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Noise-induced dephasing in neutron interferometry
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Decoherence phenomenona in a neutron interferometer are analyzed by simulation of the effects of an
environment with magnetic noise fields. Basic calculations and experiments show the validity and limitations
of this model system. In particular, loss and recovery of the interference pattern with controllable noise sources
in both interferometer arms are discussed in detail. In addition, the decoherence behavior at high interference
order, where Schrodinger-cat-like states exist in the interferometer, is investigated. While at low interference
order a smearing of the interference pattern is observed, at high interference order a smearing of the modulated

momentum distribution occurs.
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I. INTRODUCTION

Interferometers of different types have become standard
tools for the demonstration of wave properties of massive
particles, underlining the validity of quantum mechanics
for particles like electrons [1,2] or neutrons [3], and even
for atoms and molecules with high mass numbers [4,5].
Apart from imperfections of the whole interferometer setup,
observation of interference properties is complicated because
of decoherence effects caused by the environment. The theory
of open quantum systems [6-9] provides explanations for
the associated loss of coherence. The interaction between the
observed system and the environment causes their entangle-
ment and destroys the unitary evolution of the system and its
quantum behavior. Experimental observations of decoherence
processes have been reported, for example, with electrons
coupling to an electron gas inside a semiconducting plate [10],
with molecules colliding with background gases [11], and with
molecules decohering by thermal emission of radiation [12].
A profound understanding of these decoherence phenomena
also leads to a deeper understanding of the transition between
the quantum regime and the classical world. In this context,
Stern et al. [ 13] have proved that the loss of coherence can also
be described by statistically distributed phase accumulations
of the interfering waves.

In the case of neutrons, these phases can be caused
by the magnetic dlpole 1nteract10n described by the
Zeeman-Hamiltonian H = —ua - B. During their flight
through the field region, the neutrons accumulate a phase given
by ¢ = (u/h)s - [ Bdt.In our experiments, the phase derives
from a classical noise field that is time dependent and causes
energy exchange in the form of photon absorption or emission,
as calculated and measured by Summhammer and co-workers
[14,15]. Since the states of the magnetic field do not change in
the photon exchange process, there is no entanglement between
the neutron and the field, but the effects of the statistically
distributed phase shifts on the observed interference pattern
are equivalent to the effects of a quantum-mechanical
environment [13]. For a more detailed description of
the connection between noise fields and decoherence
effects in the framework of Lindblad master equations,
see [16].
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We investigate the dephasing effect as a function of the
strength of the Gaussian noise field, which shows the response
to the dynamical quantum phase. The geometrical phase
remains unchanged since the field acts along the same direction
and no area is enclosed owing to the excursion in parameter
space. A study of the stability of the geometrical phase and
its contribution to the dephasing process has been published
recently [17].

Another prediction of decoherence theory concerns macro-
scopically distinguishable states (so-called Schrédinger-cat-
like states) whose sensitivity to external fluctuations increases
when their spatial separation increases [8,18]. In the neutron
interferometer, these states can be produced by thick phase
shifters, when the phase shifts become larger than the coher-
ence lengths [19,20].

The work presented is organized as follows. In Sec. II,
basic formulas are developed for calculating the interfer-
ometer contrast when magnetic noise fields are applied in
the interferometer. Section III A focuses on the experimental
results for the standard interferometric setup (phase contrast
measurements). Contrast behavior for a noise field with
different frequency bandwidths is investigated. Further, for
noise fields applied in each interferometer arm, both the
cases of correlated and uncorrelated signals are discussed.
In Sec. III B, the preparation of Schrodinger-cat-like states in
the neutron interferometer and their properties are explained.
These states are then exposed to magnetic noise and the effect
on the arising momentum modulation is examined.

II. THEORY

Before addressing the actual experiments, we briefly review
the connection between the measured interferometer contrast
and the neutron state. Following the density-matrix approach
[21], we write the incoming state as

1 0
pin = 10)(0| ® Pspin = <0 O) ® Pspin-- (1)

For the path degree of freedom, there are only two possible
states, namely, |0) (denoting the direction of the incoming
O beam) and |1) (denoting the direction of the reflected
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FIG. 1. (Color online) Schematic setup for the interferometer
(IFM) with a unitary operation in one beam path.

H beam). The action of the whole interferometer setup
(see Fig. 1) combines the beam splitters (BSs), the unitary
transformation (U) acting only on the spin part of the wave
function, the phase shifter (PS), and the mirror (M), yielding,
for the output state,

pou = UpsUpsUnUUss pin Ul UTUL UL UL, (2)

with

U—11i®11U—01®11
Bs_ﬁil 7M—10 i

N L P 3)
PS — 0 1 )

U—10®U+OO®II
~\o o "o 1 ‘

The intensity in the O direction is given by

1 0
Ip = tr(Pmeaspoul) =1r |:<0 0) ®1- pout:|

1
= [l +acos(x — &)l “4)

T2
where ae’® = tr(U pspin) = [tr(U} pspin)| €’ €T U1Pin) The am-
plitude a of the oscillation corresponds to the interferometer
contrast.
Tracing over the spin degree of freedom of pqy yields

_ 1 (l+acos(x—§) —asin(x —§) 5
ppa‘h_5<—asin(x—g) 1—acos(x—§))’ ©)

showing explicitly that a vanishing contrast (a — 0) indicates
a totally mixed path density matrix. For a purely time-
dependent magnetic field pointing in a fixed direction 7 g, the
transformation U; on the incoming neutron is [22]

1 T
U; = exp <—iﬁ5 ~r_i3/ B(t)dt) , (6)
1,

i

where T = [ /v denotes the time of flight of the neutron through
the field region, / is the length of the field region, and v is the
group velocity of the neutron. The neutron enters the field
region at #;. If the time of flight through the magnetic field is
considerable shorter than the typical time variation of the field,
one can use the quasistatic approximation and replace Eq. (6)
by

Uy = exp (—i%a R TB(t,»)) . 7
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For unpolarized neutrons one obtains

KU pgin) = cos LBt ) (8)
P hv

The phase shift ¢ = wBI/hv is directly proportional to the
strength of the magnetic field but weakly dependent on small
changes of the velocity caused by energy exchange with the
time-dependent field. For example, if the frequency band of
B(t) ranges from 0 to w, an exchange of n photons with
the mode of highest energy is given by AE, phoions = Lnhiw.
For an upper frequency of about 100 kHz, the relative
change of the velocity amounts to only Auv, photons/V ==
AE, photons/2Exin = 1 X 1078, Thus, it can be neglected com-
pared to the velocity distribution of the incoming beam,
Av/v = Ar/A >~ 1072

The experimentally measured contrast C results from
summation over all entrance times,

wl 3 o 1 T )
C = E,- cos <_h _v B(t,)) o~ _fo Ccos (_h _v B(t)) dt,
9

where 7, denotes the measurement time. The time integral
can be replaced by an integral over the distribution of the field
amplitudes,

+o00
C= / P(B)cos (ﬁiB) dB. (10)
_ hv

o]

A single neutron travels through a region with a constant
magnetic field but the whole neutron ensemble experiences
the amplitude distribution P(B) of the field.

If transformations are applied in both beam parts, an
analogous calculation where

U—10®U+00®U 1D
“\o o o 1 ?
yields for the intensity in the O beam
Ip = Tr(Pmeaspout) = %{[1 +b COS(X - 5)]} (12)

with be'* = Tr(U1U, Pspin)- For two time-dependent magnetic
fields, the expression U; U, has the form

T Ax "
6’/ |:BQ<I—T>—B](I):|dt},

(13)

kS

UZTUI = exp {i

where Ax = x; — x, denotes the difference between the
lengths of the two beam paths from the first interfer-
ometer plate to the position where the transformation U;
takes places (e.g., the position of the coils). The resulting
contrast for unpolarized neutrons and quasistatic fields is

given by
L |:Bg (r _ ﬁ) _ Bl(t):“dt. (14)
v v

1 T
Cz—/ cos{
Tm 0

SRS
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FIG. 2. (Color online) Setup for experiments in position space
(phase shifts are smaller than the coherence length, and the intensity
oscillates between the two detectors).

III. EXPERIMENTAL RESULTS

A. Phase contrast measurements

All experiments described here have been performed at the
S18 neutron interferometry setup at the high-flux reactor of
the Institute Laue-Langevin in Grenoble, France. A silicon
perfect-crystal monochromator is placed behind a neutron
guide to extract neutrons of mean wavelength A = 1.92A
(6A/Xx = 0.01) and a beam cross section of 6 x 8 mm?.
The unpolarized neutrons impinge on the skew-symmetric
silicon interferometer at an angle of 30°. Therefore, the
Bragg condition is satisfied for the 220 lattice planes and
the interferometer plates act as described in Sec. II. The
schematic setup is depicted in Fig. 2. We now apply Gaussian
white magnetic noise in one interferometer arm with the
field pointing in beam direction (preliminary results of such
measurements have been published elsewhere [23,24]). The
field is generated by a fluctuating current in a coil connected
to a Tektronix random signal generator AFG 3022b. The length
[ of the effective field region is 42.65 mm, leading to a time
of flight of about 20.7 us. The characteristics of the input
signal are shown in Fig. 3. If the dynamics of the noise field
is properly adjusted, that is, the quasistatic approximation is
valid, the formula for the interferometer contrast is given by
[see Eq. (10)]

too 1 29, 2 2 /
C = —eiB /2AAB) cos| ——B | dB
—o ~27wAB ho

Ll 0\ 1,
= exp 5 (ﬁAB> = exp <_§(A¢) ) , (15)

where A¢ denotes the standard deviation of the phase
fluctuations related to the standard deviation AB of the
noise field. In order to compensate loss of contrast that
is not due to the magnetic noise field (mainly induced
by temperature fluctuations and vibrations), on-off contrast
measurements have been performed. For each position of
the phase shifter, the intensity is measured with and without
noise. The contrasts of the resulting oscillations are determined
[C = (Imax — Imin)/(Imax + Imin)], and their quotient gives the
relative contrast (see Fig. 4). The interferograms are always
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FIG. 3. (Color online) Typical Gaussian noise signal and its
corresponding histogram.

plotted against the path difference AD of the two neutron
beams through the phase shifter. This (optical) path difference
causes a phase shift x = —Nb LA D between the two beams,
where N denotes the atom density, b, the coherent scattering
length, and A the neutron wavelength.

For the quasistatic regime (frequency bandwidth Af =
0-5 kHz), experimental data verify the exp[—(A¢)?/2]
dependence of the contrast with high accuracy (see
Fig. 5).

Thus, it can be concluded that a sufficiently strong noise
field leads to a dephased behavior for the whole neutron
ensemble. After the third interferometer plate, the averaged
path density matrix then looks like a classical mixture

L,'D T g B, O H-beam 8
1 / 5 |m +aB=88G| P
» | O O-beam /!
® +AB=88G |,/

__10x10°+

Intensity (counts/10s

- - ~0 9
T T T

o ‘o N
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150 -100 50 0

T
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FIG. 4. (Color online) Characteristic interference pattern for
noise on-off measurement. Oscillations are damped by the fluctuating
field. Error bars are of comparable size to the markers and have been
omitted.
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FIG. 5. (Color online) Loss of contrast as a function of
the standard deviation of the Gaussian-distributed field ampli-
tudes caused by magnetic noise with different frequency band-
widths Af. The dashed lines are exponential fits whereas
the solid line represents the theory curve in the quasistatic
regime. Error bars of comparable size to the markers have been
omitted.

since the intensity no longer oscillates between the O and
H detectors:

11+ e B2 cog y  —e (AP gip i
2\ —e @2 giny 1 —e (B2 cos x

1/1 0 g
_>§<0 1)‘ (16)

Note that this (nonunitary) evolution of the neutron path state
is an effective realization of a Lindblad master equation [25]
with a single dissipator term I,

Ppath =

i I .

Now we choose the Hamiltonian to be H = («/2)o, and the
Lindblad operator to be I' = /A /20, acting on the system for
a time 7. For the initial state p(0) = |0)(0|, one obtains in the
(10),1)) basis (the eigenstates of o)

'O(T) =5 —AT —AT

2 —e sinat 1—e CosSoT

—AT —AT o3
1 (1+e cosat e sinat > (18)
If we identify the rotation angle ot with the angle x and
the damping factor At with (A¢)?/2, the correspondence of
Egs. (16) and (17) is clearly visible. A similar approach can
be found in [16].

If the frequency bandwidth of the noise signal is enlarged,
the quasistatic approximation is no longer valid, and the expo-
nential decay is weakened, C = exp[—y (A¢)?/2], described
by a fit parameter y < 1 (see Fig. 5). A detailed analysis of
the frequency dependence of y = y(Af) will be treated in a
forthcoming presentation.

It should be kept in mind that, in a time-resolved measure-
ment, the interference pattern could, in principle, be restored.
The loss of contrast can also be reversed when the same noise
signal is applied in the second beam path. This can be achieved
with an identical second coil driven by the same current (see
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FIG. 6. (Color online) Experimental setup with two coils.

Fig. 6). If the positions of the two coils in the interferometer
are not symmetric, an additional time delay Ar has to be
implemented to compensate for the position difference Ax.
Equation (14) then becomes [¢; = (i /h)([/v)B;]

1 Tn Ax
C= —/ cos |:¢2 <t + A — —> - ¢1(t)] dr. (19)
Tm 0 v

For identical, synchronized noise signals (¢ = ¢, =
¢ and At = Ax/v), recovery of full contrast can be
achieved (C = 1) and has been experimentally verified (see
Fig. 7).

For identical, unsynchronized noise, or two completely
different noise signals, the dephasing process is enforced.
For different signals with the same frequency band-
width Af, the ¢ 7@9)’/2 factors of the two Gaussian
noise fields contribute multiplicatively to the contrast (see
Fig. 8),

C =exp (—37[(Ad)? + (Ah)*]). (20)

In the quasistatic case (y = 1), this formula results from
averaging over an uncorrelated two-dimensional Gaussian
distribution for B; and B, with mean values BY = BY = 0,
correlation coefficient o, = 0, and standard deviations A B

Intensity (counts/10sec)

150 100 -50 0 50 100 150
AD[um]

FIG. 7. (Color online) Interferogram for identical synchro-
nized noise in both arms. Contrast remains when noise is
turned on.

053609-4



NOISE-INDUCED DEPHASING IN NEUTRON INTERFEROMETRY

1.0

o
©
|

B Experiment
__ o Y@oi+a0l)2

o
o
|

Relative Contrast
o
n
]

o
o
|

0.0+

T T T T
2
VAo 2+ A0 2 [rad]

FIG. 8. (Color online) Contrast for independent noise sources in

the coils plotted against / Ad? + A¢3.

and AB,:

C= // P(By.,By) cos (%%(32 - Bl)) dBidB,, (21)

where

Bl : B] Bz
P(Bi,By) = Nexp {—,3 |:<_ABl) — 2012 <_ABl> <_ABZ>
B’ 22
" <A32> @2)

with
1 1
N = , = —m—.
2n AB1ABy,/1 — 0122 2,/1— 0122
For  fully correlated noise  signals (o2 — 1)
f P(By,By)dB; — §(B;y — By) follows, and Eq. (21)

reproduces the result of Eq. (19) for the synchronized case.

If identical noise signals are applied, one can determine
the relative positions of the coils in the interferometer by
scanning through different time delays and measuring the
contrast. Maximum recovery of contrast is achieved when
the time delay equals the ratio of the position difference
and the neutron velocity Ax/v. If the coils are shifted
relative to each other, the maximum is shifted as well (see
Fig. 9).

--- position 1

= i Axq=22 mm
E position 2
5 ; Ax,=30 mm
[$] H
) H
= H
kS :
[0) H
[ ;

i S

; e K

T T T T
-20 0 20 40

time delay [us]

FIG. 9. (Color online) Contrast for the same noise in the two coils
but different relative positions Ax; plotted as a function of the time
delay in one coil.
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FIG. 10. (Color online) The two coils in the interferometer
are driven with the same noise signal. The contrast is plotted
for different frequency bandwidths against the time delay in one
coil.

The contrast is determined by the cosine of the difference
of the two phase shifts in each beam path [see Eq. (19)].
Expansion of the cosine near At = Ax /v reveals the autocor-
relation function of the noise signal. If the signal is shifted
further, higher terms in the cosine expansion have to be
considered, and higher-order autocorrelation terms occur as
well. Use of a broader frequency bandwidth for the incoming
noise signal narrows the autocorrelation function (see Fig. 10).
For ideal white noise it would become a Dirac delta function
8(t — Ax/v).

Because of the interaction of the neutron with a time-
dependent field, an energy transfer takes place. For monochro-
matic noise sources, this energy exchange has already been
measured [14] and explained in detail with multiphoton
exchange processes [15]. It can be supposed that the concepts
used there can be extended for noise signals containing whole
frequency bands. The possibility of describing the action of
such time-dependent fields in the framework of generalized
master equations that explicitly contain dissipative terms will
be the subject of further theoretical work as well, but for the
time being we use the noise field as an effectively dephasing
and easily controllable environment.

B. Momentum modulation measurements

The magnetic noise field is used here to investigate
the dephasing of macroscopically distinguishable states, in
particular, whether their increasing spatial separation increases
their sensitivity to external disturbances [6,8,18]. Schrodinger-
cat-like states can be produced in the interferometer with thick
aluminum phase shifters that shift the wave packets further
than their coherence lengths (on the order of 10 A) [19,20,23].
The two wave packets traveling through the IFM are separated
by a distance A, = N b.A*D /27, where N denotes the atom
density, b. the coherent scattering length of aluminum, D
the phase-shifter thickness, and A the neutron wavelength.
The separation width amounts to several 100 A so that there
is essentially no overlap in position space at the third IFM
plate any longer. Nevertheless, the wave packets are still in a
quantum superposition state described by

Voup(x,1) = Yu(x,1) + Yu(x,1) = Yo(x,1) + Yo(x + Ax.1),
(23)
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FIG. 11. Wigner function for the macroscopically separated
catlike state (x in arbitrary units).

where 7 and ¥y denote the wave packets arriving from beam
paths I and II, respectively. As a good approximation, they have
the same form ; the aluminum slab only shifts the whole
wave packet. Thus, both have the same Fourier spectrum o (k).
The interference properties are exhibited in momentum space,

asup(k) = ag(k) + ™2 (k),

(24)
lotsup(K)|* = latg(k)[*[1 + cos(k A )]

In the Wigner-function representation [26,27]

(s ) (- Do
(25)

+o00

1
Wsup(x k) = ﬁ
—oc0

both spatial separation and intensity modulation in momentum
space are clearly visible (see Fig. 11).

We now expose this Schrodinger-cat-like state to a magnetic
noise in one arm of the interferometer, causing a field-
dependent phase shift,

Vsup(B,x,1) = By (x,1) + Yo(x + A1) (26)

In the quasistatic regime we can evaluate the resulting Wigner
function by averaging over the Gaussian distribution of the
noise field,

+00

W(B,x,k,t) = / P(B)Wqup(B,x,k,t)d B, (27)

—00

which effects a smearing of the central wiggle structure of
the Wigner function, leaving the separated wave packets
nearly unchanged. Integration over x yields the probability
distribution in momentum space,

orsup(R)I” = larg(R)P[1 + e /MAET2 cos(A, k)] (28)

The spatial separation A, does not enter the expression for
the contrast, but only the standard deviation AB of the
magnetic noise field. The loss of contrast is not affected by
the separation width of the two Gaussian wave packets. In the

PHYSICAL REVIEW A 81, 053609 (2010)

thick Al phase shifter

H-Detector

noise coil analyzer crystal

[\
5 O-Detecto

FIG. 12. (Color online) Schematic setup for interference mea-
surements in momentum space with aluminum phase shifter; the
intensity oscillates in the wavelength spectrum.

experimental setup, we prepared three different Schrodinger-
cat-like states by using three different aluminum phase shifters
with thicknesses of 18, 27, and 36 mm, which caused packet
separations of 212, 318, and 424 A. Toaccess k space, a silicon
analyzer crystal that selects wavelengths via Bragg reflection
and a third detector were used (see Fig. 12).

First we determined the wavelength distribution |og(A)|?
for the empty interferometer [Fig. 13(a)]. The measured
intensity is normalized by the total number of counts in
the O beam (the O detector and the third detector). Then

4 x . --- AB=0G
102 # [] ——AB=7.68G

3 N

Relative Intensity (3rd/3rd+0)

1.88 1.90 1.92 1.94 1.96
wavelength »  [A ]

2

Intensity (scaled with o 5(1)]

1.89 1.90 1.91 1.92 1.93 1.94 1.95
wavelength »  [A ]

FIG. 13. (Color online) Interferogram in momentum space, wave-
length distribution |ao(1)|* of the empty interferometer, and original
on-off wavelength spectra for A, =212 A (a) and on-off curves
divided by |ao(M)|? (b).

053609-6



NOISE-INDUCED DEPHASING IN NEUTRON INTERFEROMETRY

1.0+

0.8

0.6

0.4

Relative Contrast

0.2+

0.0+

AB[Gauss]

FIG. 14. (Color online) Decoherence behavior for Schrodinger-
cat-like states with different separation widths as a function
of the strength of the magnetic noise field (exponentially
fitted).

the Al phase shifter was inserted, causing a modulation of
that spectrum [the curve for AB = 0 in Fig. 13(a)]. Turning
on the magnetic noise leads to damped modulations. By
dividing the modulated spectra by |to(A)]?, one gets standard
interferograms in cosine form whose contrast can be deter-
mined easily [see Fig. 13(b)].

The relative contrast was measured for increasing field
strength (AB = 0-15 G) and different separation widths (see
Fig. 14).

Asin Sec. IIT A, we can neglect the energy transfer between
the magnetic field and the neutron because it lies several
orders of magnitude below the length of the modulation
period. The modulation period is given by the ratio of
the wavelength A and the interference order n = A, /1. It
amounts to A/n ~ 1072 A, whereas a shift of the wavelength
corresponding to the exchange of a 100 kHz photon amounts to
AL = (hw/Ein)h =~ 1078 A. Thus, the modulation pattern
is essentially not influenced by the altered neutron velocities.
This is the reason that, within measurement accuracy, the
separation width has no influence on the relative contrast
reduction.

Differences with the results of, for example [8], arise
from the different interaction Hamiltonians. In [8], a dipole
interaction of the form ﬂim = exd¢(t)/dt is assumed that
contains the position operator X explicitly. This leads to
stronger decoherence for increasing spatial separation A,
of the Gaussian wave packets. In our case, the intergction
between neutron and field is given by Hi, = —uo - B and
“happens” in spin space. Under the quasistatic approxima-
tion and negligible energy transfer, only the strength of
the field fluctuation AB occurs in the expression for the
contrast.

In agreement with [28], one can show that the coherent
preparation of macroscopically distinct Schrodinger-cat-like
states becomes more and more difficult with increasing
separation width. The values of the off contrast decrease (see
Table I) because of the inhomogeneities of the phase shifters.
But this concerns only the preparation of the state, it is not a
statement about its stability in principle. As shown in Fig. 14,
the loss of contrast because of magnetic noise is the same for
each separation width.
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TABLE I. Decrease of off-contrast values for thick phase shifters.

A, =318 A
(554 + 1.1)%

A, =424 A
(44.4 £ 1.3)%

A, =212 A
(60.0 + 1.1)%

Phase shift
Off contrast

IV. CONCLUSION

A magnetic noise source can be used to model the
behavior of a decoherence-causing environment in neutron
interferometers. With increasing noise amplitudes, Gaussian
white noise causes an exponential loss of the interferometer
contrast at both low and high interference order. The effect
on the dynamical quantum phase was investigated, since
the noise field was varied in one direction only. In the
quasistatic regime, where the characteristic time scale of
the noise is considerably longer than the time of flight
of the neutron through the field region, analytic expres-
sions have been obtained by averaging over the amplitude
distribution of the noise field. Extension of the frequency
bandwidth to higher frequencies leads to a weaker decay of
contrast.

If noise fields are applied in both interferometer arms,
the correlation of these two noise signals determines the
contrast. For uncorrelated noise sources, the dephasing process
is enforced. For two Gaussian white noise signals with the
same frequency bandwidth, the decrease of contrast depends
on the sum of their variances. On the other hand, application of
synchronized identical noise signals leads to full recovery of
the contrast. By insertion of an additional time delay between
the two sources, the autocorrelation function of the signal is
revealed.

At high interference order, a modulation in k space occurs
that is related to the appearance of Schrodinger-cat-like states.
As long as the energy transfer between the magnetic field and
the neutron can be neglected, the dephasing effects on the mod-
ulated momentum distribution are comparable to the dephasing
effects on the interference pattern at low interference order. The
preparation of the Schrodinger-cat-like states becomes more
difficult with increasing spatial separation but, within measure-
ment accuracy, the loss of contrast is independent of the spatial
separation.

Further experiments will deal with the energy exchange
between the neutron and the magnetic noise field by use of
time-resolved interferometry. The dependence of the dephas-
ing process on different noise frequency bandwidths will be
investigated in more detail as well.
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