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Absolute and ratio measurements of the polarizability of Na, K,
and Rb with an atom interferometer
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We measured the ground-state electric-dipole polarizability of sodium, potassium, and rubidium using a Mach-
Zehnder atom interferometer with an electric-field gradient. We find αNa = 24.11(2)stat(18)sys × 10−24cm3, αK =
43.06(14)(33), and αRb = 47.24(12)(42). Since these measurements were all performed in the same apparatus
and subject to the same systematic errors, we can present polarizability ratios with 0.3% uncertainty. We find
αRb/αNa = 1.959(5), αK/αNa = 1.786(6), and αRb/αK = 1.097(5). We combine our ratio measurements with the
higher-precision measurement of sodium polarizability by Ekstrom et al. [Phys. Rev. A 51, 3883 (1995)] to find
αK = 43.06(21) and αRb = 47.24(21).
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I. INTRODUCTION

Precision measurements of polarizability serve as bench-
mark tests for methods used to model atoms and molecules
[1,2]. Accurate calculations of van der Waals interactions,
state lifetimes, branching ratios, indices of refraction, and
polarizabilities all rely on sophisticated many-body theories
with relativistic corrections, and all of these quantities can
be expressed in terms of atomic-dipole matrix elements.
Polarizability measurements, such as the ones presented here,
are some of the best ways to test these calculations.

Over 35 years ago, Molof et al. [3] measured ground-state
alkali-metal and metastable noble-gas polarizabilities with an
uncertainty of 2% using beam deflection and the E-H gradient-
balance technique. More recently, atom interferometers were
used to measure the polarizability of lithium [4] and sodium
[5] with an uncertainty of 0.7% and 0.35%, respectively.
Near-field molecule interferometry was used to measure the
polarizability of C60 and C70 with 6% uncertainty [6], and
guided Bose-Einstein-condensate (BEC) interferometry was
used to measure the dynamic polarizability of rubidium with
7% uncertainty [7]. A fountain experiment was used to mea-
sure the polarizability of cesium with 0.14% uncertainty [8].
The measurements of potassium and rubidium polarizability
made by Molof et al. remained the most precise until now.

In this article, we present absolute and ratio measurements
of the ground-state electric-dipole polarizability of sodium,
potassium, and rubidium using a Mach-Zehnder atom inter-
ferometer with an electric-field gradient. The uncertainty of
each absolute measurement is less than 1.0% and the precision
of each ratio measurement is 0.3%. Our interferometer is
constructed with nanogratings that diffract all types of atoms
and molecules and enable us to measure the polarizabilities of
different atomic species in the same apparatus. The systematic
errors are nearly the same for the different atomic species
and cancel when calculating polarizability ratios. Finally, we
combine our polarizability ratios with the absolute measure-
ment of sodium polarizability by Ekstrom et al. [5] to provide
measurements of potassium and rubidium polarizabilities with
0.5% uncertainty.

*cronin@physics.arizona.edu

A unique feature of this work compared to references [4,5]
is that we use an electric-field gradient region rather than a
septum electrode. In addition, we use a less collimated beam
to increase the flux and reduce the systematic error caused by
velocity-selective detection of atoms in the interferometer.

II. APPARATUS

Our apparatus is described in detail elsewhere [9,10]. In
brief, we use three 100-nm period nanogratings to diffract a
supersonic beam of sodium, potassium, or rubidium atoms
and form multiple Mach-Zehnder interferometers (see Fig. 1).
An atom diffracted by the first and second gratings may be
found with a sinusoidal probability distribution at the plane
of the third grating. The third grating acts as a mask of
this interference pattern and also diffracts the interferometer
output. We measure the flux as a function of grating position
to determine the phase and contrast of the fringe pattern. We
detect 105 atoms/s with a typical contrast of 30% using a
hot-wire detector 0.5-m beyond the third grating.

We measure the output of the two interferometers formed
by first-order diffraction from the first and second nanogratings
(see Fig. 1). Although other interferometers are present, they
do not contribute to the measured phase shift because they
either are not white-light interferometers, have fringes with a
periodicity different than that of the third grating, or are simply
not incident upon the detector. The interferometers formed by
second-order diffraction from the first grating [11] contribute
less than 1% of the detected signal and cause an error in our
polarizability measurements of less than 0.01%.

Before the second grating, the path separation in the
interferometer is

s = λdB

dg
z = h

mvdg
z (1)

where λdB = h/mv is the de Broglie wavelength of an atom
with mass m and velocity v, dg is the grating period, and
z is the propagation distance from the first grating. We
adjust the beam velocity for each atomic species such that
s ≈ 50 µm in the interaction region, where the beam width of
each diffraction order is approximately 80 µm. We designed
the beam parameters to be similar for each atomic species
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FIG. 1. Nanogratings 1G, 2G, and 3G form multiple Mach-
Zehnder interferometers (two are shown). An atom passing through
the interaction region acquires a phase φ1, φ0, and φ−1 along each path.
The third grating acts as a mask for the 100-nm period interference
fringes and also diffracts the interferometer output. The hot-wire
detector is centered on the zeroth-order path. The distance between
two gratings is Lg = 940 mm. The vertical (transverse) scale is
exaggerated 104 times. The Earth rotation rate �E modifies the
measured phase shift.

in order to minimize systematic errors in measurements of
polarizability ratios.

As in previous work [4–6], we place an interaction region
between the first and second gratings to induce a differential
phase shift in the interferometer. The phase shift is proportional
to the atomic polarizability. Unlike references [4,5], we use an
electric-field gradient region rather than a septum electrode as
an interaction region. We use an electric-field gradient because
the septum electrode would require fully separated diffraction
orders and this is more difficult with heavier atoms such as
potassium and rubidium.

The geometry of our interaction region is depicted in Fig. 2.
The interaction region consists of a cylindrical electrode and
a grounded plane. This geometry is the familiar “two-wire”
configuration [12] rotated by 90◦ so that the height of the
cylinder electrode is perpendicular, rather than parallel, to
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FIG. 2. Cross section of the interaction region (not to scale).
The high-voltage electrode of diameter D = 12.66 mm is fixed at
a distance a = 1.998 mm from the ground plane by precision spacers
(not shown). The effective line charge λ is located a distance b from
the ground plane, as discussed in the text. The ground plane is of
length L = 90 mm. The high-voltage electrode and ground plane are
50-mm long in the y direction, while the beam height is only 1 mm.
The zeroth order beam is a distance x from the ground plane and
the ±first-order beams are a distance x ± s from the ground plane.
Electric-field lines are shown in gray. The beam propagates along the
z axis. O is the origin for the electric-field calculations.

the beam paths. Our electrode orientation yields a relatively
small fringe displacement (200 nm) compared to the standard
electrode orientation for Stark deflections (200 µm) [3,13–17],
but the sensitivity of atom interferometry allows us to
make precise measurements of such small deflections. Two
advantages of our electrode orientation are that the phase shift
is homogeneous across the height of the atom beam and that
there are no fringing fields entering and exiting the interaction
region.

We apply a voltage of 0–12 kV to the cylindrical electrode
to create the electric-field gradient. Our electrode geometry is
easily analyzed via the method of images [18]. The boundary
conditions of our geometry, with cylindrical symmetry and an
infinite ground plane, correspond exactly to the geometry in
which an infinitely long line charge λ is fixed a distance b

from the ground plane. The equipotential surfaces are circles
of increasing radius centered at an increasing distance from
the ground plane. We identify one of these equipotential
surfaces as our electrode at a voltage V with radius R and
located a distance a from the ground plane to determine the
corresponding effective line charge λ and its position b:

λ = 2πε0V ln−1

(
a + R + b

a + R − b

)
, (2)

b = a
√

1 + 2R/a. (3)

The resulting electric field is given by

E(x,z) = λ

πε0

{ [
x − b

(x − b)2 + z2
− x + b

(x + b)2 + z2

]
x̂

+
[

z

(x − b)2 + z2
− z

(x + b)2 + z2

]
ẑ
}
. (4)

The potential energy of an atom in an electric field is
given by the Stark shift UStark = − 1

2αE2. We use the WKB
approximation to find the phase φα(x,v) acquired by an atom
along a path a distance x from the ground plane with velocity
v and polarizability α:

φα(x,v) = α

2h̄v

∫ ∞

−∞
E2

(x,z)dz. (5)

For our atom beam UStark ≈ 10−7eV and Ukinetic ≈ 0.1eV, so
the WKB approximation is valid. The integral of E2 along the
path of the atom may be performed using complex analysis
and yields an acquired phase of

φα(x,v) = λ2α

πε2
0h̄v

(
b

b2 − x2

)
. (6)

We induce a polarizability phase φα of up to 2500 rad along
one path.

We will now discuss how the phase and contrast of the
measured fringe pattern depends on the polarizability phase
φα(x,v). First, we define the phase difference between the
paths of the two detected interferometers:

φα,1(x,v) = φα(x + s,v) − φα(x,v),
(7)

φα,−1(x,v) = φα(x,v) − φα(x − s,v).

We studied phase differences φα,1 of up to 18 rad. Next, we per-
form an incoherent sum of the fringe patterns formed by atoms
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of multiple velocities traversing multiple interferometers. The
resulting fringe pattern is described by

Csum(x)eiφsum(x) = C0e
iφ0

∑
j=−1,1

Pj

∫ ∞

0
P (v)eiφα,j (x,v)dv,

(8)

where Csum is the real-valued contrast of the fringe pattern,
φsum is the phase of the fringe pattern, C0 and φ0 are the
initial contrast and phase of the interferometer, j denotes the
interferometer number (upper or lower diamond in Fig. 1),
Pj = 0.5 is the probability of an atom being found in
interferometer j , and P (v) is the velocity distribution of the
beam. In our experiment, the phase shift φsum is reduced by
as much as 4% by performing the sum described in Eq. (8)
compared to a simple weighted average of phases, and the
contrast is reduced by more than 50%.

The Sagnac phase must also be accounted for in our exper-
iment and modifies Eq. (8) [19,20]. Because the Sagnac phase
is dispersive, ignoring it would lead to an error in polarizability
of up to 1%. The Sagnac phase in our interferometer is given
by

φSag(v) = 4πLg
2�

dgv
, (9)

where Lg is the distance between adjacent nanogratings and �

is the rotation rate of the Earth projected into the plane of the
interferometer. At our latitude, the Sagnac phase is as much
as 4.8 rad for our rubidium beam. The reference phase φref

and contrast Cref of the interferometer are determined by the
Sagnac phase in the absence of an electric field:

Crefe
iφref = C0e

iφ0
∑

j=−1,1

Pj

∫ ∞

0
P (v)eiφSag(v)dv. (10)

We find the total phase and contrast of the interferometer in
the presence of an electric field by adding the Sagnac phase to
the polarizability phase shift before conducting the incoherent
sum shown in Eq. (8). This procedure yields

Ctotal(x)eiφtotal(x)

= C0e
iφ0

∑
j=−1,1

Pj

∫ ∞

0
P (v)ei[φα,j (x,v)+φSag(v)]dv. (11)

Finally, the measured phase shift and relative contrast are

φmeasured(x) = φtotal(x) − φref, (12)

Cmeasured(x) = Ctotal(x)/Cref . (13)

As an alternative point of view, we may describe the
measured phase shift in terms of a classical electrostatic force
on the individual atomic dipoles instead of the quantum-
mechanical phases acquired by an atom in the electric field.
In the classical-mechanics picture, a neutral atom in an
electric field experiences a force F = −∇UStark = αE∇E.
The deflection of the interferometer paths will cause the same
displacement of the observed fringes as the phase-shift analysis
discussed above.

III. VELOCITY MEASUREMENT

The velocity determines both the amount of time an atom
interacts with the electric field and the spatial separation
s of the paths inside the electric-field gradient. Therefore,
an accurate determination of the beam velocity and the
velocity distribution is essential for a precise polarizability
measurement.

We determine the velocity of the atom beam by analyzing
the far-field diffraction pattern from the first grating. The
velocity distribution of the beam is modeled by

P (v)dv = Av3 exp
[−(v − v0)2/(

2σ 2
v

)]
dv, (14)

where v is the velocity, v0 is the flow velocity, σv describes the
velocity distribution, and A is a normalization factor [21]. In
the limit of a supersonic beam, v0/σv � 1, the normalization
factor can be written as A = [

√
2πv0σv(v0

2 + 3σv
2)]−1. The

location of the nth diffraction order at the detector plane is
given by

xn = λdB

dg
nzdet = hn

mvdg
zdet, (15)

where the propagation distance z is equal to the distance
from the first grating to the detector, zdet. We use m = mavg,
which is the average mass of the atomic species, rather
than calculating and adding the diffraction patterns for each
isotope. A reanalysis of a subset of our data shows that this
approximation yields a small difference in velocity (<0.02%)
and polarizability (<0.05%) when isotopes are taken into
account. Next, we rearrange Eq. (15) to find

v(xn) = zdethn

mdgxn

(16)

and use this to transform P (v)dv to P (x)dx. Finally, we
sum over all diffraction orders, each weighted by cn, and add
the zeroth-order peak to obtain the diffraction pattern for an
infinitesimally thin beam and detector:

P (x)dx =
{

c0δ(x − 0) +
∑
n�=0

cnA

(
zdethn

mdg

)4

x5

× exp

[
−

(
zdethn

mdgx
− v0

)2 / (
2σ 2

v

)] }
dx. (17)

The observed diffraction pattern (see Fig. 3) is a convolution of
the spatial probability distribution given by Eq. (17) with the
collimated beam and detector shapes. Two narrow collimating
slits of width 20 and 10 µm separated by 890 mm determine the
beam shape. We model the detector wire as a square aperture
with width 70 µm. We fit the observed diffraction pattern to the
convolution described above to find the flow velocity v0. With
four diffraction scans, we can determine v0 with a statistical
precision of 0.1%.

The diffraction orders are sufficiently close together, the
beam is sufficiently broad, and the detector is sufficiently
thick that we cannot use diffraction data alone to deter-
mine the velocity distribution σv with enough precision
for the polarizability measurements. Instead, as discussed
later, we find the velocity distribution parameter σv from
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FIG. 3. (Color online) Diffraction of Rb, K, and Na atoms from
the same nanograting. Best-fit flow velocity v0 and velocity distribu-
tion σv withstatistical errors are shown. As discussed in the text, the
velocity distribution is found from contrast-loss measurements.

the contrast loss measurements. We then fix σv when fit-
ting the diffraction patterns to find the final flow velocity
v0.

IV. PHASE AND CONTRAST MEASUREMENT

After recording several diffraction scans to measure the flow
velocity, we center the detector on the zeroth-order diffraction
peak, replace the narrow collimating slits with wider ones (35
and 45 µm), and insert the second and third gratings into the
beamline to form the interferometer. We use a wider beam for
our interferometer than Ekstrom et al. [5] for two reasons.
First, wide collimating slits allow more flux to reach the
detector. Second, wide slits minimize the velocity-selective
detection of interference fringes caused by the dispersive
nature of diffraction. We calculate that the flow velocity of
the atoms detected from the interferometers when the detector
wire is centered on the beam is about 0.25% faster than the
flow velocity of the entire beam. We use the adjusted flow
velocity when determining the polarizability, yielding a 0.5%
correction to the polarizability. The correction to the velocity
distribution parameter σv is negligible. If we had used small
slits with the detector on the centerline, this correction and
the uncertainty in this correction would have been three times
larger.

Next, we calibrate the position of the interaction region
by eclipsing the beam with the cylindrical electrode and then
moving the interaction region out of the beam path as we record
the average flux through the interferometer and the position of
the interaction region. We use the position at which the flux is
50% of the maximum to locate the center of the beam a distance

α

σ

FIG. 4. (Color online) Phase shift and relative contrast vs.
electrode position x. The best-fit polarizability and the statistical error
for one data set are shown. We only fit the phase shift measurements
with relative contrast greater than 75%. Residuals for the fit data
points (circles) are shown with error bars. For reference, residuals for
the unfit data points (filled diamonds) are also shown. The contrast
loss determines v0/σv .

a from the ground plane. We then move the interaction region
across the beam in steps of 100 µm and measure the phase shift
[Eq. (12)] and contrast loss [Eq. (13)] at each position. Figure 4
shows the measured phase shift and contrast loss for a typical
data set.

We determine the flow velocity, velocity distribution, and
polarizability from the diffraction, contrast loss, and phase
shift data, respectively. In Sec. III, we discussed how we find
the flow velocity v0. In Sec. II, we discussed how the contrast
of the measured fringe pattern is reduced by performing an
incoherent sum of the fringes formed by atoms of multiple
velocities. We fit the contrast loss data to determine v0/σv

with an uncertainty of 10%. The primary source of error in this
measurement of σv comes from vibration-induced fluctuations
in the reference contrast. We then refit the diffraction data,
holding σv fixed, to find the best-fit flow velocity v0. This
procedure yields a small correction to v0 of less than 0.2%.
Finally, we use v0 and σv as inputs to the polarizability fit of
the phase data. We exclude data points in which the relative
contrast is less than 75% to minimize the uncertainty in the
polarizability due to uncertainty in σv .

After fitting all the data, we apply small corrections to
the polarizability due to beam thickness and isotope ratios.
To account for beam thickness, we modify Eq. (11) to
include an integral over the beam width. The correction to
the polarizability due to beam thickness is +0.04(2)% for
each atomic species. To account for isotope ratios we modify
Eqs. (11) and (17) to include weighted sums over isotopes.
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α
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FIG. 5. (Color online) Multiple measurements of the polariz-
ability of sodium (circles), potassium (triangles), and rubidium
(diamonds). The mean polarizabilities are denoted by filled markers
and lines. The error bars represent the standard error of the mean.
Units are 10−24 cm3. Final results are shown in Table I.

The correction to the polarizability from taking into account
the isotope ratios is +0.04% for αK and +0.02% for αRb.

The result of each data set is shown in Fig. 5. Each point
on the plot represents one hour of data. We report the mean
polarizability from all of our data in Table I. The reported
statistical error is the standard error of the mean and is
dominated by the reproducibility of the experiment rather than
the statistical phase error of a typical data set. The systematic
errors are discussed later.

Since we performed all measurements in the same apparatus
under similar beam conditions and without changing any
parameters that contribute to systematic error in the polar-
izability, we can report polarizability ratios with uncertainties
dominated by the statistical precision of our measurements. We
show our measured polarizability ratios in Table II. Figure 6
shows a summary of measurements [3,13] and calculations
[2,22–33] of the polarizability ratios of sodium, potassium,
and rubidium, including this work. We added the reported
uncertainties for each atom in quadrature to calculate the
uncertainty in polarizability ratios for previous work [3,13].

TABLE I. Measured absolute and recommended atomic polar-
izabilities in units of 10−24 cm3. Our recommended polarizability
values are based on our ratio measurements (see Table II) combined
with the sodium polarizability measurement from reference [5].

αabs (stat.)(sys.) αrec(tot.)

Na 24.11(2)(18) 24.11(8)
K 43.06(14)(33) 43.06(21)
Rb 47.24(12)(42) 47.24(21)

TABLE II. Measured atomic polarizability ratios with statistical
uncertainties. Also included are several polarizability ratios from ab
initio and semi-empirical calculations. See Fig. 6 for more previous
calculations and measurements of polarizability ratios.

αratio (stat. unc.)

Atoms This work Ref. [2] Ref. [30] Ref. [31]

Rb:Na 1.959(5) 1.959(5) 1.946 1.939
K:Na 1.786(6) 1.785(6) 1.779 1.781
Rb:K 1.097(5) 1.098(5) 1.094 1.089

If the reported uncertainties have systematic errors that would
have canceled in ratio measurements, then this calculation will
lead to an overestimate of the ratio uncertainties.

We calculate our recommended measurements of potassium
and rubidium polarizability by combining our polarizability-
ratio measurements with the sodium-polarizability measure-
ment by Ekstrom et al. [5]. To calculate the total uncertainty of
the recommended polarizabilities of potassium and rubidium,
we add the total uncertainty of the Ekstrom et al. sodium
measurement in quadrature with the statistical uncertainty
of our appropriate polarizability ratio. Our recommended
polarizability values and their total uncertainties are shown in
Table I. Given the 0.8% uncertainty of our direct measurement
of αNa, the agreement between our measurement and that of
Ekstrom et al. at the level of 0.04% is coincidental.

Table III shows a summary of the error budget. Most of the
highly significant parameters in the error budget are related to
the flow velocity v0 or velocity distribution parameter σv . The

α
α

α
α

α
α

FIG. 6. (Color online) Previously calculated (unfilled) and mea-
sured (filled) alkali-metal polarizability ratios. References are de-
noted by the abbreviated name of the first author, the publication
year, and the reference number. Calculations in references [2,33]
incorporate state-lifetime measurements.
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TABLE III. Systematic error budget for a single-sodium mea-
surement. The potassium and rubidium systematic error budgets are
similar.

Source Value (unc.) Error in α (%)

First grating (1G)-detector 2372.4(5.1) mm 0.43
distance zdet

Velocity (beam-shape model) 3023(4) m/s 0.25
Detector displacement x1 135.00(3) µm 0.05
Detector translation ‖ 50 mrad 0.30
Velocity distribution σv 149(14) m/s 0.20
δv/v of interfering atoms 0.20(5)% 0.10
Spacer thickness a 1.998(2) mm 0.20
Electrode diameter 2R 12.663(25) mm 0.10
Electrode voltage V 10670(16) V 0.30
Electrode orientation (x,y,z) (20,0.1,20) mrad 0.05
1G-int. region distance zint 802.6(2.0) mm 0.25
Grating period dg 100.0(1) nm 0.10
Molecule fraction 0(1)% 0.10
Grating tilt and g 0.0(1) mrad 0.01
Beam thickness (phase avg.) 80(20) µm 0.02
Total Systematic Error 0.80

most significant parameter in the error budget is the distance
from the first grating to the detector, zdet, due to its effect on
our measurement of v0. The details of the beam shape modify
the best-fit flow velocity as well. We measure the displacement
of our detector translation stage using a Heidenhain MT-2571
length gauge with a linear encoder and fractional uncertainty
of 0.02%. If the detector translation along the x axis is not
perpendicular to the beam path along the z axis, then we would
also report an incorrect velocity. We previously discussed how
the velocity-selective detection of interfering atoms modifies
v0 and adds uncertainty in the polarizability. The effect of the
velocity distribution on the measured phase becomes larger as
the phase shift increases and the contrast decreases. Therefore,
to minimize the uncertainty due to the velocity distribution, we
ignore phase data points for which the relative contrast is less
than 75%. This procedure yields an uncertainty of 0.20% in
the polarizability for a 10% uncertainty in σv . Uncertainty in
the distance from the first grating to the interaction region,
zint, causes uncertainty in the diffracted path separation s in
the interaction region. Uncertainty in the electrode spacing
a, radius R, and applied voltage V causes uncertainty in
the strength of the electric field. Uncertainty in the electrode
orientation about the x, y, and z axes yields a small uncertainty
in the polarizability, as well.

The possibility of a small fraction of molecules in the beam
contributes an additional source of error. The diffraction scans

for the conditions under which we run the interferometer
do not have sufficient resolution to determine the molecule
fraction of the beam. By reducing the velocity of the beam
and thus increasing the diffraction angle, we found that
molecules contribute less than 1% of the flux. To calculate the
corresponding uncertainty in our polarizability measurements
we include a sum over two additional molecule interferometers
in Eq. (11). We use the molecular polarizabilities measured
by Tarnovsky et al. [14] in our calculations to find that the
uncertainty in atomic polarizabilities due to the presence of
molecules is less than 0.10%.

An additional source of error comes from the possible tilt
of the entire interferometer board with respect to gravity. If the
interferometer is tilted with respect to gravity by an angle θ , a
dispersive phase shift of

φgrav(v) = 2πL2
g

dgv2
g sin θ (18)

will result. This phase shift must be added to the total
phase shift and the reference phase in the same way as the
Sagnac phase. We estimate that θ < 0.1 mrad and that the
corresponding uncertainty in the polarizability is less than
0.01%.

V. CONCLUSIONS AND OUTLOOK

We measured both the absolute and relative polarizabilities
of sodium, potassium, and rubidium using an atom inter-
ferometer with an electric-field gradient. Furthermore, we
used our ratio measurements and the more-precise Ekstrom
et al. measurement of sodium polarizability [5] to report
higher-precision measurements of potassium and rubidium
polarizability. These measurements provide benchmark tests
of atomic theory calculations. Our ground-state polarizabil-
ity measurements may be combined with transition Stark-
shift measurements [34–37] to yield improved knowledge
of excited-state polarizabilities and additional dipole matrix
elements [33,38].

We are upgrading our apparatus to produce and detect
beams of alkaline-earth-metal atoms. We are investigating new
interaction region geometries and new ways to measure the
flow velocity and velocity distribution of the atoms detected
in the interferometer. We are also using diffraction from a
nanograting to study ratios of van der Waals potentials for
sodium, potassium, and rubidium [39].
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Phys. Rev. A 73, 011603(R) (2006).

[5] C. R. Ekstrom, J. Schmiedmayer, M. S. Chapman, T. D.
Hammond, and D. E. Pritchard, Phys. Rev. A 51, 3883 (1995).

[6] M. Berninger, A. Stefanov, S. Deachapunya, and M. Arndt,
Phys. Rev. A 76, 013607 (2007).

053607-6

http://dx.doi.org/10.1103/PhysRevLett.82.3589
http://dx.doi.org/10.1103/PhysRevA.10.1131
http://dx.doi.org/10.1103/PhysRevA.73.011603
http://dx.doi.org/10.1103/PhysRevA.51.3883
http://dx.doi.org/10.1103/PhysRevA.76.013607


ABSOLUTE AND RATIO MEASUREMENTS OF THE . . . PHYSICAL REVIEW A 81, 053607 (2010)

[7] B. Deissler, K. J. Hughes, J. H. T. Burke, and C. A. Sackett,
Phys. Rev. A 77, 031604(R) (2008).

[8] J. M. Amini and H. Gould, Phys. Rev. Lett. 91, 153001
(2003).

[9] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod.
Phys. 81, 1051 (2009).

[10] Atom Interferometry, edited by P. Berman (Academic Press,
San Diego, 1997).

[11] J. D. Perreault and A. D. Cronin, Phys. Rev. A 73, 033610
(2006).

[12] N. F. Ramsey, Molecular Beams (Oxford University Press,
New York, 1956).

[13] W. D. Hall and J. C. Zorn, Phys. Rev. A 10, 1141 (1974).
[14] V. Tarnovsky, M. Bunimovicz, L. Vušković, B. Stumpf, and
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