ho,µ

a(aa)

)
cj , (33)

for the eigenvector �c = (c1, . . . ,cB) and the eigenvalue
(a(aa)/a

(aa)
ho,µ)−1. In Eq. (33), the νj denote noninteger quantum

numbers that depend on Erel(2,1) and the djk dimensionless
matrix elements. Their definitions are given in Refs. [33,66].

In the B → ∞ limit, Eq. (33) gives the exact three-fermion
energy spectrum. For each Erel(2,1), there exist multiple �c and
a(aa) that solve Eq. (33). Thus, Eq. (33) can be interpreted
as a matrix equation with eigenvector matrix c = (�c1, . . . ,�cB)
and eigenvalue vector ((a(aa))1, . . . ,(a(aa))B). The solutions
obtained by solving Eq. (33) belong to three-fermion states
with natural parity. For the three-fermion system, unnatural
parity states are not affected by the s-wave zero-range
interactions and coincide with those of the noninteracting
system. For each Lrel, we solve the matrix problem for different
B, using B � 50. For positive Erel(2,1), our results presented
in Sec. III A are obtained using B = 50. For negative Erel(2,1),
we use somewhat smaller B values; we have checked through
extrapolation to the B → ∞ limit that the three-fermion
energies obtained in this manner are highly accurate. We
find, e.g., that the eigenenergies at unitarity obtained by
the numerical approach based on the Lippmann-Schwinger
equation [33] agree to better than 0.01% with those obtained
by solving the transcendental equation derived by Werner and
Castin [32].

D. Numerical treatment of the four-fermion system:
Stochastic variational approach

To determine the energy spectrum of two-component Fermi
gases with (N↑,N↓) = (2,2) under spherically symmetric
harmonic confinement, we employ the stochastic variational
approach [35–41]. Our implementation separates off the
center-of-mass degrees of freedom �Rc.m., defines a set of
N − 1 Jacobi coordinates �x = ( �ρ1, . . . , �ρN−1), and expands the
relative wave function ψrel(�x) in terms of the basis functions
ϕk(�x),

ψrel(�x) =
B∑

k=1

A[ckϕk(�x)], (34)

where the antisymmetrization operator A can be written as
A = 1 − P12 − P34 + P12P34 for the (N↑,N↓) = (2,2) sys-
tem. In Eq. (34), the ck denote expansion coefficients. We
parametrize the two-body potential Vtb by a spherically
symmetric attractive Gaussian with depth V0 (V0 > 0) and
range r0,

VG(�r) = −V0 exp

[
−

(
r√
2r0

)2
]

; (35)

this interaction potential is convenient since the matrix
elements 〈ϕj |VG|ϕk〉 are—for the ϕk employed in this work—
known analytically [38] (see below for the definition of the
ϕk). For a given range r0, we adjust the depth V0 such that
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VG reproduces the desired s-wave scattering length a(aa). For
negative (positive) a(aa), we restrict ourselves to parameter
combinations for which VG(�r) supports no (one) s-wave
free-space bound state. For each a(aa), we consider a number
of different ranges r0 � aho, and extrapolate to the r0 → 0
limit (see Sec. III B for details).

We employ two different classes of nonorthogonal basis
functions ϕk . For both classes, the Hamiltonian matrix ele-
ments and overlap matrix elements are known analytically
[38], thus reducing the problem of finding the eigenenergies
and eigenfunctions to diagonalizing a generalized eigenvalue
problem. The first class of basis functions ϕk(�x) has well-
defined angular momentum Lrel and natural parity, while the
latter class has neither well-defined angular momentum Lrel

nor well-defined parity �rel.
To describe natural parity states with well-defined angular

momentum Lrel and corresponding projection quantum num-
ber ML, we employ the following basis functions [38]:

ϕk(�x) = |�v(k)|LrelYLrelML
(v̂(k)) exp

(− 1
2 �xT A(k) �x)

, (36)

where

�v(k) =
N−1∑
j=1

u
(k)
j �ρj . (37)

Here, the u
(k)
j , j = 1, . . . ,N − 1, define a (N − 1)-

dimensional parameter vector that determines how the angular
momentum Lrel is distributed among the (N − 1) Jacobi
vectors �ρj . In Eq. (36), A(k) denotes a (N − 1) × (N − 1)-
dimensional symmetric matrix, which is described by N (N −
1)/2 independent parameters. To get a physical interpretation
of these parameters, we rewrite the exponent on the right-hand
side of Eq. (36) in terms of a sum over the square of
interparticle distances rij and N (N − 1)/2 widths d

(k)
ij ,

1

2
�xT A(k) �x = 1

2

N−1∑
i=1

N−1∑
j=1

A
(k)
ij �ρi · �ρj =

N∑
i<j

(
rij√
2d

(k)
ij

)2

. (38)

The explicit relationship between the parameter matrix A(k)

and the widths d
(k)
ij (i < j ) can be determined by expressing

the interparticle distance vectors �rij in terms of the Jacobi
vectors �x [38]. Equation (38) illustrates that the d

(k)
ij determine

the widths of Gaussian functions in the interparticle distance
coordinates. In our calculations, we choose a set of widths
d

(k)
ij for each basis function and construct the matrix A(k)

from these. The widths d
(k)
ij themselves are—guided by phys-

ical arguments—determined semistochastically following the
schemes discussed in Refs. [35,38,40]. For the (N↑,N↓) =
(2,2) system with small r0 and small positive a(aa), e.g., three-
and four-body bound states are absent [54,56], implying that
at most two of the widths d

(k)
13 , d

(k)
14 , d

(k)
23 , and d

(k)
24 (but not

d
(k)
13 and d

(k)
14 simultaneously or d

(k)
23 and d

(k)
24 simultaneously)

should be of the order of the two-body range r0 for a given
k. We use the basis functions given in Eq. (36) to determine
the eigenenergies of states with vanishing and finite Lrel and
natural parity, i.e., �rel = (−1)Lrel .

To describe states with unnatural parity, we employ basis
functions ϕk that are neither eigenfunctions of the angular
momentum operator Lrel nor the parity operator �rel [38],

ϕk(�x) = exp
(− 1

2 �xT A(k) �x + (�s(k))T �x)
. (39)

Here, the quantity �s(k) consists of N − 1 three-dimensional
parameter vectors, and (�s(k))T �x is just the dot product between
two 3(N − 1)-dimensional vectors. The 3(N − 1) parameters
of �s(k) are, together with the N (N − 1)/2 parameters of the
matrix A(k), optimized semistochastically [38]. Since the basis
functions defined in Eq. (39) are not eigenfunctions of Lrel,
ML, or �rel, their use allows the determination of the entire
energy spectrum at once. In Sec. III B, we employ the basis
functions given in Eq. (39) to determine the energetically
lowest-lying unnatural parity state of the four-fermion system
with negative a(aa).

Following the schemes outlined, the determination of the
four-fermion energies corresponding to unnatural parity states
is significantly less numerically efficient than that of natural
parity states. This is, of course, not surprising since only a
“fraction” of the basis functions given in Eq. (39) contributes
to describing states with the desired angular momentum,
projection quantum number, and parity.

III. RESULTS

This section summarizes the energetics of the three- and
four-particle equal-mass Fermi gas.

A. Three-fermion system

Figures 2(a) and 2(b) show the eigenenergies Erel(2,1) for
states with natural parity and Lrel = 0 and 1 as a function of
the inverse scattering length 1/a(aa). The symbols show the
solutions to the coupled equations, Eq. (33), while the solid
and dashed lines are obtained from our perturbative treatments
of the atomic Fermi gas and the effective atom plus dimer
model, respectively. Note that the perturbative treatment of
the atomic Fermi gas (solid lines) describes the energy levels
corresponding to gaslike states for negative as well as positive
a(aa) (|a(aa)| small). In the following, we highlight selected
characteristics of the three-fermion energy spectrum.

We first consider the weakly interacting attractive Fermi
gas. In the noninteracting limit, a(aa) → 0−, the ground state
has an energy of Eni,rel = 4h̄ω and is characterized by Lrel = 1
and �rel = −1 (see Fig. 2 and Table IV). For the next family of
energies with Eni,rel = 5h̄ω, we have two natural parity states
with Lrel = 0 and Lrel = 2, and one unnatural parity state with
Lrel = 1. The fact that the lowest noninteracting Lrel = 0 state
has a higher energy than the lowest noninteracting Lrel = 1
state can be understood intuitively by realizing that the two
like atoms cannot both occupy the lowest single-particle state.
Within the hyperspherical description, this implies that the
Lrel = 0 state with λ = 0 and q = 0 is symmetry-forbidden
(see Sec. II B) and that the first symmetry-allowed Lrel = 0
state, which has λ = 2 and q = 0, lies 2h̄ω higher in energy
than the symmetry-forbidden Lrel = 0 state.

The coefficients c(1) that determine the perturbative en-
ergy shifts E(1) of the atomic (N↑,N↓) = (2,1) system are
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FIG. 2. (Color online) Three-fermion energies for (a)
(Lrel,�rel) = (0,+1) and (b) (Lrel,�rel) = (1,−1) as a function
of the inverse s-wave scattering length aho/a

(aa). Symbols show the
essentially exact zero-range energies obtained by solving Eq. (33).
Solid lines show the energies obtained by treating the noninteracting
atomic Fermi gas perturbatively for negative and positive a(aa), while
dashed lines show the energies obtained by treating the effective
atom plus dimer system perturbatively.

calculated semianalytically following the scheme outlined in
Secs. II A and II B, and reported in the last column of
Table IV for the first three energy families. As already
mentioned, the unnatural parity states of the three-fermion
system are unaffected by the interactions [20,33,66]. This
behavior is specific to zero-range s-wave interactions, since
a finite-range potential allows, in general, an energy shift
due to p-wave or other higher partial-wave interactions. To
illustrate the validity regime of the perturbative expressions,
Figs. 3(a)–3(d) show the small |a(aa)| region, a(aa) � 0, of
the three-body energy spectrum as a function of |a(aa)|/aho

for the energies around the first four energy families with
Erel(2,1) ≈ 4h̄ω to Erel(2,1) ≈ 7h̄ω. As in Fig. 2, the exact
energies are shown by symbols, while the perturbative energies
corresponding to natural parity states are shown by solid lines.
As expected, the perturbative treatment reproduces the exact
energies extremely well for small |a(aa)|/aho and provides a
semiquantitatively correct description up to |a(aa)| ≈ 0.5aho

(see also Fig. 2, which shows the perturbative energies up to
aho/|a(aa)| = 2 or |a(aa)| = 0.5aho).

Table IV shows that the coefficients c(1) cover a wide range
of values. Within each energy family, the state shifted most
strongly by the interactions is a natural parity state with the
smallest allowed angular momentum Lrel. To illustrate the
increasing density of states and the spread of the energy
levels around the noninteracting degenerate energy manifold,
Figs. 4(a) and 4(b) show the frequency with which the coeffi-
cients c(1) occur for Erel(2,1) ≈ 7h̄ω (fourth energy manifold)
and Erel(2,1) ≈ 8h̄ω (fifth energy manifold), respectively. In
making this plot, the 2Lrel + 1 degeneracy of the energy
levels has been taken into account. Since the unnatural parity
states are not affected by the zero-range interactions, the
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FIG. 3. (Color online) Three-fermion energies as a function
of the absolute value of the s-wave scattering length |a(aa)| for
small |a(aa)|, a(aa) � 0, and (a) Erel(2,1) ≈ 4h̄ω, (b) Erel(2,1) ≈ 5h̄ω,
(c) Erel(2,1) ≈ 6h̄ω, and (d) Erel(2,1) ≈ 7h̄ω. Squares, pluses, di-
amonds, crosses, and circles show the essentially exact zero-range
energies obtained by solving Eq. (33) for Lrel = 0–4. For comparison,
solid lines show the perturbative results for natural parity states. The
solid lines correspond to (a) (Lrel,�rel) = (1,−1); and from bottom to
top to (b) (Lrel,�rel) = (0,+1) and (2,+1); (c) (Lrel,�rel) = (1,−1),
(3,−1), and (1,−1); and (d) (Lrel,�rel) = (0,+1), (2,+1), (0,+1),
(4,+1), and (2,+1).

distribution of the c(1) coefficients shows a large amplitude
for the c(1) = 0 bin. Figures 4(a) and 4(b) show that the spread
of the coefficients c(1) increases slightly as the energy manifold
increases. The primary characteristic of the distributions of the
c(1) coefficients is, however, that the amplitude increases with
increasing energy.

We now consider the weakly repulsive regime, i.e., the
regime where a(aa)/aho � 1 and a(aa) > 0. In this regime,
Fig. 2 shows two families of energy levels: (i) energy levels
with positive energy and (ii) those with negative energy. The
positive energy branches correspond to states that describe
a gas of atoms; we refer to these states as the “gaslike state”
family. The energies of this family are, in the a(aa) → 0+ limit,
well described by treating the atomic Fermi gas perturbatively
(see solid lines in Fig. 2). The negative energy branches
correspond to states that can be thought of as consisting of
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FIG. 4. Frequency of the coefficients c(1), which characterize the
energy shifts E(1) of the weakly interacting atomic Fermi gas, for
the three- and four-fermion systems. Panels (a) and (b) show the
distribution of the c(1) coefficients for Erel(2,1) ≈ 7h̄ω (fourth energy
manifold of the three-fermion system) and for Erel(2,1) ≈ 8h̄ω (fifth
energy manifold of the three-fermion system). Panels (c) and (d) show
the distribution of the c(1) coefficients for Erel(2,2) ≈ 19h̄ω/2 (fourth
energy manifold of the four-fermion system) and for Erel(2,2) ≈
21h̄ω/2 (fifth energy manifold of the four-fermion system). Note the
log scale of the vertical axis.

a bound diatomic molecule and a spare atom; we refer to these
states as “dimer plus atom” family. In agreement with the
literature (see, e.g., Ref. [56]), Fig. 2 shows that the formation
of bound triatomic molecules is prohibited by the Pauli
exclusion principle or the so-called Pauli pressure. For small
and positive a(aa), the perturbative energy shifts for the energy
levels with Lrel = 0 and �rel = +1 [dashed lines in Fig. 2(a)]
are calculated using Eq. (17) with k = ad. The perturbative
approach, applied to the effective model Hamiltonian H eff ,
predicts no energy shift for states with Lrel > 0. This follows
directly from the fact that we parametrized the effective
atom-dimer interaction through a zero-range s-wave potential.
Thus, the “bending” of the dashed lines in Fig. 2(b) for
Lrel = 1 (and in general, Lrel > 0) and positive a(aa) is solely
due to the internal energy of the dimer and not due to the
effective atom-dimer interaction. We find that the perturbative
treatment provides a qualitatively correct description up to
a(aa) ≈ 0.5aho.

The effective model Hamiltonian H eff also provides an
intuitive picture for why the lowest Lrel = 0 state has a lower
energy than the lowest Lrel = 1 state as a(aa) → 0+. In the
a(aa) → 0+ limit, the diatomic molecule has vanishing angular
momentum and the angular momentum Lrel must be carried
by the atom-dimer distance vector. Thus, the energy of the
lowest state with Lrel = 1 lies approximately h̄ω above the
lowest state with Lrel = 0, the energy of the lowest state with
Lrel = 2 lies approximately h̄ω above the lowest state with
Lrel = 1, and so on. The parity inversion of the energetically
lowest-lying state (Lrel = 1 and �rel = −1 in the a(aa) → 0−
limit, and Lrel = 0 and �rel = +1 in the a(aa) → 0+ limit)
occurs at aho/a

(aa) ≈ 1 and has already been pointed out in a
number of works [33–35].

Motivated by the fact that the energy spectrum of the three-
fermion system can be described by an effective atom plus
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FIG. 5. (Color online) Symbols show the scaled energies
Erel(2,1) − Edimer as a function of the inverse scattering length
aho/a

(aa) for (a) (Lrel,�rel) = (0,+1), (b) (Lrel,�rel) = (1,−1),
(c) (Lrel,�rel) = (2,+1), and (d) (Lrel,�rel) = (3,−1). For compar-
ison, dashed lines show the energies predicted by the effective
atom-dimer model, which provides a semiquantitative description
of the states belonging to the “atom plus dimer” family (see text for
details).

dimer model in the a(aa) → 0+ limit, symbols in Figs. 5(a)–
5(d) show the quantity Erel(2,1) − Edimer as a function of the
inverse atom-atom scattering length 1/a(aa) for Lrel = 0–3.
Here, Edimer denotes the lowest eigenenergy of the trapped
s-wave interacting atom-atom system, i.e., the lowest eigenen-
ergy of Eq. (15) with k = aa. The quantity Erel(2,1) − Edimer

has been investigated previously [33,35] and has been termed
the universal energy crossover curve in Ref. [35]. Figures 5(b)–
5(d) show the existence of a family of states for Lrel > 0 whose
scaled energies are nearly independent of the s-wave scattering
length a(aa). These scaled energies are approximately given by
(2neff + Lrel + 3/2)h̄ω [see dashed lines in Figs. 5(b)–5(d)].
The fairly good agreement between the symbols and the dashed
lines reflects the fact that a subset of the three-fermion energies
can be described to a fairly good approximation by treating the
three-fermion system as consisting of a bound trapped s-wave
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dimer plus a noninteracting spare atom. Figures 5(b)–5(d)
show that this effective dimer-atom description improves with
increasing Lrel.

The fact that a subset of states of the three-particle spectrum
is reasonably well described by the effective dimer plus atom
model suggests that the three-particle energy spectrum can
be described in terms of avoided crossings between “atom
plus dimer” states and “gaslike” states. An interpretation
along this line has been quantified by von Stecher [67] who
applied a diabatization scheme. Here, we do not follow the
diabatization scheme but instead offer a qualitative discussion
of the natural parity three-fermion spectrum with Lrel > 0. We
make four observations: (i) A sequence of states has an energy
Erel(2,1) of approximately (2 + Lrel + 2n)h̄ω at unitarity, an
energy Erel(2,1) of approximately (3 + Lrel + 2n)h̄ω in the
a(aa) → 0− limit, and an energy Erel(2,1) of approximately
Edimer + (3/2 + Lrel + 2n)h̄ω in the a(aa) → 0+ limit [see
Fig. 2(b); the states discussed here are those with ap-
proximately constant Erel(2,1) − Edimer, see Figs. 5(b)–5(d)].
(ii) For each Lrel, the degeneracy of the energy families with
Eni,rel = (3 + Lrel + 2n)h̄ω, n = 0,1, . . . , increases by one
(or 2Lrel + 1 if the degeneracy of the different ML values
is accounted for explicitly) as n increases by one (see Figs. 2
and 5 and Table IV). (iii) The energy spectrum corresponding
to “gaslike” states has to be identical in the limits a(aa) → 0−
and a(aa) → 0+. (iv) It can be easily checked that (i)–(iii) are
consistent with the fact that the energy Erel(2,1) of all but
one level of each noninteracting manifold with a given Lrel

decreases by h̄ω when going from a(aa) → 0− to a(aa) → ∞
and by another h̄ω when going from a(aa) → ∞ to a(aa) → 0+.
The dropping of the energies by 2h̄ω as a(aa) changes from
0− through ±∞ to 0+ is similar to the 2h̄ω dropping of the
excited-state s-wave energies of the two-particle system (see
dashed lines in Fig. 1) and can be interpreted as one pair
(consisting of a spin-up atom and a spin-down atom) feeling
the s-wave interaction while the other spin-up atom carries the
angular momentum.

Interestingly, the observations described in the previous
paragraph allow an approximate determination of the Kunit

coefficients [see Eq. (32)]. Observation (i) implies that the
lowest Kunit coefficient for a given Lrel is approximately given
by Kunit,model = Lrel + 1/2 in the large Lrel limit. As discussed
in Sec. II B, each Kunit coefficient determines the starting
point of a ladder of energy levels, which are spaced by 2h̄ω

and associated with an increasing number of nodes along the
hyperradial coordinate R. It is evident from Figs. 5(b)–5(d) that
these states, which are characterized by the same hyperangular
quantum number but different hyperradial quantum numbers q,
transform into atom plus dimer states in the a(aa) → 0+ limit,
which are characterized by the effective orbital angular mo-
mentum quantum number leff = 0 and different radial quantum
numbers neff . Interpreting the atom-dimer distance coordinate
as the hyperradial coordinate in the a(aa) → 0+ limit, the
identification q ↔ neff suggests itself. Using observation (iv),
the remaining Kunit coefficients at unitarity are approximately
given by Kunit,model = Lrel + 1/2 + 2n for Lrel > 0 and natural
parity states [for each n = 1,2, . . . , the q quantum number in
Eq. (32) takes the values q = 0,1, . . .]. Figure 6(a) shows that
the difference between Kunit (symbols) and Kunit,model (dotted
lines) decreases as Lrel increases. The difference between Kunit
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FIG. 6. (Color online) Symbols show the coefficients Kunit that
correspond to natural parity states for (a) the three-fermion system and
(b) the four-fermion system as a function of the angular momentum
quantum number Lrel. Dotted lines show the coefficients Kunit,model

(see text for details).

and Kunit,model has previously been quantified by Werner and
Castin within a semiclassical WKB framework [32].

The Lrel = 0 spectrum is different from the Lrel > 0 spectra
for two reasons. First, the effective atom-dimer system is
described by an effective atom-dimer s-wave scattering length
a(ad), which leads to a decrease of approximately h̄ω of the
energy levels belonging to the atom plus dimer family as a(aa)

changes from ∞ to 0+. Second, the symmetry constraint in
the a(aa) → 0− limit pushes the energy of the lowest Lrel = 0
state up by h̄ω compared to that with Lrel = 1. Dashed lines
in Fig. 5(a) show the eigenenergies of the effective atom plus
dimer model, i.e., the eigenenergies of Eq. (15) for k = ad

with a(ad) given by Eq. (13). It can be seen that the agreement
between the energies of this effective model and a subset
of the full three-fermion energies is good for small positive
a(aa) and qualitatively correct throughout the entire crossover
regime. Using the effective atom plus dimer model, the energy
at unitarity of a subset of states is approximately given
by Erel(2,1) ≈ Edimer + (2q + 5/2)h̄ω, implying Kunit,model =
3/2. For comparison, the exact value is Kunit = 1.666 [32].
The other Kunit coefficients for Lrel = 0 can be estimated by
using the fact that the energy of one subset of states drops
by h̄ω in going from a(aa) → ∞ to a(aa) → 0+, implying
Eunit,rel(2,1) ≈ (5/2 + 2q + 2n)h̄ω with n = 1,2, . . . and q =
0,1, . . . . This estimate yields Kunit,model = 5/2 + 2n for n =
1,2, . . . . Figure 6(a) shows that the Kunit,model (dotted lines)
reproduce the exact Kunit coefficients (symbols) fairly well.

B. Four-fermion system

This section discusses the energy spectrum of the four-
fermion system throughout the BCS-BEC crossover. We
primarily focus on the energies corresponding to natural parity
states but also consider those states corresponding to unnatural
parity. To determine the energy spectrum corresponding to
states with natural parity, we use the stochastic variational ap-
proach with the basis functions given in Eq. (36); our basis set
optimization treats either one state at a time or a subset of states
simultaneously. For a given atom-atom scattering length a(aa),
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we determine the energies for various ranges, r0 = 0.01aho–
0.09aho, of the two-body Gaussian interaction potential and
extrapolate the finite-range energies to r0 → 0. For negative
scattering lengths a(aa), we find that the four-fermion energies
depend linearly on r0 for all Lrel considered. In this regime, we
typically calculate the energies for three different r0 and then
determine the r0 → 0 energies by performing a linear fit. For
positive scattering lengths a(aa), the energetically low-lying
part of the spectrum is dominated by the “internal” energy
of the dimer(s) formed. As discussed in more detail below,
the lowest energy family for even Lrel can be described by an
effective two-boson model, while the lowest energy family for
odd Lrel consists of states that can be thought of as consisting of
a dimer and two atoms as a(aa) → 0+ (see Sec. II and below).
Correspondingly, for positive a(aa) and even Lrel, we subtract
twice the dimer binding energy from the four-fermion energies
for each r0 and extrapolate the scaled four-fermion energies to
the r0 → 0 limit. We typically consider five different r0 and ex-
tract the scaled zero-range energies by performing a quadratic
fit to the scaled finite-range four-fermion energies. The zero-
range four-fermion energies themselves are then obtained by
adding twice the zero-range dimer energy, i.e., 2Edimer. For odd
Lrel, we subtract (and later add) the dimer energy as opposed
to twice the dimer energy but proceed analogously otherwise.

The energies of a large number of energy levels corre-
sponding to natural parity states are reported in the auxiliary
materials [68] for atom-atom scattering lengths a(aa) ranging
from 0− over ∞ to 0.2aho for Lrel � 4. Here, we present
comprehensive benchmark results for the four-fermion system
with finite angular momentum throughout the crossover
region. Tables VI and VII summarize the energies of the
four-fermion system at unitarity for natural parity states with
Lrel = 0 to Lrel = 8 as well as for one unnatural parity state.
To our knowledge, results at unitarity for Lrel > 0 have not
been presented before. We estimate that our extrapolated
zero-range energies for the energetically lowest-lying Lrel =
0 state is accurate to better than 0.1% for most scatter-
ing lengths a(aa), including infinitely large a(aa). Near the
avoided crossings around a(aa) ≈ aho (see, e.g., Fig. 10),
however, the accuracy decreases by up to an order of
magnitude. Generally speaking, we find that the accuracy
of the extrapolated zero-range energies also decreases for
energetically higher lying states and for states with larger Lrel.
The eigenenergies reported in Tables VI and VII are labeled
by the hyperradial quantum number q. Following Eq. (32),
we identify this quantum number by looking for 2h̄ω spacings
between energy pairs. Inspection of Table VI shows that the
energies with q > 0 lie, within our numerical accuracy, 2h̄ω

above an energy with q − 1 (see the nearly identical Kunit

coefficients in the fourth column of Tables VI and VII).
Figure 6(b) shows the Kunit coefficients corresponding to
natural parity states of the four-fermion system as a function of
Lrel. Compared to the three-fermion system, the four-fermion
system exhibits a notably denser energy spectrum at unitarity
[see Figs. 6(a) and 6(b)].

Lines in Fig. 7 show the extrapolated zero-range energies
for the four-fermion system corresponding to natural parity
states with Lrel = 0 to Lrel = 4 as a function of the inverse s-
wave scattering length 1/a(aa) for negative a(aa). In the a(aa) →
0− limit, the three energetically lowest-lying four-fermion

TABLE VI. Extrapolated zero-range energies Eunit,rel(2,2) for
natural parity states with Lrel � 4 [Eunit,rel(2,2) � 8.5h̄ω]. The un-
certainty of the energies is estimated to be in the last digit reported.
For comparison, the lowest energy of the (Lrel,�rel) = (1,+1) state
is Eunit,rel = 5.088(20)h̄ω.

Lrel �rel q Kunit Eunit,rel/Eho

0 +1 0 2.009 3.509
0 +1 1 2.010 5.510
0 +1 0 4.444 5.944
0 +1 0 5.029 6.529
0 +1 0 5.347 6.847
0 +1 2 2.017 7.517
0 +1 1 4.446 7.946
0 +1 0 6.864 8.364
0 +1 0 6.905 8.405

1 −1 0 4.098 5.598
1 −1 0 4.176 5.676
1 −1 0 4.730 6.230
1 −1 0 5.669 7.169
1 −1 0 5.807 7.307
1 −1 1 4.101 7.601
1 −1 1 4.180 7.680
1 −1 0 6.505 8.005
1 −1 0 6.724 8.224
1 −1 1 4.732 8.232
1 −1 0 6.904 8.404

2 +1 0 2.918 4.418
2 +1 0 4.539 6.039
2 +1 1 2.920 6.420
2 +1 0 5.039 6.539
2 +1 0 5.629 7.129
2 +1 0 5.722 7.222
2 +1 0 5.925 7.425
2 +1 0 5.927 7.427
2 +1 1 4.542 8.042
2 +1 0 6.707 8.207
2 +1 2 2.924 8.424
2 +1 0 7.001 8.501

3 −1 0 4.676 6.176
3 −1 0 5.871 7.371
3 −1 0 6.191 7.691
3 −1 0 6.194 7.694
3 −1 1 4.678 8.178
3 −1 0 6.764 8.264
3 −1 0 6.771 8.271
3 −1 0 6.904 8.404
3 −1 0 6.977 8.477

4 +1 0 4.985 6.485
4 +1 0 5.838 7.338
4 +1 0 5.868 7.368
4 +1 0 6.865 8.365
4 +1 1 4.984 8.484

energy manifolds around Eni,rel(2,2) = 13h̄ω/2, 15h̄ω/2, and
17h̄ω/2 consist of two, four, and 15 states, respectively (here,
the 2Lrel + 1 degeneracy due to the ML quantum number is
not included in counting the states; see also Table V). For
comparison, pluses in Fig. 7 show the energetically lowest-
lying unnatural parity state with (Lrel,�rel) = (1,+1); in this
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TABLE VII. Lowest two extrapolated zero-range energies
Eunit,rel(2,2) for the four-fermion system with natural parity and
Lrel = 5–8 at unitarity. The uncertainty of the extrapolated zero-range
energies is estimated to be in the last or second to last digit reported.

Lrel �rel q Kunit Eunit,rel/Eho

5 −1 0 6.745 8.245
5 −1 0 6.790 8.290

6 +1 0 6.996 8.496
6 +1 0 7.781 9.281

7 −1 0 8.769 10.269
7 −1 0 8.777 10.277

8 +1 0 8.998 10.498
8 +1 0 9.775 11.275

case, the energies are calculated for a Gaussian two-body
potential with small but finite r0 and have not been extrapolated
to the r0 → 0 limit. Figure 7 shows that the three energy
manifolds remain distinguishable up to aho/a

(aa) ≈ −2 but
start to overlap notably in the strongly interacting regime.

We now discuss the weakly attractive regime of the four-
fermion energy spectrum in more detail. The coefficients
c(1) that determine the perturbative energy shifts E(1) are
summarized in the last column of Table V for the first
three energy manifolds with Eni,rel = 13h̄ω/2, 15h̄ω/2, and
17h̄ω/2. Figure 8 compares the four-fermion spectrum near
Erel(2,2) ≈ 13/2h̄ω calculated by the stochastic variational
approach [squares, diamonds, and pluses show the energy lev-
els corresponding to states with (Lrel,�rel) = (0,+1), (2,+1),
and (1,+1), respectively] with that calculated perturbatively
(solid and dashed lines show the energies corresponding to
states with natural and unnatural parity, respectively). As
expected, the agreement is excellent for small |a(aa)| and
worsens with increasing |a(aa)|. For small |a(aa)|, the energy
level with unnatural parity is affected less strongly by the
two-body interactions than the energy levels with natural
parity. Inspection of Table V shows that this is a general trend;
i.e., within a given manifold, the energy level shifted most
strongly is that corresponding to the natural parity state with
the smallest allowed angular momentum.
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FIG. 7. (Color online) Four-fermion energies Erel(2,2) as a func-
tion of the inverse s-wave scattering length aho/a

(aa) with 1/a(aa) � 0.
For a(aa) → 0−, all energy levels corresponding to natural parity
states around Eni,rel = 13h̄ω/2, 15h̄ω/2, and 17h̄ω/2 are shown.
Solid, dotted, dashed, dash-dotted, and dash-dash-dotted lines show
the zero-range energies corresponding to natural parity states with
Lrel = 0 to Lrel = 4. Pluses show the energy of the energetically
lowest-lying unnatural parity state with Lrel = 1.
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FIG. 8. (Color online) Four-fermion energies Erel(2,2) as a
function of the absolute value of the s-wave scattering length |a(aa)| for
small |a(aa)|, a(aa) � 0, and Erel(2,2) ≈ 13h̄ω/2. Squares, diamonds,
and pluses show the numerically determined four-fermion ener-
gies for (Lrel,�rel) = (0,+1), (Lrel,�rel) = (2,+1), and (Lrel,�rel) =
(1,+1), respectively. Solid and dashed lines show the perturbative
results for natural and unnatural parity states, respectively.

To illustrate the behavior of the energy spectrum for a higher
energy manifold, Fig. 9 shows the energies corresponding
to the eight states with (Lrel,�rel) = (2,+1) around Erel ≈
17h̄ω/2. Again, the agreement between the numerically deter-
mined energies (diamonds) and the perturbatively determined
energies (solid lines) is excellent for small |a(aa)|. Interestingly,
within the perturbative treatment, one of the (Lrel,�rel) =
(2,+1) states is not affected by the s-wave interactions,
implying that the wave function vanishes whenever two unlike
fermions approach each other closely. It turns out that the
perturbative result in this case is exact, i.e., there exists a
(Lrel,�rel) = (2,+1) state with energy Erel(2,2) = 17h̄ω/2 for
all scattering lengths a(aa).

Figures 4(c) and 4(d) show the distributions of the c(1)

coefficients for the fourth and fifth energy manifolds with
Erel(2,2) ≈ 19h̄ω/2 and Erel(2,2) ≈ 21h̄ω/2, respectively.
Compared to the three-particle case [Figs. 4(a) and 4(b)],
the degeneracies increase more rapidly, as can be seen
by the higher frequency with which the c(1) coefficients
occur. Furthermore, the c(1) = 0 bin no longer dominates the
distribution, since both natural and unnatural parity states are
effected by the zero-range interactions.

Next, we discuss the energy spectrum in the strongly
interacting regime and in the a(aa) → 0+ limit. For small a(aa),
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FIG. 9. (Color online) Four-fermion energies Erel(2,2) as a
function of the absolute value of the s-wave scattering length |a(aa)|
for small |a(aa)| (a(aa) � 0), Erel(2,2) ≈ 17h̄ω/2 and (Lrel,�rel) =
(2,+1). Diamonds show the numerically determined four-fermion
energies, while solid lines show the perturbative results. Note that the
fourth and fifth states (counted from the bottom) are nearly degenerate
for the scattering length range depicted.
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FIG. 10. (Color online) Scaled four-fermion energies Erel(2,2) −
2Edimer as a function of aho/a

(aa) for (a) (Lrel,�rel) = (0,+1),
(b) (Lrel,�rel) = (2,+1), and (c) (Lrel,�rel) = (4,+1). Symbols show
the numerically determined energies, while dashed lines show the
energies predicted by the effective dimer-dimer model (see text for
details).

the energetically lowest-lying states with even Lrel belong
to the “dimer plus dimer” family, while the energetically
lowest-lying states with odd Lrel belong to the “dimer plus
atom plus atom” family. Motivated by this observation (see
also Refs. [35,40,67]) and by our discussion of the three-
fermion system (see Sec. III A), Figs. 10(a), 10(b), and 10(c)
show the scaled energies Erel(2,2) − 2Edimer for Lrel = 0,
2, and 4, respectively. The scaled four-fermion spectra for
Lrel = 2 and 4 contain a set of nearly constant scaled energies
given by Erel(2,2) − 2Edimer ≈ (3/2 + Lrel + 2q)h̄ω, where
q = 0,1, . . . [see dashed lines in Figs. 10(b) and 10(c)].
Figures 10(b) and 10(c) show that this description improves
with increasing Lrel. The set of constant scaled energies
Erel(2,2) − 2Edimer is predicted to exist within the effective
two-boson model, which treats the composite bosons as
noninteracting if Lrel > 0 and Lrel even [see the discussion
below Eq. (15) in Sec. II]. Using that a subset of the
scaled energies is approximately constant and that the dimer
energy Edimer equals h̄ω/2 at unitarity, the lowest Kunit

coefficient is, for Lrel even and Lrel > 0, approximately given
by Kunit,model = Lrel + 1. The energy levels associated with
these Kunit coefficients have the minimally allowed number
of excitations in the hyperangular degrees of freedom and q

excitations along the hyperradial coordinate R; these states
transform, as a(aa) changes from ∞ to 0+, to “dimer plus
dimer” states with neff radial excitations. Since the dimers are
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FIG. 11. (Color online) Symbols show the difference between the
lowest coefficient Kunit obtained from our numerically determined
four-fermion energies and the lowest coefficient Kunit,model predicted
by the simple dimer-dimer model discussed in the text as a function
of Lrel (Lrel even). To guide the eye symbols are connected by dotted
lines.

composite bosons, an analogous set of states does not exist
for odd Lrel. Squares in Fig. 11 show the difference between
the lowest Kunit coefficient and the Kunit,model, where Kunit is
taken from Tables VI and VII for Lrel = 2–8 and Lrel even.
This figure supports our conjecture that the lowest coefficient
Kunit converges to the value Kunit,model in the large Lrel limit.

The behavior of the scaled energies for Lrel = 0 is different
from that of the scaled energies for Lrel > 0 (Lrel even).
Figure 10(a) does not show a set of nearly constant scaled
energy levels but instead shows a set of scaled energies
that drop by approximately h̄ω in going from a(aa) → 0−
to a(aa) = ∞ and by another h̄ω in going from a(aa) = ∞
to a(aa) → 0+. Dashed lines in Fig. 10 show the energies
predicted by the effective dimer-dimer model. To obtain these
energies, we solve Eq. (15) for k = dd and use Eq. (14) to
express the effective dimer-dimer scattering length a(dd) in
terms of the atom-atom scattering length a(aa) throughout the
entire crossover. The dashed lines agree surprisingly well
with the full four-fermion energies throughout the entire
crossover. Comparison with Fig. 5(a) shows that the effective
two-particle model provides a better description of the four-
fermion than of the three-fermion system, particularly for
negative a(aa). Intuitively, this might be explained by the
fact that the three-fermion system contains an unpaired atom
while all atoms participate in the molecule formation in the
four-fermion system. Figure 10 suggests that the four-fermion
energy spectrum can be interpreted by considering avoided
crossings between dimer-dimer states and states that belong
to the “dimer plus atom plus atom” and the “gaslike state”
families. An analysis along these lines has been performed
in Refs. [40,67]; however, to the best of our knowledge
this type of analysis has not been previously applied to
estimate the value of the lowest Kunit coefficient for Lrel = 0.
Using that the energy in the a(aa) → 0+ limit is given by
2Edimer + (3/2 + 2neff)h̄ω and that the energy at unitarity
is—using the argument above—2Edimer + (5/2 + 2q)h̄ω, the
lowest Kunit coefficient for Lrel = 0 can be estimated to be
Kunit,model = 2. Table VI shows that this model is surprisingly
accurate, i.e., Kunit = 2.009 (see also Fig. 11).

We find numerically that the second-lowest Kunit coefficient
for even Lrel (�rel = +1) and the lowest Kunit coefficient for
odd Lrel (�rel = −1) appear to approach Lrel + 7/4 for large
Lrel. At present, we have no explanation for this observation.
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While our analysis presented above allows the prediction of
the lowest Kunit coefficient for all even Lrel, the remaining
coefficients at unitarity appear to be the result of an intricate
interplay of how to best distribute the angular momentum
among the six interparticle distances.

IV. SUMMARY

This paper considered s-wave interacting three- and
four-fermion systems under external spherically symmetric
harmonic confinement. If the range r0 of the underlying
interaction potential is much smaller than the other length
scales of the system, i.e., the atom-atom s-wave scattering
length a(aa) and the harmonic oscillator length aho, then
the physics of two-component equal-mass Fermi systems is
universal. If the s-wave scattering length is tuned in the
vicinity of a so-called broad Feshbach resonance [55,69,70],
then the low-energy properties of these few-fermion systems
are expected to behave universally, i.e., independently of the
details of the underlying interaction potential. Our results
are expected to apply to the most frequently experimentally
studied species 6Li and 40K [22,71–76].

We have numerically determined the zero-range energy
spectrum of the three- and four-fermion systems for a wide
range of s-wave scattering lengths a(aa). Our study of the
three-fermion system is based on the Lippmann-Schwinger
equation, which reduces the problem to solving a set of
coupled equations for each angular momentum Lrel [33]. The
three-fermion spectrum is analyzed and interpreted following
a number of different approaches. In the weakly interacting
regime, the interactions are treated as a perturbation to the
noninteracting trapped atomic Fermi gas. This approach cor-
rectly describes the gaslike states of the system for small |a(aa)|,
with a(aa) positive and negative, but does not describe states
that are associated with the formation of diatomic molecules.
The energies of this family of states are described by an
effective two-particle Hamiltonian that treats the diatomic
molecule as a composite point particle and assumes that the
spare atom and the molecule interact through the s-wave
scattering channel characterized by the effective atom-dimer
scattering length a(ad). Somewhat surprisingly, this effective
two-particle model describes correctly the energies of a subset
of states not only quantitatively in the weakly repulsive regime
but also qualitatively for negative a(aa) (see dashed lines in
Fig. 5). Building on this observation, we developed a simple
model which predicts the Kunit coefficients with reasonably
good accuracy. In doing so, our motivation was to develop a
physical picture of the general features of the three-fermion
energy spectrum that can, at least partially, be generalized to
larger systems. A key result of our analysis is that the energy
levels determined by the lowest Kunit coefficient for each
Lrel transform to “atom plus dimer” states as a(aa) changes
from ∞ to 0+. This “transformation” of the states can be

interpreted nicely within the hyperspherical framework. Using
hyperspherical coordinates, the states for a(aa) = ∞ and 0+
are separable, and the widths of the avoided crossings of the
energy levels for finite a(aa) are determined by the couplings
between different hyperradial potential curves (see, e.g., Refs.
[45,77–79] as well as Ref. [67]).

We also solved the time-independent Schrödinger equation
for the four-fermion system for a Gaussian two-body potential
with varying range r0 using the stochastic variational approach.
The resulting finite-range energies were then extrapolated to
the r0 → 0 limit. The energy spectrum of the four-fermion
system is much denser than that of the three-fermion system.
Unlike for the three-fermion system, natural and unnatural
parity states of the four-fermion system are shifted by the
zero-range interactions. Our primary focus in this paper has
been to characterize the energies of the lowest few states with
natural parity throughout the crossover, including the infinitely
strongly interacting unitary regime. As in the three-fermion
case, our semianalytical perturbative approach, which utilizes
hyperspherical coordinates, reproduces the numerically de-
termined four-fermion energies with good accuracy in the
weakly attractive and weakly repulsive regimes. We paid
special attention to the infinitely strongly interacting regime
and analyzed the energy spectrum at unitarity within an
effective two-boson model. This analysis provides a physical
picture of how the lowest Kunit coefficient for natural parity
states and even Lrel comes about and how the associated
ladder of states transforms to “dimer plus dimer” states as
a(aa) → 0+. Furthermore, the fact that the effective two-boson
model reproduces a subset of energy levels semiquantitatively
throughout the entire crossover regime suggests that the
concept of the effective dimer-dimer scattering length a(dd)

extends beyond the small a(aa) regime (a(aa) > 0).
One motivation for studying small few-fermion systems is

to develop a “bottom-up approach” that investigates the mi-
croscopic physics of two-component Fermi gases by treating
successively larger systems. With this motivation in mind, the
three-fermion system can be considered the smallest system
that models spin-imbalanced Fermi gases [33], while the
four-fermion system can be considered the smallest system that
models pairing physics throughout the BCS-BEC crossover of
spin-balanced Fermi gases [40]. In the future, it will be interest-
ing to extend the studies presented here to larger equal-mass
few-fermion systems as well as to unequal-mass fermionic
and bosonic systems. We also hope to use the perturbative
treatment of the four-fermion system to estimate the fourth-
order virial coefficient in the weakly interacting regimes.
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[30] M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger,

Phys. Rev. Lett. 94, 080403 (2005).
[31] G. Thalhammer, K. Winkler, F. Lang, S. Schmid, R. Grimm, and

J. H. Denschlag, Phys. Rev. Lett. 96, 050402 (2006).
[32] F. Werner and Y. Castin, Phys. Rev. Lett. 97, 150401

(2006).
[33] J. P. Kestner and L. M. Duan, Phys. Rev. A 76, 033611

(2007).
[34] I. Stetcu, B. R. Barrett, U. van Kolck, and J. P. Vary, Phys. Rev.

A 76, 063613 (2007).
[35] J. von Stecher, C. H. Greene, and D. Blume, Phys. Rev. A 77,

043619 (2008).
[36] K. Varga and Y. Suzuki, Phys. Rev. C 52, 2885 (1995).
[37] K. Varga, P. Navratil, J. Usukura, and Y. Suzuki, Phys. Rev. B

63, 205308 (2001).
[38] Y. Suzuki and K. Varga, Stochastic Variational Approach to

Quantum Mechanical Few-Body Problems (Springer-Verlag,
Berlin, 1998).

[39] H. H. B. Sørensen, D. V. Fedorov, and A. S. Jensen, AIP Conf.
Proc. 777, 12 (2005).

[40] J. von Stecher and C. H. Greene, Phys. Rev. Lett. 99, 090402
(2007).

[41] J. von Stecher, C. H. Greene, and D. Blume, Phys. Rev. A 76,
053613 (2007).

[42] D. Blume, J. von Stecher, and C. H. Greene, Phys. Rev. Lett. 99,
233201 (2007).

[43] D. Blume and K. M. Daily, Phys. Rev. A 80, 053626
(2009).

[44] J. Avery, Hyperspherical Harmonics: Applications in Quantum
Theory (Kluwer Academic, Dordrecht, 1989).

[45] C. D. Lin, Phys. Rep. 257, 1 (1995).
[46] J. L. Bohn, B. D. Esry, and C. H. Greene, Phys. Rev. A 58, 584

(1998).
[47] N. K. Timofeyuk, Phys. Rev. C 65, 064306 (2002).
[48] N. K. Timofeyuk, Phys. Rev. C 69, 034336 (2004).
[49] M. F. de la Ripelle, S. A. Sofianos, and R. M. Adam, Ann. Phys.

(NY) 316, 107 (2005).
[50] S. T. Rittenhouse, M. J. Cavagnero, J. von Stecher, and

C. H. Greene, Phys. Rev. A 74, 053624 (2006).
[51] U. Fano, D. Green, J. L. Bohn, and T. A. Heim, J. Phys. B 32,

R1 (1999).
[52] S. T. Rittenhouse and C. H. Greene, J. Phys. B 41, 205302

(2008).
[53] E. Fermi, Nuovo Cimento 11, 157 (1934).
[54] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev.

Lett. 93, 090404 (2004).
[55] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, J. Phys. B 38,

S645 (2005).
[56] D. S. Petrov, Phys. Rev. A 67, 010703(R) (2003).
[57] K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).
[58] G. V. Skorniakov and K. A. Ter-Martirosian, Zh. Eksp. Teor.

Fiz. 31, 775 (1956) [Sov. Phys. JETP 4, 648 (1957)].
[59] C. Mora, R. Egger, A. O. Gogolin, and A. Komnik, Phys. Rev.

Lett. 93, 170403 (2004).
[60] C. Mora, R. Egger, and A. O. Gogolin, Phys. Rev. A 71, 052705

(2005).
[61] T. Busch, B.-G. Englert, K. Rzążewski, and M. Wilkens, Found.
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