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We investigate finite-size effects in quantum quenches on the basis of simple energetic arguments.
Distinguishing between the low-energy part of the excitation spectrum, below a microscopic energy scale,
and the high-energy regime enables one to define a crossover number of particles that is shown to diverge in
the small quench limit. Another crossover number is proposed based on the fidelity between the initial and final
ground states. Both criteria can be computed using ground-state techniques that work for systems larger than
full-spectrum diagonalization. As examples, two models are studied: one with free bosons in an harmonic trap
whose frequency is quenched and the one-dimensional Bose-Hubbard model that is known to be nonintegrable
and for which recent studies have uncovered remarkable nonequilibrium behaviors. The diagonal weights of the
time-averaged density matrix are computed, and observables obtained from this diagonal ensemble are compared
with the ones from statistical ensembles. It is argued that the “thermalized” regime of the Bose-Hubbard model,
previously observed in the small quench regime, experiences strong finite-size effects that make a thorough
comparison with statistical ensembles difficult. In addition, we show that the nonthermalized regime, emerging
on finite-size systems and for large interaction quenches, is not related to the existence of an equilibrium quantum
critical point but to the high-energy structure of the energy spectrum in the atomic limit. Its features are reminiscent
of the quench from the noninteracting limit to the atomic limit.
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The study of the nonequilibrium evolution of closed
quantum many-body systems has been triggered by the recent
progress in cold-atom experiments in which atoms are hardly
coupled to the environment [1,2]. Furthermore, microscopic
parameters of the Hamiltonian governing the dynamics can
be controlled at will and changed on microscopic time
scales. In this context, the question of the unitary evolution
of an isolated quantum system after a sudden change of
one parameter, the so-called quantum quench, has attracted
a lot of interest in both the experimental and theoretical
communities [3]. Many different questions are raised by such a
setup, among which are the relaxation of observables [4–17],
the question of thermalization [11,18–34], the existence of
a subsystem steady state [35–38], and the propagation of
the entanglement [39–43]. Beyond these academic concerns,
practical applications of quenches have been proposed through
the engineering of metastable states [44,45] and of an out-of-
equilibrium supersolid state in a cold-atom setup [46]. This
paper is dedicated to the thermalization issue but restricted
to specific examples and makes no claims on general results
about the thermalization mechanism. In this context, a quench
can be understood as a way to create an initial state that evolves
through the dynamics of a given Hamiltonian. Common
wisdom in classical mechanics is that the long-time evolution
will forget the initial state and explore all the accessible phase
space, provided the dynamics are chaotic. Then, ergodicity
allows for the use of statistical ensembles in place of time
averaging. For a closed quantum system, as the evolution
is unitary and the spectrum discrete, long-time recurrences
occur and the contribution of the eigenstates involved in the

*guillaume.roux@u-psud.fr

dynamics is fixed by the initial state. For large systems, a
quantum ergodic theorem was proposed [47], supporting the
emergence of the microcanonical ensemble which is the usual
statistical ensemble for an isolated system. This approach
aims to show that time-averaged density matrix ρ̄ (see the
definition given later) is macroscopically equivalent to the
microcanonical ensemble. In a quantum quench, the initial
state is not a typical state of a given energy but usually
is the ground state of the same Hamiltonian with different
parameters. Consequently, the quench amplitude, or how much
we change the Hamiltonian, is here another relevant quantity.
Another way to regard a quench can be as a perturbation of
the initial state, and one may wonder whether the long-time
response is sensitive to the initial state. Furthermore, numerical
tools and experiments on closed systems cannot easily reach
a large number of particles, so finite-size effects can be
important in the interpretation of the observed phenomena.
This paper suggests possible approaches to the question of
these finite-size effects after a quantum quench and a possible
interpretation of the observations made on a particular model:
the one-dimensional (1D) Bose-Hubbard model (BHM). The
other model, consisting of free bosons in an harmonic trap,
offers another example of finite-size effects and remarkable
behaviors. Surprisingly, some of the features of the two models
are connected.

The central object governing the long-time physics after
a quantum quench is the time-averaged density matrix ρ̄

that predicts the time-averaged expectation values of any
observable. This density matrix has also connections to the
heat or work done on a system [48–51]. The weights of
this diagonal ensemble are difficult to compute for large
systems as one needs to fully diagonalize the Hamiltonian,
so one unfortunately has to work with small systems (Hilbert
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spaces). Other methods have been used to tackle the physics
of quenches. For instance, ab initio numerics have been
used on both integrable and nonintegrable models [11,12,19,
27,35,37,38,52–55]. Numerical methods like time-dependent
density-matrix renormalization group (tDMRG) [56–58] can
be used to compute the time evolution of the wave function,
but the interpretation is restricted to observables and to a finite
window of time and cannot give access to these weights. Exact
results on integrable models [4,25,35,37,38,55,59–61] have
the advantage of treating large systems in a nonperturbative
way, but on the other hand, it is not surprising that they
do not always thermalize due to the extensive number of
conserved quantities. Luttinger liquid theory, which describes
the low-energy physics of 1D models in terms of free bosonic
fields (thus an integrable theory) has been used to compute
the time evolution of the observables [7–9,62,63]. Quantum
chaos methods have also helped the study of the time evolution
of the BHM [64–66]. Some studies focused on the relation
between fidelity and on the energy distribution [54,67]. All
these methods suffer from approximations and/or finite-size
effects, and it is sometimes hard to determine what is an
artifact.

Some of the results from numerical simulations seem
contradictory [11,12,27,32,33,54] but were carried out on
different models with different range of parameters and did
not necessarily start from the ground state [27] of a simply
related Hamiltonian. Performing a quantum quench amounts
to projecting an initial state onto the energy spectrum of
the final Hamiltonian, corresponding to a certain distribution
of energy, ρ̄(E). In the thermodynamical limit, a global
quench is expected to drive the mean energy to the bulk
of the energy spectrum since the perturbing operator is
extensive. In this high-energy domain, semiclassical physics
and random-matrix theory (RMT) arguments are expected to
work and make expectation values that hardly depend on the
energy (within a window given by the energy fluctuations)
[18,20,21]; thermalization can occur in the sense that the
energy distribution obtained from the quench gives the same
averages for the observables as the microcanonical ensemble.
This so-called eigenstate thermalization hypothesis (ETH)
has been tested numerically [19,27,32,33] for given models
(typically fermionic and hard-core bosonic models) and some
given set of parameters. No memory of the initial state (for
a given mean energy) is thus found on simple observables.
These results agree well with the previous findings of Ref. [12]
on a similar model. When we keep in mind this qualitative
argument, the results of Ref. [11] on the nonintegrable 1D
BHM look rather counterintuitive: For small quenches, a ther-
malized regime was found in the sense that two independent
observables computed within a (grand)-canonical ensemble
(and not microcanonical) and from time evolution gave the
same results. In contrast, a mean-field treatment of the 1D
BHM interpreted in the framework of chaos theory [65]
supports nonthermalization below an interaction threshold and
thermalization above (however, mean-field theory is known to
fail for this strongly correlated model, so the results are not
under control). The findings of Ref. [11] were later supported
by the calculation of the diagonal ensemble distributions,
which looked like an approximate Boltzmann law [54] in
the small quench regime. Surprisingly, for large quenches,

a nonthermalized regime was found in Ref. [11] in which
the correlations bear a strong memory of the initial state (in
the sense that they are closer to the ones in the initial state
than to the thermalized ones). This nonequilibrium behavior
was attributed to the very peculiar shape of the diagonal
ensemble in this regime [54]. An important step toward the
understanding of the nonthermalized regime on finite-size
systems was made very recently [55] when numerical evidence
that in the 1D BHM the ETH does not apply to large quenches
in finite systems was given and a general framework in terms of
rare events contributing to the distribution, providing a refined
version of the ETH, was suggested.

As integrability is often one of the ingredients that play
a role in the physics of quenches, we briefly recall that, for
1D quantum many-body models, integrability can be well
defined for a class of models which have the property of
scattering without diffraction [68]. This has two consequences
that relate to the question of thermalization: the momenta of the
particles do not redistribute [68] (a process which is believed
to be essential to get the thermalized momentum distribution)
and there is an extensive number of conserved quantities that
separate the eigenstates in many sectors, constraining the time
evolution. In the context of nuclear physics, RMT has been
proposed to describe the statistical features of the bulk of the
spectrum, and it is commonly conjectured that nonintegrable
quantum many-body or classically chaotic models display
universal level statistics [69]. Level statistics have been
computed in a few many-body models [70], supporting the
conjecture, but these results are restricted to a few models, and
it cannot be excluded that diffractive models could display
nonuniversal level statistics. The BHM is a bit peculiar in this
sense: If one denotes by Nmax the maximum number of bosons
onsite, the model is nondiffractive for only Nmax = 1 [71]. In
addition, if U is the interaction strength, U = 0 is an integrable
point (the atomic limit J = 0 is also exactly solvable). Level
statistics and delocalization properties of the eigenstates have
shown [71,72] that the BHM displays features of quantum
chaotic systems for nonzero U (and larger Nmax).

The first goals of this paper are to discuss the crossover
from small to large quench amplitude regimes on the basis
of energetic and static fidelity arguments and to evaluate the
finite-size effects that are associated with this crossover. We
then turn to a detailed discussion of the diagonal ensemble and
the verification of the ETH in the BHM, which complements
what has been done in Refs. [54] and [55]. We show that the ob-
served Boltzmann-like regime is spoiled by strong finite-size
effects that prevent both an accurate definition of an effective
temperature and the comparison with the microcanonical
ensemble. In the large quench limit, we explain in detail that
the breakdown of the ETH is actually related to the integrable
quench limit Ui = 0 → Uf = ∞. Thus, nonthermalization in
the 1D BHM is, on finite systems, reminiscent of the atomic
limit. While the U = 0 limit of the BHM is trivially integrable
as a free boson model, the infinite U (or atomic) limit is a bit
particular: For very large U and focusing on the low-energy
part of the spectrum, the model is effectively identical to an
integrable 1D hard-core bosons model (Nmax = 1). However,
we demonstrate that to understand the large-U limit of the
quench, we have to consider the whole excitation spectrum and
not only the low-energy part. This result can be qualitatively
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and partially connected to the effect of the proximity to
integrable points in quantum quenches, studied very recently in
fermionic and hard-core bosonic models [32,33], in the sense
that the observed nonthermalized regime on finite systems is
connected to a particular limit in which the model has high
degeneracies. Throughout the paper, we also give a simple
but interesting example of a quench in a toy model consisting
of free bosons confined in an harmonic trap. The motivation
for it is that it surprisingly shares some qualitative features
with the 1D BHM and it allows for analytical calculations on
some properties of the diagonal ensemble distribution. This
model also corresponds to a standard experimental setup (as
for the BHM), although interactions would have to be taken
into account for a realistic comparison.

The paper is organized as follows: we first review in Sec. I
the definitions of the time-averaged density matrix, the ETH,
and the computation of the diagonal weights for the two models
under study. In Sec. II, we suggest two kinds of crossover
number of particles to distinguish the small and large quench
regimes. Lastly, we discuss in Sec. III the fate of the ETH in
the 1D BHM and in small finite-size systems.

I. MODELS AND COMPUTATION OF THE WEIGHTS
OF THE DIAGONAL ENSEMBLE

A. The time-averaged density matrix and the ETH

As discussed in recent papers [27,32,33,54,55,60], the time-
averaged expectation values of any observable are governed
by the time-averaged density matrix ρ̄, which is diagonal in
the final Hamiltonian eigenstate basis, provided the spectrum
is nondegenerate. From now on, we only consider finite-size
systems that have a discrete spectrum. This leads to the
so-called diagonal ensemble that has weights fully determined
by the overlaps between the initial state |ψ0,i〉 and eigen-
states |ψn,f 〉 of the final Hamiltonian Hf . Usually, |ψ0,i〉 is
the ground state of the initial Hamiltonian Hi , and we assume
in the following that we start from this zero-temperature pure
state. We also consider that the final Hamiltonian takes the
form

Hf = Hi + λH1, (1)

where λ (that has the dimension of an energy) is called the
quench amplitude and H1 is the dimensionless perturbing
operator. Working on a global quantum quench means that
H1 is assumed to be an extensive operator that scales with
the number of particles N . The time-averaged density matrix
is defined by ρ̄ = limt→∞ 1

t

∫ t

0 |ψ(s)〉〈ψ(s)|ds with |ψ(t)〉 =
e−iHf t |ψ0,i〉. It is important to realize that the infinite time limit
is taken before the thermodynamical limit. If the spectrum has
exact degeneracies, the time-averaged density matrix is

ρ̄ =
∑

n

pn|ψn,f 〉〈ψn,f | +
∑

d

|ψd,f 〉〈ψd,f |, (2)

where n labels nondegenerate eigenstates of Hf , pn =
|〈ψn,f |ψ0,i〉|2 are the diagonal weights, d labels the ba-
sis of the degenerate subspaces, and the vectors |ψd,f 〉 =∑

qd,f
〈qd,f |ψ0,i〉|qd,f 〉 keep a memory of the initial phases

of |ψ0,i〉 with respect to the |qd,f 〉. In the situation where
ρ̄ is block diagonal, in order to get time-averaged results
for an observable O which has off-diagonal matrix elements

in the Hf eigenstate basis, one would have to compute all
the overlaps 〈qd,f |ψ0,i〉 and 〈q ′

d,f |O|qd,f 〉 and sum up the
contributions of all the degenerate subspace. In the following,
this would be the case only for the free boson model, and
we actually use only observables that are diagonal because
the dimensions of the degenerate sectors grow (roughly)
exponentially with the number of bosons N . For the BHM, one
can check that the spectra are nondegenerate in each symmetry
sector.

For a generic nonintegrable model, the ETH has been
surmised [20–23,27], suggesting an explanation for thermal-
ization in an isolated quantum system and a justification for
the use of the microcanonical ensemble. The ETH is supported
by semiclassical and RMT arguments [18,20–23] and was
checked numerically on particular models [19,27,32,33]. The
ETH boils down to the fact that, in a given small window
of energy, the diagonal observables On = 〈ψn,f |O|ψn,f 〉
that contribute to the time-averaged expectation value Ō =
Tr[ρ̄O] = ∑

n pnOn hardly depend on the eigenstate n (in
short, On � Ō in a small energy window). Consequently,
any distribution peaked around the mean energy, and one
can show on general grounds that the relative width of the
distribution scales to zero as N−1/2 [27] (although some slower
scalings could occur [54]) will give the same observables as the
microcanonical ensemble, therefore accounting for thermal-
ization. For integrable models [27,32,33], nonthermalization
is explained by the fact that observables fluctuate a lot within
a given energy window, which may be associated with the
extensive number of conserved quantities that exist in these
models. A more subtle scenario for the breakdown of the ETH
was recently proposed [55], in which some rare states have a
significant contribution to the averaged observables.

B. Free bosons in an harmonic trap

We now describe how to get the diagonal weights for
two particular models. First, we consider a model of N

noninteracting bosons initially confined in an harmonic trap of
frequency ωi and lying in the zero-temperature ground state.
The frequency is changed to ωf at time t = 0. For this model,
the quench amplitude is defined as λ = ωf /ωi − 1 (taking
ωi as the unit of energy), according to the expression of the
quench parameter in terms of the harmonic oscillator ladder
operators. We start with the computation of the single-particle
wave-function overlaps pn since the results for the many-body
wave function are expressed as a function of them. The single-
particle spectrum is nondegenerate and the single-particle
eigenfunctions are

φn(x) = 1√
2nn!

√
πσ

e
− x2

2σ2 Hn

( x

σ

)
,

with σ = √
h̄/mω and Hn being the Hermite polynomials.

The single-particle excitation spectrum is split into the odd-
and even-parity sectors, and the overlaps are nonzero for even-
parity wave functions only. They read as

p2n = (2n)!

22n(n!)2

√
1 + λ

1 + λ/2

(
λ

λ + 2

)2n

(3)
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for integer n. The many-body wave function of an N -
boson excited configuration {nj } = {n0, . . . ,nm} of the final
Hamiltonian Hf (with highest occupied level m) is

|{nj }〉 =
√

n0!n1! . . . nm!

N !

∑
p∈P

|φ1,f :p(1), . . . ,φm,f :p(N )〉,

with P being the set of all permutations and nj being the
occupation of the single-particle orbital φj,f . Overlapping this
state with the N -boson initial ground state |φ0,i , . . . ,φ0,i〉 gives
the many-body weights

p{nj } = N !
(p0)n0

n0!

(p2)n2

n2!
· · · (pm)nm

nm!
. (4)

In this equation, all m’s are even integers. The total energy
of this excitation is E{nj } = h̄ωf (2n2 + 4n4 + · · · + mnm) +
h̄ωf N/2 with the constraint

∑m/2
j=0 n2j = N . Equation (4) is

nothing but the multinomial distribution associated with the
elementary probabilities pm, and it is thus clear that it is
normalized. We also see that formula (4) is in general valid
for a free-boson model, starting from the condensed ground
state (and specifying the pm). If one takes the single-particle
Boltzmann factor for the pm, one recovers the many-body
Boltzmann factor for the configuration. Contrary to statistical
ensemble distributions, the weights do not show a simple
dependence of the configuration energy. This quench is
qualitatively similar to a Joule compression/expansion as
the 1D effective density n = Nω suddenly changes. In fact,
λ = nf /ni − 1 is related the ratio of the effective densities.
Other examples of quantum mechanical treatments of the Joule
expansion can be found in the literature [73,74].

In order to get the distribution of the weights versus energy,
we resort to numerics: using a fixed number of low-lying even-
parity levels Ns , we scan all possible configurations of N

bosons in these Ns levels iteratively up to roughly 62 × 109

configurations (N = 18 and Ns = 22). The truncation error
associated with a finite Ns is checked by summing up the
weights.

C. The 1D BHM

The BHM in a 1D lattice, known to be nonintegrable for
U 	= 0, is described by the following Hamiltonian:

H = −J
∑

j

[b†j+1bj + b
†
j bj+1] + U

2

∑
j

nj (nj − 1),

with b
†
j the operator creating a boson at site j and nj = b

†
j bj

being the local density. J is the kinetic energy scale, and
U is the magnitude of the onsite repulsion. In an optical
lattice, the ratio U/J can be tuned by changing the depth
of the lattice and using Feshbach resonance. When the density
of bosons is fixed at n = 1 and U is increased, the zero-
temperature equilibrium phase diagram of the model displays
a quantum phase transition from a superfluid phase to a Mott
insulating phase in which particles are localized on each
site. The critical point has been located at Uc � 3.3J using
numerics [75]. The quenches are performed by changing the
interaction parameter Ui → Uf (we set J = 1 as the unit
of energy in the following), so we have λ = (Uf − Ui)/2,
and the perturbing operator H1 = ∑

j nj (nj − 1) is diagonal.

Numerically, one must fix a maximum onsite occupancy
Nmax, and we take Nmax = 4 unless stated otherwise. Exact
diagonalization calculations are carried out using periodic
boundary conditions and translational invariance. We denote
by 0 � k � L − 1 the total momentum symmetry sectors.
The algorithm to get the ground state and eigenstates of the
Hamiltonian is a full diagonalization scheme for sizes up to
L = 10 at unitary filling. For some of the quantities, we use
the Lanczos algorithm up to L = 15. In Ref. [54], the Lanczos
algorithm has been proposed to compute the low-energy
weights of the distribution. This worked relatively well for
the 1D BHM, and in particular for the spectrum-integrated
quantities, but it may not be suited for all possible kind of
quenches. We notice that in the case of quenches with a mean
energy deep in the bulk of the spectrum, a generalization
of the Lanczos algorithm [76] that works in the bulk of a
spectrum could be used to get the main weights. For what we
call small quenches in the following, the larger weights are in
the low-energy region, and so Lanczos can give generically
good results in such situations.

II. ARGUMENTS ON FINITE-SIZE EFFECTS AND THE
DIFFERENT REGIMES OF A QUANTUM QUENCH

The goal of this part is to quantify the distance of the quench
distribution ρ̄(E) from the many-body ground state and the
low-energy region of the spectrum. A first distance is defined
from an energetic argument and a second one from the overlap
with the ground state of Hf . Both criteria lead to a crossover
number of bosons Nc(λ) that can be computed numerically and
that diverge with small λ as a power law. When N 
 Nc, the
quench probes the low-energy part of the spectrum, while when
N � Nc, high-energy physics govern the time evolution. Both
definitions do not depend on the integrability of the model,
but we may argue that for nonintegrable models, there is a
strong qualitative difference between the low-energy part of
the spectrum and the bulk of the spectrum. These finite-size
effects are rather generic, while other kind of finite-size effects
can emerge for a given model: For instance, this is the case for
the BHM at large U .

A. Crossover number of particles from an energetic argument

1. Low-energy part of the spectrum

We first have to specify what we mean by the low-energy
region of the spectrum: it corresponds to the typical energies
of a few elementary excitations above the ground state. These
elementary excitations are quasiparticles, collectives modes,
and particle-hole excitations. Single or a few excitations
give a structure (dispersion relations, continuum of low-lying
excitations) to the low-energy part of the many-body spectrum
(see an example in Fig. 1). We denote by �f the typical
energy scale of a single excitation; it is a microscopic energy
scale. In Bethe-ansatz solvable or free systems, a high-energy
excitation can be understood as a superposition of single-
particle excitations, but this is no longer true for nonintegrable
systems [69,70]. If the number of elementary excitations
remains small enough, they may hardly interact and have
integrable-like features in the low-energy part of the spectrum.
We thus expect a smooth crossover between integrable-like and
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FIG. 1. Typical many-body spectrum of a finite-size system.
This example is taken from the 1D BHM with Uf /J = 2.5 and
L = N = 10. Energies are given as a function of the total momentum
k. The width of the spectrum is typically proportional to N or N2

depending on the statistics. Enlargements of the low-energy region
and the bulk of the spectrum (grey region) are given. The low-energy
region features elementary excitations up to a typical energy scale �f

which is assumed to be microscopic, that is, not extensive. Here, we
take �f = Uf , and the relation dispersion of the excitation branch is
sketched (the line is a guide to the eyes).

non-integrable-like behaviors with increasing energy above the
ground state, but the typical energy of this crossover is hard to
evaluate, except that it must be above E0,f + �f .

2. Criteria

We consider that the energy distribution ρ̄(E) is cen-
tered around the the mean energy Ē = 〈ψ0,i |Hf |ψ0,i〉 of
the distribution (fixed by the initial state) as in general
�E/(Ē − E0,f ) ∼ 1/

√
N . Since |ψ0,i〉 is not an eigenstate

of Hf , we necessarily have Ē > E0,f . The criteria we choose
to distinguish between low-energy (or small) quenches and
high-energy (or large) quenches is Ē = E∗

f (see Fig. 2) where
E∗

f is such that E∗
f − E0,f = �f with the ground-state energy

E0,f . It corresponds to the situation where the mean energy put
into the system excites roughly only one elementary excitation
and is thus a finite-size effect. Another way to introduce the
same criteria is the following: (Ē − E0,f )/�f is the energy
difference between the initial state and the final ground state

E0,f E∗
f Ē

ρ̄(E)

∆f Energy

FIG. 2. (Color online) Sketch of the energy scales in a quantum
quench. The initial state builds up an energy distribution ρ̄(E)
(diagonal ensemble) around a mean energy Ē fixed by the initial state.
The quench amplitude λ tunes both Ē and the ground-state energy
E0,f . The low-energy scale E∗

f . �f = E∗
f − E0,f is assumed to be

nonextensive while E0,f and Ē are assumed to be extensive. Ē = E∗
f

defines the crossover number of particles Nc. In the thermodynamical
limit, one expects Ē � E∗

f for any finite λ.

in units of the typical elementary excitation energy �f , the
criteria corresponding to a distance of one �f .1 The criteria
thus amounts to a lower bond of the energies at which one
enters in the bulk of the spectrum. The order of magnitude of
�f is set by the microscopic units of energy of the model.
For instance, we take Uf in the BHM as it controls the sound
velocity in the superfluid region and the Mott gap in the Mott
phase.

This criteria gives a relation between the crossover number
of particles Nc (on a lattice, we work at finite density
so it also corresponds to a crossover length Lc) and the
quench amplitude λ such that, if N 
 Nc(λ), the energy is
mostly distributed among the low-energy excitations, while if
N � Nc(λ), most of the weights are on high-energy excita-
tions. We can rewrite the criteria in a more tractable way: by
using the notation e = E/N for the energy per particle, and
the label 0 for ground-state energies, it reads

Nc(λ) = �f (λ)

ē(λ) − e0,f (λ)
. (5)

Interestingly, we expect Nc(λ) to generically diverge as
λ−2 in the limit of small λ. Indeed, we have ē = e0,i +
λh1,i with h1,i = 〈ψ0,i |H1|ψ0,i〉/N , the expansion e0,f �
e0,i + (de0/dλ)iλ + (d2e0/dλ2)iλ2/2, and (de0/dλ)i = h1

after Feynman-Hellman theorem. With Eq. (1), one finally
gets Nc(λ)λ2 → 2�i/(d2e0/dλ2)i at λ → 0.

A few comments can be made on the criteria:
� When comparing quenches from the same initial state

but with different Hf , λ controls the mean energy per particle
put into the system. Thus, λ is a meaningful parameter even in
the thermodynamical limit.

� This definition looks qualitative due to the rather arbitrary
choice of �f and the fact that, on finite systems, the
energy distribution can have a rather large width associated
with energy fluctuations �E. We point out that Nc is a
crossover number so that N � Nc has no particular meaning.
Furthermore, from the divergence at small λ, one can have
1 
 N 
 Nc, that is, a situation in which energy fluctuations
vanish.

� When λ is scanned from 0 to a finite value, both the mean
energy and the region of the spectrum that plays a role in the
time evolution (around ē) are continuously changed. One can
also notice that a quench that starts from a ground state does
not necessarily allow access to any energy of theHf spectrum,
contrary to the situation where one prepares the initial state at
will.

� The regimes N � Nc and N 
 Nc are expected to
be physically different for generic (nonintegrable) systems.
Below �f , the density of states is usually much smaller than
in the bulk of the spectrum: level spacings are of order of
1/N and observables can strongly fluctuate with the eigenstate
number, as demonstrated later (similar observations can be
made in the figures of Refs. [27,32,33]). In this low-energy
region, RMT arguments are not expected to work [69] and

1We notice that �f is different from the finite-size gap to the
first excitation (there can be a huge number of states between E0,f

and E∗
f ).
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the eigenstates may not be typical, so we expect the ETH
to fail. These qualitative observations support the difference
between the low-energy region and the high-energy region of
the spectrum made at the beginning of this section.

Because the full spectrum width grows as N or N2

(depending on the statistics of the particles) while the number
of eigenstates grows exponentially with N , the density of
states in the bulk of the spectrum is exponentially large. In
this high-energy regime (with respect to elementary exci-
tations), semiclassical and RMT arguments are believed to
work reasonably well for nonintegrable models [69], which
was checked on some strongly correlated systems [70]. As
observed numerically in several examples [27,32,33], simple
observables hardly depend on the eigenstate number in this
regime, supporting the ETH.

� In the thermodynamical limit, we always have N � Nc,

and the small quench regime is thus expected to vanish. If
one wants to check the ETH on finite-size systems, one needs
sufficiently large λ in order to try to reach the bulk of the
spectrum. However, we see in this paper a counterexample (the
BHM) where ETH fails at large λ (see also Ref. [55]). Even
though it looks difficult to use quenches to probe very low-
energy excitations in a very large system, on a finite system,
one could tune the mean energy from the low- to the high-
energy part of the spectrum using λ. Furthermore, this small
quench regime is certainly of interest for numerical simulations
and also for experiments using a relatively small number of
atoms (few hundreds or thousands).

� Lastly, it could be interesting to compare this criteria with
the domain of validity of bosonization [7,62] and conformal
field theory [9,10], but this is beyond the scope of this paper.
We note that conformal field theory can describe accurately
quenches in certain integrable models in the thermodynamical
limit and for arbitrary quench amplitudes [9,10]. Noninte-
grable models with low-energy features are described in terms
of free-particle (integrable) theory, as bosonization should
display nonthermalized features as for integrable models.
In this respect, Ref. [59] gives interesting examples on the
applicability of these methods to the quench situation.

We now give examples of Nc(λ) for the two models under
study. In the free-boson model, the mean energy after the
quench can be computed analytically:

ē = e0,i + h̄ωf

4

(
ωf

ωi

− ωi

ωf

)
,

with e0,i/f = h̄ωi/f /2. The energy fluctuations are given
by �e = (ē − e0,i)

√
2/N , showing that the distribution gets

peaked in the thermodynamical limit with the usual scaling.
A natural choice for �f is h̄ωf (the only microscopic energy
scale), and the crossover number of bosons can be expressed
as a function of the quench amplitude:

Nc = h̄ωf

ē − e0,f

= 4

(
ωi

ωf

+ ωf

ωi

− 2

)−1

= 4
λ + 1

λ2
.

This expression diverges as 4/λ2 in the small quench regime
and vanishes as 4/λ in the large quench regime.

For the 1D BHM, we take �f = Uf , and Nc is given in
Fig. 3 for the particular initial value Ui = 2. It displays the
expected λ−2 divergence at small quenches. We notice that the
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FIG. 3. (Color online) Crossover number of bosons Nc obtained
from the energetic argument in the 1D BHM at filling n = 1 and
starting from Ui = 2. A few points obtained from the criteria based
on the static fidelity are also given.

finite-size effects on this energy-based criteria are pretty small.
This can be put on general grounds for 1D systems. For critical
systems, the finite-size effects on the ground-state energy per
particles have a universal correction [77],

e0(L) = e0(∞) − cπu

6L2
+ O

(
1

L2

)
,

with u as the sound velocity and c as the central charge. If the
system is gapped, the corrections are even smaller because they
are exponentially suppressed by a factor of exp(−L/ξ ) with
ξ , the correlation length, entering in the formula. In the large
quench limit of the BHM, one can argue that Nc saturates
to a finite value. Indeed, in the limit of large λ, one finds
that Nc → 2/(〈n2〉0,i − 〈n2〉0,f ) + O(1/λ) � 2/〈n2〉0,i, as the
density fluctuations 〈n2〉0,f are suppressed in the Mott phase.
Notice that the energy fluctuations that scale as N−1/2 in the
1D BHM have been computed numerically in Ref. [54]. The
full curve and the two asymptotic behaviors can be simply
computed from ground-state calculations.

B. Crossover number of particles based on the static fidelity

In the thermodynamical limit, the (squared) fidelity be-
tween the two ground states F = |〈ψ0,i |ψ0,f 〉|2 is generally
expected to vanish exponentially with the system size or
number of particles. Interestingly, 1 − F counts the contri-
bution of the excited states to the time evolution. A possible
definition of a crossover number of particles can thus be the
value of λ and N such that F = 1/2, that is, half of the total
weight in the ground state and half in the excited states. In the
limit λ → 0, one can introduce the fidelity susceptibility χi,L

through the expansion F � 1 − λ2χi,L/2. The scaling of χi,L

is in general nontrivial. If Hi is gapped, the scaling χi,L ∼ L

has been proposed [78], which gives the divergence Nc ∼ λ−2.
In critical systems, superextensivity, corresponding to scaling
χi,L/L ∼ Lαi with αi > 0, can occur [78,79], leading to a
slower divergence Nc ∼ λ−2/(1+αi ) that depends on the initial
state. Notice that we qualitatively expect that the Nc from
the fidelity will be smaller than the one based on energetic
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argument because, on sufficiently large systems, F can be
very small while the mean energy is still in the low-energy
part of the spectrum.

For the free-boson model, the static fidelity as a function of
λ is F = [

√
1 + λ/(1 + λ/2)]N . By setting F = 1/2, one has

the crossover number of bosons Nc:

Nc = ln 2

ln[(1 + λ/2)/(
√

1 + λ)]
. (6)

Notice that it also diverges in the small quench regime as
Nc = 8 ln 2/λ2 with the same power law as for the energetic
arguments. Put in other words, this means that the many-body
ground-state occupation is robust within changes in ω of 25%
for N = 102, 7% for N = 103, and 2% for N = 104 (see the
next section for the single-particle level occupation). In the
large amplitude limit, it decreases only logarithmically with λ,
Nc � 2 ln 2/ ln λ, but the prefactor is already small.

The fidelity can also be computed for the 1D BHM
by Lanczos calculations. Using the curves F(λ) obtained
numerically, we determined Nc(λ) for numbers of bosons from
six to fifteen. The result is plotted in Fig. 3. Due to the relatively
small sizes accessible with Lanczos, we cannot investigate
the scaling exponent of the small quench divergence. The
ground-state fidelity of the 1D BHM has been studied in
Ref. [80]. We observe that the static fidelity could be computed
on larger chains with matrix-product-state-based algorithms
[56,81] or quantum Monte Carlo techniques [82].

C. Quench and transition temperature to the Bose-condensed
regime in the free-boson model

The free-boson model undergoes a transition to a Bose-
condensed state below a critical temperature Tc. In the 1D
harmonic trap and on a finite-size system, the lowest single-
particle level occupation 〈n0〉 becomes of the order of N below
Tc � h̄ωN/ ln(N ) (standard calculations of Tc are performed
in the grand-canonical ensemble, and one sees that for fixed
effective density ωN and N → ∞, Tc → 0 in agreement with
the fact that there is no Bose condensation in this model in the
thermodynamical limit although condensed and noncondensed
regimes are clearly seen on finite systems). This critical tem-
perature corresponds to a critical energy Ec − E0 ∼ h̄ωN2.
These standard results can be used to answer the question
of whether a large quench from the many-body ground
state can drive the system into the noncondensed regime.
We found that the mean energy put into the system scales
as Ē ∼ E0,f + h̄ωf Nλ so that λ ∼ N is required to reach
Ec and the noncondensed regime. This surprising behavior
(diverging with the number of bosons) actually agrees with
the exact scaling of the single-particle ground-state occupation
number which can be computed for the quench since we have
seen that the distribution is the multinomial one: We have
〈n0〉 = Np0 ∼ N/

√
λ at large λ. Similarly, the fluctuations

can be computed and read 〈n2
0 − 〈n0〉2〉 = Np0(1 − p0) so that

the relative fluctuations scale as 1/
√

N with a λ-dependent
prefactor. Consequently, starting from the many-body ground
state (for which 〈n0〉 = N ), one stays in the condensed regime
for finite λ, and one needs λ ∼ Nz with z > 2 to make 〈n0〉
scale to zero in the thermodynamical limit. The physical origin
of the fact that the quench process makes it difficult to reach

the critical temperature is that the many-body ground-state has
vanishing overlaps with the excited states above Tc because
they have negligible contributions from the single-particle
ground state. Starting from a finite temperature state, the
quench could help cross the critical temperature.

III. DIAGONAL ENSEMBLE AND THERMALIZATION

In this section, we compare averages of the expectation
values of observables obtained from different ensembles:
the diagonal, microcanonical, and canonical ones. We also
show the behavior of some local and global observables as a
function of the energy per particle to discuss the possibility
of thermalization according to the ETH. The first numerical
evidence that the ETH does not work for large quenches on
finite systems of the 1D BHM was recently given in Ref. [55].

A. Microcanonical temperature and the density of states

As a preliminary, we discuss the finite-size effects and
possible issues with the microcanonical ensemble in the model
under study. The standard way to define the microcanonical
temperature TM of a closed system is from Boltzmann’s
formula,

1

TM

= ∂sM

∂ē
, (7)

where we use the entropy per particle sM = SM/N and the
statistical entropy SM (Ē) = kb ln (Ē). (Ē) is the number
of states within a small energy window δE around Ē.
Any distribution that is peaked enough (δE/Ē → 0 in the
thermodynamical limit) will pick up the local density of states
g(ē) through (Ē) � g(Ē)δE. Usually, δE is taken as the
energy fluctuations with δE ∼ Ē/

√
N . Thus, δE is typically

much larger than microscopic energy scales such as �f . For
the free-boson model, energies per particle are separated by
h̄ωf /N and the degeneracy g(e) of each level can be computed
numerically for small systems. Asymptotic analytical results
exist in the large energy limit for g(e) [83–85]. Thus, we can
have access to the microcanonical entropy per particle through
sM = ln g(e)/N .

In Fig. 4, we show the logarithm of the density of states
of the 1D BHM on a finite-size system (L = N = 10) for
increasing values of the interaction U as a function of the
energy per particle in units of U . For small interactions, the
behavior is smooth, and one may safely take the derivative
to get the microcanonical temperature. The system has a
density of states typical of a bound spectrum Hamiltonian,
displaying first positive and then negative temperature regimes.
For U = 12J , in the Mott phase, one observes a gap to the
ground state in the low-energy part of the spectrum and also
some oscillations over a typical scale 1/N . These oscillations
are easily understood in the atomic limit (J = 0) where they
correspond to Mott peaks that have a high degeneracy, giving
this macroscopic density of states at the center of the lobes.
A small J broadens the peaks, but the lobes are expected
to survive for large enough U in a finite system, as one can
see for U = 20J . In this large-U limit, e0/U gets close to
zero while the maximum energy per site is proportional to the
number of particles (in Fig. 4, the situation at high energies is
a bit different because we cut the maximum number of bosons
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FIG. 4. Logarithm of the density of states g(e) as a function of
the energy per particle e in the 1D BHM with density n = 1 for
three different interactions. Mott gaps develop at large U , splitting
the density of states into many lobes separated by 1/N .

onsite). The number of Mott lobes is of order N2, and the
density of lobes per unit of e/U grows with N. This remark
remains valid with a cut in the maximum number of bosons
per site. This means that the density of states, as a function
of the energy per site, will be a curve carved into more and
more lobes as N increases. For large systems, δe will be much
larger than the interlobe distance and will pick up the envelope
of the lobes as a local density of states. On finite systems,
δe and 1/N could be of the same order of magnitude, which
makes the definition of the microcanonical temperature rather
difficult since it is very sensitive to the choice of δe and the
shape of the peaked distribution.

In the following, the microcanonical ensemble density
matrix ρM is defined in the usual way:

ρM =
∑

En∈[Ē−δE,Ē+δE]

1


|ψn,f 〉〈ψn,f |, (8)

with the free parameter δE as a small energy window energy.
 is simply the number of eigenstates in the energy window
[Ē − δE,Ē + δE]. The sum over the eigenstates of Hf must
be taken over all symmetry sectors. Notice that δE can
be chosen by hand [27,32,33] or in the same way as the
effective canonical temperature: by looking for an approximate
solution for the equation Ē = Tr[ρMHf ] (we recall that
Ē = 〈ψ0,i |Hf |ψ0,i〉 is fixed by the initial state). In that case,
the solution can be multivalued, so it does not necessarily
help. Taking δE as the computed energy fluctuations does not
help either, because on finite systems, the distributions for
the 1D BHM are quite asymmetric and have large moments.
The choice of δE is in general arbitrary, and we have tried
to choose the one that gives best results for both the cor-
relations and the energy. A partial conclusion is that the
number of particles required to have a reliable definition of
the microcanonical ensemble can vary a lot depending on the

model and the chosen parameters. For the 1D BHM, we see
that the peculiar shape of the density of states can be an issue,
although it is intimately linked to the physics of the model.

B. Canonical ensemble and effective temperature

Even though we work on a closed system, we introduce
a canonical density matrix as done in Refs. [30,32,33] and
implicitly in the (grand)-canonical calculations of Ref. [11]:

ρB = e−Hf /kBTB

Z
, with Z = Tr[e−Hf /kBTB ]. (9)

The effective canonical temperature TB can be defined, as
in Refs. [30,32,33], as the solution of the equation Ē =
Tr[ρBHf ]. As the mean energy is a continuous and increasing
function of TB , the solution is unique and the optimization
procedure works well. We take kB = 1 in the following so
that temperatures are given in the same units as the energies.
Here again, the trace is taken over all symmetry sectors. The
diagonal ensemble, on the contrary, has nonzero weights only
in the initial-state symmetry sector, that is, the even-parity
sector for the free-boson model and the k = 0 sector in the 1D
BHM. As the clouds of points of the distributions sometimes
look exponential, another temperature can be defined by fitting
the cloud of data with a normalized Boltzmann law and using a
procedure that minimizes the following cost function between
two distributions ρ1 and ρ2:

χ (ρ1,ρ2) =
∑

n

(ln pn,1 − ln pn,2)2.

Once convergence is reached, we call TD the effective
temperature obtained from the distribution.

We recall that provided the density of states scales ex-
ponentially with the energy and the energy fluctuations are
negligible in the thermodynamical limit, the microcanonical
and canonical ensembles will lead to the same thermodynamic
functions and the same temperatures.

C. Comparison of observables from different ensembles

We here focus on the comparison of observables obtained
from different ensembles in the 1D BHM. The evolution of
one local and one global observable as a function of the
eigenstate energy per particle is given in Figs. 5 and 6. Each of
these two observables is used separately in the literature, so we
here give results for both for completeness. The observables
are the one-particle density matrix, defined for a translationally
invariant Hamiltonian as

gr (e) = 1

L

L∑
i=1

〈ψf (e)|b†i+rbi |ψf (e)〉 , (10)

where |ψf (e)〉 is the eigenstate of energy e; gr (e) is a local
observable since, for a given r , it can be attributed to a sub-
system. In contrast, the momentum distribution nk integrates
information from all distances and may be considered as a
global quantity:

nk(e) =
L−1∑

r=−L+1

eikrgr (e). (11)
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FIG. 5. Local observable g1(e) of the 1D BHM as a function of
the energy per particle for N = L = 10 and increasing interactions.
(For large quenches, the results were first given in Ref. [55].)

In Figs. 5 and 6, both g1(e) and nk=0(e) evolve smoothly in
the superfluid regime (U/J = 2.5). The largest fluctuations are
found in the low-energy part of the spectrum, supporting the
energetic argument for the finite-size effects. If one were able
to choose ē in the bulk of the “superfluid” spectrum, one would
possibly find agreement with ETH. However, for the finite-size
systems at hand, one cannot reach the bulk of the spectrum
before the Mott lobes emerge with λ. As shown in Ref. [55]
and here confirmed, the observables strongly vary within each
Mott lobe. We now turn to the nature of the distributions for
different quenches and compare the results for gr obtained by
the different ensembles. Figures 7 and 8 gather the data for

FIG. 6. Global observable nk=0(e) as a function of the energy per
particle (same parameters as in Fig. 5).

FIG. 7. (Color online) Comparison of different ensembles for
different quenches. The effective temperature TB (given in Fig. 8)
is fixed by the mean energy. The results are obtained on a system
with L = N = 10.

a small and a large quench from the superfluid region with
Ui = 2.

1. Small quench regime in the 1D BHM

When Uf = 2.5, the distribution is peaked on the final
ground state with a large weight p0. The tail displays an
exponential-like behavior that has an effective temperature
TD different from TB , determined from the energy. This is
easily understood from the fact that only the very few first
weights significantly contribute to the energy, and they are
not aligned with the tail. As ē is very close to e0,f in this
regime and as there are only a very few energies at the
bottom of the spectrum, the microcanonical ensemble gives
a bad mean energy and has only a few eigenstates. In this
regime, where p0 is close to one, a minimal microcanonical
ensemble would simply be |ψ0,f 〉〈ψ0,f |, although it has no
statistical meaning. The correlations gr in Fig. 8 show that
they seem to be thermalized in the sense that ρB gives a
reasonable account of the correlations. However, |ψ0,f 〉〈ψ0,f |
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FIG. 9. (Color online) Ratio of effective canonical temperatures
obtained from the distribution (TD) and from the mean energy (TB ).
Results are obtained for a quench starting at Ui = 2.

also gives a reasonable account for the correlations, while
ρM does not satisfactorily reproduce them. The system is in a
regime dominated by finite-size effects, far below the crossover
number of bosons. The points of Ref. [11] in the thermalized
region of the phase diagram seem to belong to this regime
dominated by finite-size effects. We have also looked at a
slightly larger quench amplitude with Ui = 1 and Uf = 4
as in Fig. 3 of Ref. [11]. However, we work on a slightly
smaller system size, and the data displayed in Ref. [11] were
averaged over time, so correlations cannot be quantitatively
compared. Since p0 is smaller, there is a substantial difference
between the correlations in the final ground state Uf and
the one from the diagonal ensemble. The canonical ensemble
still gives the best agreement with ρ̄. In a sense, the shape
of the distributions as given in Ref. [54] does explain
the observation of Ref. [11]. Yet, the distribution is clearly
not a true Boltzmann one as the temperatures obtained from
the mean energy and other observables are not identical. In
order to investigate this deviation, or the difficulty in defining
an effective temperature, we have computed the ratio between
the two effective temperatures TD and TB in Fig. 9. For L = 6
to 9, it remains between 1 and 3.5 and has a tendency to diverge
at small quenches. Consequently, ETH does not apply here
due to the presence of strong finite-size effects, but one cannot
claim either that the system is thermalized even though some
correlations look thermalized in the canonical ensemble. The
observed distributions are specific to this model and to these
system lengths and parameters. We also point out that a similar
regime has been observed in Ref. [32], corresponding to low
effective temperatures, but for which the diagonal ensemble
distributions were not plotted. Still, the behavior of large
systems (N � Nc) in the small quench regime remains an open
but very interesting question as the low-energy physics will
control the behavior. In this respect, we draw an argument in
favor of nonthermalization: for symmetry reasons, the quench
only excites states in the ground-state symmetry sector, while
the statistical ensembles average over all symmetry sectors. For
instance, a system with a branch of excitation E(k) can have a
k = 0 gap while the whole spectrum is gapless; hence, it could
not look thermalized. Starting from a finite-temperature state

or including symmetry-breaking terms, like disorder, could
partially cure this symmetry constraint.

2. Large quench regime

Results for two large quenches at a commensurate density
n = 1, from the superfluid parameters to deep into the Mott
limit and conversely, are given in Figs. 7 and 8. For the first
one, from Ui = 2 to Uf = 20, the distribution shows very
strong fluctuations of the weights within each Mott lobe [54].
In particular, large weights are present in the low-energy part
of the first subbands. In Ref. [55], it was shown that the larger
values of g1 were correlated to the larger weights, explaining
that the ETH does not apply in these finite-size systems. This
is confirmed by looking at the time-averaged correlations that
are reproduced neither by ρM nor by ρB . DMRG calculations
[11,55] gave evidence that nonthermal correlations gr survive
for system sizes of order 100.

We now elucidate the origin of the observed nonthermalized
regime, first by looking at the effect of the commensurability
of the density in order to determine whether the presence of an
equilibrium critical point plays a role for large quenches. As
shown in Figs. 10 and 11, the phenomenology is very similar to
the commensurate case with a nonthermalized regime at large
quenches, except that there is no gap above the ground state.
Quenches that remain in the superfluid region (data not shown)
also have the same behavior as for the commensurate case.
These results suggest that the reason for nonthermalization is
not related to the features of the low-energy spectrum, that
is, to the presence of a gap above the ground state, but is
related to the proximity of the U = ∞ limit of the model.
However, in the small quench regime where the low-energy
part of the spectrum governs the out-of-equilibrium physics,
the opening of a gap can certainly play a role. Unfortunately,

FIG. 10. (Color online) Quench from Ui = 2 to Uf = 20 for an
incommensurate density n = 2/3 for which there is no equilibrium
quantum critical point. The structure of the density of states, the
evolution of the local correlations gr , and the shape of the distributions
are very similar to the commensurate case.
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FIG. 11. (Color online) Upper panel: comparison of the different
observables in different ensembles (same parameters as in Fig. 10).
Middle panel: the pn vs g1(n) curve gives proof of the nonrelaxation
toward a thermal state for the same parameters as in the upper panel.
Lower panel: same plot but for the integrable quench limit Ui = 0
and Uf = 100.

due to the finite-size effects discussed in this paper, this
interesting question cannot be addressed with reliability. For
instance, it has been shown recently [61] that a quench in the
quantum Ising model, which is integrable, is sensitive to the
presence of the critical point. We note that the lobes could
be qualitatively interpreted as stemming from a 1D gapped
single-particle dispersion relation in both the commensurate
and incommensurate regimes. However, in the latter case,
there is no transition to an insulating state as a function of
temperature.

One can actually argue that the large-U structure of the
distribution is reminiscent of the atomic limit U = ∞ in which
we show that both the weights and the observables fluctuate
and are correlated so that ETH is violated in this limit. One can
show that the weights of a quench from Ui = 0 to Uf = ∞
depend on the configuration in each of the degenerated Mott
peaks of the Uf = ∞ limit. This argument does not rely on
the n = 1 commensurability condition. Indeed, the eigenstates
of the final Hamiltonian are simply the set of configurations
{nj }j=1,L with nj the onsite occupations. The energy per
particle of the configuration is

e({nj })
Uf

= 1

2N

L∑
i=j

nj (nj − 1) .

The initial ground state is the superfluid state that has equal
single-particle probabilities pj = 1/L on each site. Using

formula (4), we get for the diagonal weights

pn = p{nj } = N !

n1!n2! · · · nL!

1

LN
. (12)

This makes a connection to the free-boson model that we also
study, having the Uf energy spacing between the degenerate
levels instead of h̄ωf and a different energy-configuration
relation. The formula is valid for bare configurations, that
is, when they are not symmetrized. Using symmetries,
formula (12) picks up an additional factor depending on the
degeneracy of the generalized Bloch state. One can see by
taking an example of two configurations with the same energy,
or check numerically, that the weights can be different for
configurations with the same energy, in the same way as for
the free-boson model. Consequently, in a strongly degenerate
Mott peak, the diagonal weights are not equal and fluctuate.
As soon as a nonintegrable perturbation (here the hopping
J ) is turned on and lifts the degeneracy, the distribution of
the weights still strongly fluctuates within the Mott lobe.
This explains the findings of Refs. [54,55] and of Fig. 7.
Another simple observation in this limit is that two degenerate
configurations can have different expectation values for the
observables. An obvious one is the onsite particle distribution
that counts empty, single, and double occupations and so
on. The off-diagonal correlation gr can be nonzero if the
configurations are symmetrized and one can check numerically
that they actually strongly differ for degenerate states. Notice
that, in principle, one has to take into account the off-diagonal
part of the time-averaged density matrix that is nonzero in
this highly degenerate limit. When one turns on J , this
off-diagonal part vanishes, and the gr still fluctuate strongly
for eigenstates close in energy. Lastly, the asymmetrical
correlation between the weights pn and the observables is also
observed in this limit. We show this numerically on a system
with Ui = 0 and Uf = 100 in Fig. 11 (we take Uf /J = 100
and not Jf = 0 because one needs a finite, yet very small,
J to make ρ̄ diagonal). The numerics for a small J/U in
Figs. 7 and 5 strongly support this mechanism as an ex-
planation for the behavior of both the distributions and the
observables. We remark that the argument works as well
for the two-dimensional (2D) version of the model that was
shown to have a nonthermalized regime also [11]. The fate
of this explanation in the thermodynamical limit is an open
question. A scenario could be that this mechanism works
above a certain critical quench amplitude λc(N ), but how
this critical value behaves as N → ∞ remains a difficult
question. Consequently, one may understand the finite-size
effects stemming from the large-U limit as another Nc(λ)
line in Fig. 3 increasing with λ, and that is specific to this
model. Yet, nonthermalization in the thermodynamical limit
in the BHM cannot be excluded as well. Experiments in cold
atoms [1] work with a relatively small number of atoms and
can easily reach this large-U limit so that such considerations
are physically relevant.

We also give results for a quench from the Mott to the
superfluid limit. There, one could expect from Figs. 5 and 6
that ETH could work since the observables behave smoothly
with e in the final Hamiltonian. However, for the accessible
sizes, one observes that the Boltzmann law still works better
than the microcanonical ensemble, with large weights at low
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FIG. 12. (Color online) Evolution of the distribution times of the
density of states of the diagonal ensemble for free bosons in an
harmonic trap as a function of the quench amplitude. Here, the pn are
the sum of the diagonal weights in each highly degenerate excitation
sector.

energies. We conclude that the breakdown of the ETH could
here be attributed to finite-size effects.

3. Free-boson model

We now briefly discuss the evolution of the distribution
for the free-boson model for a fixed number of bosons
and increasing λ. Very surprisingly, the distribution of the
single-particle weights versus single-particle energies ε2n =
2nh̄ωf + h̄ωf /2 has some remarkable features. (We recall that
only the even levels can be occupied for symmetry reasons.)
In the limit of large energy ε ∼ 2n, we have

p2n � p0(λ)
e−2n ln |(λ+2)/λ|

√
π2n

∝ e−ε/T (λ)

√
ε

,

which has an exponential tail with the effective temperature
T (λ) = h̄ωf / ln |(λ + 2)/λ|. In the limit of small quenches,
the distribution is Boltzmann-like with a temperature T (λ) �
−h̄ωf / ln |λ/2| going to zero. This exponential-like behavior
is not generic, and a simple counterexample can be found
in the case of an expanding box [74]. For the many-particle
situation with N = 18 and Ns = 22, we give in Fig. 12 the
evolution of the distribution for increasing λ. For small quench,
the behavior looks like Boltzmann (we do not expect a pure
exponential law due to the presence of the degeneracy function
g(e)), and it can be understood from the fact that the main
contribution comes from single-boson excitations that have the
same weights as the single-particle ones. When λ is increased,
the energy distribution gets peaked around a low-energy level
and is strongly anisotropic with the maximum at a different
place from the mean energy. This distribution finally develops
a high-energy tail for large λ. One can compute analytically
the third moment M3 = Tr(ρ̄(H − Ē)3), which is nonzero and
scales as N , showing that the distribution remains anisotropic
and that the anisotropy (M3)1/3/(Ē − E0,f ) decreases as
N−2/3. In order to compare the distributions from different
ensembles, we use the von Neumann entropy of a density
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FIG. 13. (Color online) Von Neumann entropy per particle versus
energy for the free-boson model. Dashed lines are data for N = 17,

and solid lines are data for N = 18 (Ns = 22).

matrix ρ, which is defined as SvN (ρ) = −Tr[ρ ln ρ]. Contrary
to observables, this quantity is more sensitive to the tail of the
distribution. SvN/N values for the Boltzmann and diagonal
ensembles are shown in Fig. 13. The density matrix ρ ′

B is a
Boltzmann distribution but restricted to the even-parity levels
only. We see that for small quenches, s(ρ ′

B) and s(ρ̄) are
very close. The larger entropy for s(ρB) is simply due to
the fact that half of the Hilbert space is not accessible to
ρ̄ for symmetry reasons: s(ρ ′

B) and s(ρB) are actually the
same up to a factor of 2 in the energy. Comparing the data
to the microcanonical entropy is not relevant here because of
finite-size effects (energy discretization and small degeneracy
of the first levels) for the values of the mean energy accessible
here.

IV. CONCLUSIONS

The first conclusion we highlight is that, when carrying
out numerical simulations on a finite system, one has to
care about both the quench amplitude and the size of the
system to see in which region of the spectrum are the main
weights of the diagonal ensemble distribution. It has been
shown that although the low-energy part of the spectrum is
the place where the most interesting physics is expected,
one experiences large finite-size effects when exploring it.
A crossover number of particles, distinguishing between the
small quench regime and the large quench regime, can be
tentatively defined from energetic considerations or from
the static fidelity between the ground states of the initial
and final Hamiltonians. One advantage is that they can be
computed numerically with few finite-size effects (for the
energy-based criteria) or with ground-state techniques that
work on larger systems (for both criteria). The numbers have
been computed for the two models under study. As the system
follows a finite-size crossover between the two regimes, it
can actually be difficult for numerics to be close enough
to the thermodynamical limit, where ETH is expected to

053604-12



FINITE-SIZE EFFECTS IN GLOBAL QUANTUM . . . PHYSICAL REVIEW A 81, 053604 (2010)

work generically, even though some examples can be found
in the literature [27]. This actually is what happens for the
1D BHM as we have seen. Hence, the thermalization-like
regime in the small quench limit deduced from observables
comparison and the qualitative Boltzmann-like structure of the
distribution cannot be considered as truly thermalized because
of dominant finite-size effects. Furthermore, sizes accessible
with full diagonalization cannot reach the bulk of the energy
spectrum before the structure of the spectrum resembles the
infinite-U atomic limit. The free-boson model nicely illustrates
the crossover from a Boltzmann-like distribution, up to phase-
space constraints, at small quench to a different distribution.
We note that due to the large density of states and to negligible
energy fluctations, we may expect the quench, canonical, and
microcanonical distributions to eventually be equivalent in
the thermodynamical limit. However, we have discussed the
fact that as the mean energy becomes smaller (or equivalently
the temperature), the finite-size effects become larger. We do
not believe that the observed finite-size and canonical-like
distributions at small quenches are generic (notice that no
claim in that direction was made in Ref. [54]), and they may
better be understood simply as (counter)examples.

The second important conclusion is that we have shown that
the nonthermalized regime observed on finite systems for large

quenches in the 1D BHM is actually related to the proximity
of the U = ∞ atomic limit, something that may qualitatively
be equivalent to the proximity of an integrable point. Indeed,
this regime does not depend on the low-energy features at a
commensurate density (i.e., to the presence of the superfluid-
Mott transition), and besides, the structure of the diagonal
ensemble stems from the U = 0 → Uf = ∞ quench limit of
the BHM. In nonintegrable models, the challenging issues on
the features of the small quench regime for very large sizes
and how the nonthermalized regime neighboring an integrable
point survive in the thermodynamical regime seem to be hardly
accessible to current numerical algorithms.
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[41] A. M. Läuchli and C. Kollath, J. Stat. Mech. (2008) P05018.
[42] M. Fagotti and P. Calabrese, Phys. Rev. A 78, 010306(R)

(2008).
[43] S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu,

Phys. Rev. B 79, 155104 (2009).
[44] F. Heidrich-Meisner, M. Rigol, A. Muramatsu, A. E. Feiguin,

and E. Dagotto, Phys. Rev. A 78, 013620 (2008).
[45] F. Heidrich-Meisner, S. R. Manmana, M. Rigol, A. Muramatsu,

A. E. Feiguin, and E. Dagotto, Phys. Rev. A 80, 041603(R)
(2009).

[46] T. Keilmann, I. Cirac, and T. Roscilde, Phys. Rev. Lett. 102,
255304 (2009).

[47] J. von Neumann, Z. Phys. 57, 30 (1929); S. Goldstein,
J. L. Lebowitz, C. Mastrodonato, R. Tumulka, and N. Zanghi,
e-print arXiv:0907.0108 (2009).

[48] A. Silva, Phys. Rev. Lett. 101, 120603 (2008).
[49] S. Dorosz, T. Platini, and D. Karevski, Phys. Rev. E 77, 051120

(2008).
[50] A. Polkovnikov, e-print arXiv:0806.2862 (2008).
[51] A. Polkovnikov, Phys. Rev. Lett. 101, 220402 (2008).
[52] M. Eckstein and M. Kollar, Phys. Rev. Lett. 100, 120404 (2008).
[53] M. Kollar and M. Eckstein, Phys. Rev. A 78, 013626 (2008).
[54] G. Roux, Phys. Rev. A 79, 021608(R) (2009).
[55] G. Biroli, C. Kollath, and A. Laeuchli, e-print arXiv:0907.3731

(2009).
[56] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[57] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004).
[58] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.
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