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Mean-field phase diagram of the one-dimensional Bose gas in a disorder potential
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We study the quantum phase transition of the 1D weakly interacting Bose gas in the presence of disorder. We
characterize the phase transition as a function of disorder and interaction strengths, by inspecting the long-range
behavior of the one-body density matrix as well as the drop in the superfluid fraction. We focus on the properties
of the low-energy Bogoliubov excitations that drive the phase transition and find that the transition to the insulator
state is marked by a diverging density of states and a localization length that diverges as a power-law with power
1. We draw the phase diagram and we observe that the boundary between the superfluid and the insulator phase is
characterized by two different algebraic relations. These can be explained analytically by considering the limiting
cases of zero and infinite disorder correlation length.
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I. INTRODUCTION

The effect of disorder on quantum systems is a subject
of both fundamental and practical interest. Since the seminal
work of Anderson [1], it has become clear that what seems
at first sight a nuisance is in fact a source of very rich
physical behavior: the disorder is not just a perturbation of
the wave functions but localizes the low-energy states in three
dimensions; in lower dimensions even all single-particle states
are localized.

A single-particle picture can be a good approximation of a
dilute gas, but in practice interactions between particles play
often a crucial role. Understanding the interplay of disorder
and interactions is therefore of fundamental importance. In
the context of solid-state physics, the fermionic problem is
the most relevant one, but thanks to the enormous progress
in experimental control over ultracold atomic gases, the
problem of the disordered Bose gas has become a subject
of a vigorous research activity as well. Anderson localization
has been experimentally observed recently in one-dimensional
bosonic systems with vanishing interaction [2,3]. More recent
experiments have moved away from the limit of vanishing
interactions to study the insulator to superfluid phase transition
[4,5].

The theoretical interest in this phase transition dates back
much longer and a variety of theoretical techniques have been
used to tackle the problem. There are two main regimes
that have been considered, one marked by weak disorder
and arbitrary interactions, the other characterized by weak
interactions and arbitrary disorder. The former has been
the object of the first investigations in the 1980s. Using a
renormalization group analysis, Giamarchi and Schultz [6]
were able to study the quantum phase transition in the limit of
weak disorder in one dimension. The picture emerging from
this analysis was that for a finite amount of disorder, a minimal
strength of interactions is required to break the Anderson
localization, but that for interactions that are too strong , the
system is driven into a strongly correlated localized Bose gas
phase. Their renormalization group approach was able to study
the latter phase transition quantitatively, but it could not be
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clarified whether the transition at the weak interaction side
is of the same nature. The interplay between periodic and
disordered potentials was first addressed in the seminal work
by Fisher et al. [7], where the insulating disordered phase,
named “Bose glass” was contrasted to the Mott insulator phase
by its compressible nature and to the superfluid phase by
its vanishing superfluid stiffness. Quantum Monte Carlo [8]
and density matrix renormalization group [9] studies have
investigated in detail the disorder phase diagram in the limit
of strong interactions close to the Mott insulator phase.

Early experimental efforts to reach the Bose glass phase
coming from the Mott insulating phase were presented in
Ref. [10]. More recently, several experimental works have
addressed the quite different regime where the gas is in the
weakly interacting limit and with many particles in each
potential minimum. Above a critical strength of the disorder,
fragmentation of the condensate density and loss of spatial
coherence were identified [4,5]. All these experiments have
considered the one-dimensional geometry. We will restrict our
analysis to this case as well. Thanks to the weak interaction
limit, the theoretical description of these experiments can be
performed in a first approximation with the Gross-Pitaevskii
equation. The Gross-Pitaevskii equation in the presence of
a disorder potential was recently studied by several groups
[11–14]. For the condensate wave function, two different
cases were identified: a connected density profile at weak
and a fragmented one at strong disorder. The properties
of the elementary Bogoliubov excitations stemming from
the Gross-Pitaevskii state were studied analytically in the
superfluid regime. Their localization length was shown to
exhibit a power law behavior as a function of energy: Eα ,
with α = 2 deep in the superfluid phase [13] and α = 1 at
the phase transition [14]. Numerically we found that α < 1 in
the Bose glass phase [15]. The density of states (DOS) was
shown to be constant in the superfluid phase as for phonons in
random chains [16]; in the Bose glass phase, a divergence
of the low-energy DOS was numerically identified in our
previous work. This result is in accordance with the real space
renormalization group analysis by Altman et al. [17] with
particle hole symmetry. Fisher et al. [7], on the other hand,
argued that the low-energy DOS should be constant in the
Bose glass phase. This difference in behavior could be due to
a different nature of the phase transition between the superfluid
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and glassy phase for weak and strong interaction as suggested
by Giamarchi and Schultz [6].

In the present work, we make a deeper analysis of the
condensate wave function and Bogoliubov excitations in the
different phases. We carry out a new analysis of the superfluid
fraction across the phase transition. In Ref. [15], the phase
diagram was restricted to the limit of weak interaction energy
where the healing length ξ was large as compared to the
correlation length of the disorder η. In that case, the disorder
is effectively an uncorrelated white noise (WN) potential. In
this work, we extend the phase diagram to the regime where
the η � ξ . Kinetic energy is then not important to determine
the density profile of the condensate and the Thomas-Fermi
(TF) approximation is accurate. The WN and TF regimes
are marked by two different power-law relations between
interaction and disorder at the phase boundary. For these we
provide a rigorous analytical arguments.

The article is organized as follows. In Sec. II the theoretical
model is presented in detail. Section III is devoted to the
predictions of the extended mean-field model. In Sec. IV
the study of the correlation length is presented. An analysis
of the density of states and localization properties of the
Bogoliubov excitations is carried out in Sec. V. In Sec. VI
a study of the superfluid fraction of the gas is performed. The
phase diagram is discussed in Sec. VII. Our conclusions are
presented in Sec. VIII.

II. THEORY

We want to study the properties of the 1D Bose gas at
zero temperature. These gases are well described by the
mean-field theory in 3D, but in lower dimensions no real
condensate is present and the standard mean-field theory is
no longer valid. Nevetheless, the Bogoliubov approach can
be extended to weakly interacting low-dimensional bosonic
systems in a density-phase version defined on a lattice [18]. A
homogeneous 1D Bose gas is in the weakly interacting regime
when ρξ � 1, where ξ = h̄/

√
mρg is the healing length, ρ is

the total density, g is the coupling constant, and m is the mass.
The Hamiltonian describing the bosonic system is

Ĥ =
∫

dr
[
�̂†(r)Ĥ0�̂(r) + g

2
�̂†(r)�̂†(r)�̂(r)�̂(r)

]
, (1)

where Ĥ0 = −h̄2∂2
r /(2m) + V (r) is the single-particle Hamil-

tonian, �̂ is the field operator, and V (r) the external potential.
Here we study the case where V (r) is a Gauss-distributed and
Gauss-correlated disorder:

〈V (r)V (r ′)〉 = �2e
− (r−r′ )2

2η2 , (2)

where � is the disorder amplitude and η is the spatial
correlation length. We make the general choice of Gauss-
distributed disorder. We are aware that many experiments
aimed at the characterization of the phase transition deal
with speckle potentials [2,5]. These potentials have a lower
bound and their statistical distribution does not show a lower
Gaussian tail. Our analysis could be easily extended to this
case, as V (r) is treated only numerically. On the other hand,
the assumption of the spatial Gauss correlation is consistent
with the experimental realizations [5].

In low dimensionality, the Bogoliubov approach requires
the definition of the field in terms of density ρ̂ and phase θ̂

operators as �̂ = eiθ̂
√

ρ̂. In the mean-field approach one splits
the density operator in a c-field part, ρ0, and a fluctuation
term, δρ̂. A correct definition of the phase operator is
possible [18] only by introducing a spatial discretization of
step size 
. Provided that the system is in the high-density
regime, ρ
 = (ρ0 + 〈δρ̂〉)
 > 1, and that every cell is largely
populated, the phase operator can be defined precisely. The
density fluctuation can then be treated perturbatively: this
perturbative approach is valid under the assumption of small
density fluctuations, δρ̂/ρ � 1, and spatially slowly varying
phase fluctuations, θ̂i+1 − θ̂i � 1.

The ground-state density profile ρ0 obeys the Gross-
Pitaevskii equation

[Ĥ0 + gρ0(r)]
√

ρ0(r) = µ
√

ρ0(r), (3)

where µ is the chemical potential. The excitations of the system
can be computed via the Bogoliubov-de Gennes equations,
obtained by linear expansion around the Gross-Pitaevskii
solution

(Ĥ0 + 2gρ0(r) − µ)uj (r) + gρ0(r)vj (r) = Ejuj (r),
(4)

−gρ0(r)uj (r) − (Ĥ0 + 2gρ0(r) − µ)vj (r) = Ejvj (r),

that define the Bogoliubov uj (r) and vj (r) modes, normalized
as ∫

dr |uj (r)|2 − |vj (r)|2 = 1. (5)

Phase and density operators can be expressed in terms of these
wave functions as [19]

θ̂(r) = 1

2i
√

ρ(r)

∑
j

[θj (r)b̂j − θ∗
j (r)b̂†],

(6)
δρ̂(r) =

√
ρ(r)

∑
j

[ρj (r)b̂j + ρ∗
j (r)b̂†],

where bj and b
†
j are bosonic annihilation and creator operators

of an excitation with energy Ej and with

uj (r) = ρj (r) + θj (r)

2
, vj (r) = ρj (r) − θj (r)

2
. (7)

The extended Bogoliubov approach requires an orthogonal-
ization of these modes with respect to the ground state [18],
which finally brings to the new modes u⊥j (r) and v⊥j (r).

Taking advantage of Wick’s theorem, the one-body density
matrix at T = 0, computed with the extended Bogoliubov
method, takes the form

G(r,r ′) =
√

ρ(r)ρ(r ′)e
− 1

2

∑
j | v⊥j (r)√

ρ0(r)
− v⊥j (r′ )√

ρ0(r′ ) |
2

, (8)

where the only contribution comes from the quantum fluc-
tuations. This two-point function is not self-averaging. We
will preferably work with the spatially averaged degree of
coherence

g1(r) = 1

L

∫
dr ′ G(r,r ′)√

ρ(r)ρ(r ′)
. (9)

that directly gives information about the decay of the one-
body density matrix. This quantity, in the quasi-condensed
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phase, is expected to show an algebraic decay [7], as in
the homogeneous case [20], together with a finite superfluid
fraction. In presence of disorder the system can undergo a
quantum phase transition to the Bose glass phase characterized
by an exponential decay of the one-body density matrix [7].

III. GROUND-STATE AND PHASE FLUCTUATIONS

Three energy scales enter our problem: the amplitude of
the disorder �; the interaction energy, U = gN0/L, where
N0 is the number of particles in the ground state; and the
energy associated to the correlation length of the potential
Ec = h̄2

2mη2 . In the analysis that follows the problem is rescaled
with respect to this latter. We have performed numerical
calculations on systems of finite size (up to 4096 η), adopting
periodic boundary conditions for the equations and for the
disordered potential V (r). Every quantity has been averaged
on several disorder configurations. By varying the system size,
we could extract the limiting behavior of each quantity in
the thermodynamic limit. In order to describe the system in
the continuous limit we fulfill the condition that the kinetic
hopping energy t = h̄2

2ml2 should be much larger than any other
characteristic energy of the system. This must hold in particular
for the energies U , �, µ, and Ec. In the numerical simulations
that follow we took an average quasicondensate density of
N0η/L = 8. It is important to note that in the mean-field
limit the phase boundary, determined from the Bogoliubov-de
Gennes equations and the functional shape of the degree of
coherence, does not depend on the density and interaction
strength separately but only on the product of the two quantities
that appears in Eqs. (3) and (4). As outlined in Sec. II, this
model is valid in the limit of large density and its prediction are
increasingly accurate in the limit ρ → ∞, g → 0 at constant
gρ.

In Fig. 1(a) the ground state is shown for � = 0.8 Ec

and U = 1.44 Ec, in the quasicondensed phase, computed via
Eq. (3). In Fig. 1(b) the first two excitations v⊥j (r) appear
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FIG. 1. (Color online) Quasicondensed phase: (a) ground-state
wave function and (b) first two excitations v⊥j for U = 1.44 Ec and
� = 0.8 Ec.
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FIG. 2. (Color online) Bose glass phase: (a) ground-state wave
function and (b) first two excitations v⊥j for U = 0.48 Ec and � =
0.8 Ec. The thin gray line represents an excitation at higher energy,
namely v⊥40(r).

(j = 1,2). The same quantities computed in the Bose glass
phase (� = 0.8 Ec and U = 0.48 Ec) are shown in Fig. 2.

It is evident, comparing Figs. 1(a) and 2(a), that in the
case of stronger interaction the ground-state wave function
is smoother. In fact the interaction term involves a more
homogeneous effective potential in Eq. (3) where the bare
disorder potential is screened. In a case dominated by the
disorder, the ground state separates into fragments linked by
regions with an exponentially vanishing wave function that
can be seen as weak links.

Low-energy excitations have a delocalized shape and
follow the modulation of the ground-state wave function, but,
differing from the ground state, they show a phase character
with a number of nodes that increases for increasing energy.
In the homogeneous case the lowest energy excitations are
found to be plane waves. The phase fluctuations preserve a
plane-wave profile in the quasicondensed phase, as can be
seen in Fig. 1(b), only slightly modulated by the underlying
disordered potential. On the other hand, at smaller values of
U , in the Bose glass case, the disorder starts to compete with
the interaction and the v⊥j (r) modes start losing their regular
shape, developing nodes in correspondence with low-density
zones, i.e., with high barriers of the potential. This is shown in
Fig. 2(b), together with an example of an excitation at higher
energy that displays a fast oscillating behavior and does not
contribute in determining long-range properties.

It is instructive to analyze the role of the correlation length
η on the ground state and on the excitations. The quantity Ec

and its relation with µ turn out to be essential in determining
the regime of the Bose gas. In fact, small values of U/Ec and
�/Ec imply that η � ξ and the ground-state wave function
is spread over many correlation lengths of the potential. In
this limit, the disorder is equivalent to a WN potential. On
the contrary, for large values of U/Ec and �/Ec, the system
enters the TF regime, where the kinetic term is negligible and
the ground state follows the spatial variations of the potential.
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FIG. 3. (Color online) (a) Ground state and (b) first two excita-
tions v⊥j for U = � = 1.6 × 10−3 Ec, where the system is in the
superfluid phase and in the WN regime.

In Fig. 3(a) the ground state is shown for a case close to the WN
limit (U = � = 1.6 × 10−3 Ec). The same quantity is shown
in Fig. 4(a) for U = � = 25.6 Ec, close to the TF regime. The
differences explained above are evident in the distributions of
the ground state that is spread over many correlation lengths
in the WN case, whereas it fills the potential minima in the TF
regime and it approaches the form

|φ0(r)|2 = µ − V (r)

UL
, for µ > V (r)

(10)
|φ0(r)|2 = 0, otherwise.

The WN case presented in Fig. 3 is in the superfluid phase.
The low-lying excitations are very close to plane waves with
small modulations and a regular spacing between the nodes.
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FIG. 4. (Color online) (a) Ground state and (b) first two excita-
tions v⊥j for U = � = 25.6 Ec, where the system is in the Bose
glass phase and in the TF regime.

The TF example (see Fig. 4) is in the Bose glass phase and
the nodes of the excitations are pinned to the low-condensate-
density regions. Their profile follows closely the condensate
amplitude.

Note that the ratio between interaction and disorder am-
plitudes is in both cases �/U = 1. The transition between
superfluid and Bose glass phases can apparently be tuned by
only varying the disorder correlation length η. We will come
back to this point in Sec. VII where we present the phase
diagram.

IV. CORRELATION LENGTH

As outlined above, the phase transition is characterized
by inspecting the long-range behavior of the degree of
coherence expressed by Eq. (9). Figure 5 shows the degree
of coherence for the same value of disorder (� = 0.8 Ec)
varying the interaction energy. We show only the spatial
interval [0,L/4] that reflects the L → ∞ behavior: at longer
distances, deviations due to the periodic boundary conditions
affect this quantity, as verified by studying the scaling with
L. For the lowest value of the interaction energy, g1(r) shows
an exponential decay that marks the Bose glass phase in a
situation where the disorder breaks the long-range coherence.
By increasing the interaction energy the decay becomes slower
up to a certain value of interaction that drives the system in
the quasicondensed phase characterized by an algebraic decay
of g1(r) (linear in the double-logarithmic scale of Fig. 5).
By further increasing U , g1(r) still displays a power-law decay
but falls off more rapidly as a function of r . This is in analogy
with the homogeneous case [21] where interactions cause
quantum fluctuations and loss of coherence. At much larger
values of the interaction energy this trend drives the system
in the Tonk-Girardeau regime that cannot be described by
the mean-field theory. A similar analysis performed at fixed U

shows a monotonic reduction of the coherence when increasing
the disorder strength.
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FIG. 5. (Color online) Degree of coherence g1(r) for fixed value
of disorder � = 0.8 Ec for different values of the interaction energy.
The cases with U = 0.48 − 0.8 Ec are in the Bose glass phase,
whereas for U = 1.12 − 1.92 Ec they are superfluid.
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FIG. 6. (Color online) (a) G(r0,r) in the superfluid and in the
Bose glass phases. (b) Corresponding low-energy v⊥ excitations in
the Bose glass phase. The arrows point out the link between the jumps
in G(r0,r) and the nodes of the low-energy excitations.

To better understand the physics behind the functional
dependence of g1(r), it is useful to focus on the two-point
correlation function expressed in Eq. (8). Figure 6 shows
G(r0,r) for two cases in the Bose glass and quasicondensate
phases, respectively. It is evident that the correlation in
the superfluid phase, although slightly modulated by the
underlying disorder profile, displays a smooth decay. On the
other hand, the Bose glass case is characterized by abrupt
jumps in the two-point coherence that separate relatively
coherent zones. It should be noted that these jumps coincide
with the nodes of the lowest-energy excitations as can be
checked compared with the corresponding v⊥j (r) modes in
Fig. 6(b). The size of the jumps is related to the amplitude of
the excitations, which increases for decreasing energy.

V. DENSITY OF STATES AND LOCALIZATION

Given that the loss of coherence in the Bose glass phase
is due to low-lying Bogoliubov excitations, we study their
properties in detail. In particular, we are interested in the DOS
and the localization properties of the v⊥j modes, that are the
only ones playing a role at zero temperature. The DOS is
defined as

D(E) =
∑

j

δ(E − Ej ), (11)

where the Ej are the positive Bogoliubov energies. This
quantity is expected to approach a constant value for E → 0
in the superfluid phase, as for phonons in random elastic
chains [16]. Moreover, some theoretical studies [7,22] have
argued that the low-energy DOS should remain constant also in
the Bose glass phase. The results of our mean-field calculation
disagree with this latter prediction in the mean field limit.
As shown in Fig. 7, in the case dominated by interaction,
D(E) approaches a constant value at low energy, while it
develops a power-law divergence in the Bose glass phase. In
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FIG. 7. (Color online) Averaged D(E) at fixed � = 0.8 Ec for
various interaction energies. The triangles denote two Bose glass
cases (U = 0.48 − 0.8 Ec), whereas squares and circles mark two
superfluid phases (U = 1.12 − 1.44 Ec).

fact, by decreasing the interaction strength at fixed disorder,
the DOS for E → 0 increases and it starts diverging following
a power-law beyond the phase boundary. In addition, the slope
of the power-law increases monotonically going deeper in the
insulator phase.

We can connect this divergence to the behavior of g1.
Inspection of Eq. (8) shows that at long distances, the main
contribution comes from the term

∑
j |v⊥j (r)|2. Thus, we

can rewrite G(r,r0) ∼ exp[− ∫ |vE⊥(r)|2D(E)dE] (see also
Ref. [22]). Here |vE⊥(r)|2 is defined as the local density of
Bogoliubov excitations per unit energy, i.e.,

|vE⊥(r)|2 =
∑

j |v⊥j (r)|2δ(E − Ej )∑
j δ(E − Ej )

. (12)

This quantity is expected to diverge as 1/E, as it is the case
both in the homogeneous system and in the case of weak links
between junctions [23] (as also checked numerically for a dis-
ordered potential). Hence, the change in g1(r) can be linked to
a change in D(E), which changes from constant to a power-law
divergence for E → 0. These low-energy excitations change
the phase between weakly coupled neighboring islands. The
DOS is therefore directly related to the statistics of the strength
of the weak links investigated in Ref. [17]. Our diverging DOS
is in agreement with their analysis.

The discrepancy between our results and former predictions
[7,22] could also be due to a different nature of the phase
transition in the weakly and strongly interacting regimes, as
also suggested by a recent renormalization group analysis [17].
These results might imply two glassy phases characterized by
different properties. In particular, the analysis by Altman et al.
has found a so-called random-singlet phase characterized by
a divergent DOS and claims that the phase transition at strong
disorder belongs to a different universality class with respect
to the weak disorder transition [6]. The random-singlet phase
is specific of systems with particle-hole symmetry, as it is the
case for the Bogoliubov model studied here.

We now turn to the localization properties of the Bogoliubov
modes. As pointed out in the previous sections, in presence of
interaction, delocalized low-energy phase fluctuations are the
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main mechanism of reduction of coherence. The localization
properties of these excitations is still under debate [13,14]. As
a measure of localization we choose the inverse participation
number (IPN), that directly gives an estimate of the spatial
extent of the wave function. We note, however, that IPN can
differ substantially from other quantities characterizing the
localization as, for instance, the exponential decay length of
the wave-function tails [24]. The IPN is nevertheless the most
relevant characterization for our purposes. Indeed, a phase
change over a long distance can be produced only by an
excitation whose wave function is significantly nonzero at
points very far apart in space (even if it has rapidly decaying
exponential tails outside these regions [24]). The IPN is defined
as

1

Ij

=
∫

dr|v⊥j (r)|4
(
∫

dr|v⊥j (r)|2)2
, (13)

and the corresponding realization-averaged quantity is
La(E) = ∑

j Ij δ(E − Ej )/D(E). In Fig. 8 the results are
shown for fixed disorder and varying interaction strength. As it
can be noticed, the IPN always shows a power-law divergence
E−α for E → 0, with α increasing when going deeper in the
superfluid phase. The finite size of the simulation limits our
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FIG. 8. (Color online) (a) Averaged IPN for fixed � = 0.8 Ec

varying U . The cases with U = 0.48 − 0.8 Ec are in the Bose glass
phase, whereas for U = 1.12 − 1.44 Ec are superfluid. A saturation
of the IPN occurs at large lengths because of the finte size of the
simulated system; the horizontal black line represents a confidence
limit. (b) Computed exponents of the power-law divergence of La(E)
for different values of U .

analysis for large U , where the IPN saturates, as can be seen
in Fig. 8(a). We draw a horizontal line to separate the region of
the plot that is not affected by the finite size of the numerical
sample.

As shown in Fig. 8(b), we find an exponent varying contin-
uously around 1 and crossing that value in correspondence
with the boundary computed by the correlation length. In
the quasicondensed phase α > 1, whereas we find α < 1 in
the Bose glass phase. It decreases by lowering the interaction
strength, apparently linearly vanishing for U → 0 as predicted
for the noninteracting case, where the localization goes to a
constant value at low energy. We can compare our results with
a recent theoretical work [13] that predicts an exponent α = 1
at the phase transition and 1 < α < 2 in the superfluid phase.
We find a full agreement with this prediction, although it is not
possible to reach the case with exponent α = 2 because of the
finite size of our simulations.

A precise characterization of a phase boundary via the DOS
turns out to be difficult, whereas the IPN analysis gives the
boundary with high accuracy as evident in Fig. 8(b).

VI. SUPERFLUID FRACTION

An alternative way to characterize the thermodynamic
phase of the gas is the computation of the superfluid fraction.
The usual approach to superfluidity is the two-fluid picture and
the distinction between normal fluid and superfluid resides in
the different response to a small velocity field. This turns out
to be equivalent to imposing a phase twist in the boundary
conditions [25]. The superfluid fraction can be computed
from the energy difference between the system at rest and
the moving one, namely

fS = 2mL2

h̄2N
lim
�→0

E� − E0

�2
, (14)

where � is the total phase twist. E� is the energy of a conden-
sate with twisted boundary conditions (�(L) = �(0)ei�) and
E0 is the ground-state energy of the system at rest. We consider
a small phase twist (� = π/32 � π ) to avoid excitations and
level crossing. With a gauge transformation �(x) → �̃ei�x/L,
the twisted boundary problem is mapped on a problem
with periodic boundary conditions, with shifted momentum
p → p + h̄�/L, so ∇ → ∇ + i�/L. This substitution enters
both the Gross-Pitaevskii equation (3) and the Bogoliubov-de
Gennes equations (4). In the homogeneous case, Galilean
invariance ensures that these latter give no contribution to
the energy difference [26], whereas in the disordered case
they have been shown to develop a finite contribution, as
emerged from numerical simulations. In Fig. 9 the superfluid
fraction is reported as a function of the interaction energy
for three different fixed values of disorder. Because the
computation of the twisted problem is quite demanding in
terms of computational resources, thus limiting the number
of disorder realizations, the error bars in the plots are large.
The effect of the finite size simulation is that the computed
superfluid fraction is expected to be slightly larger than the
real one and only a careful size-scaling analysis gives reliable
quantitative information about the thermodynamic limit. To
improve the averaging procedure we compute the energy of
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FIG. 9. (Color online) Superfluid fraction for three values of disorder: (a) � = 12.8 Ec, (b) � = 0.8 Ec, (c) � = 0.016 Ec. The average
superfluid fractions and their error bars are shown as a function of the interaction energy. The shaded zones mark the phase transition computed
through the degree of coherence.

a system with twisted boundary conditions splitting it into N

bins as

E� =
N∑
i

ρSi(θi − θi−1)2, (15)

where ρSi is the superfluid fraction of the i th bin and θi,θi−1 are
the phases at the boundary of the i th cell. With the constraint∑

i

θi = �, (16)

it can be shown that minimizing the energy (15) corresponds
to taking the harmonic average of the superfluid fractions, i.e.,

ρS =
(∑

i

1

ρSi

)−1

. (17)

For this reason each point shown in Fig. 9 is computed as a
harmonic mean of the superfluid fraction of each realization
and the error bars are computed accordingly. The shaded zone
shows the phase boundary predicted by studying the long-
range decay of the one body density matrix.

In Fig. 9 it is evident that the boundary computed by means
of the correlation length coincides with the prediction based
on superfluidity. In fact, the zero value for the superfluid
fraction is consistent with the error bars of all the cases
belonging to the insulator phase, whereas the superfluid points
acquire a finite ρS . It is worth noticing that the average
procedure is most demanding when close to the boundary and
is reflected in larger error bars in the proximity of the phase
transition.

VII. PHASE DIAGRAM

With the methods explained so far we can characterize the
phase of the Bose gas. We are able to draw the mean field
phase diagram of the 1D Bose gas at zero temperature as a
function of disorder and interaction energies.

We presented an earlier version of this phase diagram in
Ref. [15]. In Fig. 10 we show an extended phase diagram that
includes the TF regime. It clearly shows two different trends
depending on the ratio between the characteristic energies at
the transition and Ec. These regimes can be identified by
the ratio κ = U/Ec; in fact the limit κ � 1 represents the

WN limit, where the healing length is much longer than the
disorder correlation length. The opposite case κ � 1 marks
the TF regime. The numerical results give two power-law
dependencies of the boundary in these limiting cases �/Ec =
C(U/Ec)γ , with γ equal to 3/4 and 1, respectively. The
lower part of the phase diagram represents the WN limit: in
this regime a single energy scale characterizes the disordered
potential [27] (see the appendix)

E0 = �

(
�

Ec

)1/3

. (18)

Thus, assuming that at the transition the interaction energy is
proportional to E0, we directly obtain

U

Ec

= C1

(
�

Ec

)4/3

, (19)

that correctly reproduces the power-law found numerically.
In the opposite regime, i.e., the TF regime µ � Ec, the
scale of the potential is much larger than the typical length
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FIG. 10. (Color online) Sketch of the phase diagram of the 1D
Bose gas as a function of interaction and disorder. (
) Bose glass;
(©) quasicondensate.
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involved in the modulation of the ground-state wave function
(ξ � η). In this limit Ec is no longer relevant and the
thermodynamic phase is determined only by a one-to-one
competition between disorder and interaction energies. The
computed phase diagram is valid in the weakly interacting
limit and becomes exact in the limit ρ → ∞ at constant gρ.
The phase diagram shows an infinite slope in the origin, in
fact the power-law is smaller than 1, and this is in agreement
with previous theoretical calculations [11]. This condition
implies that in an experiment where the correlation length
η is reduced at constant interaction and disorder amplitudes,
one would always end up in the superfluid phase. The obtained
phase diagram is strikingly similar to the diagram obtained by
investigating the change in the density profile of the 1D Bose
gas [28]. A precise link between the phase transition and the
fragmentation of the ground-state wave function will be the
object of a future study.

For the proportionality constant in the WN limit, we
numerically find C1 ∼ 1.1. This is in good agreement with
the prediction [29] that the proportionality between E0 and U

should be approximately 1 (E0/U � 1).
As stated above the mean-field description does not hold

in the strongly interacting regime, which leads finally to an
interaction-dominated Bose glass phase. Consequently, the
reentrant Bose glass phase obtained in the discrete model
for strong interaction [6] cannot be described within this
mean-field model. Moreover, the model cannot be applied in
the disorder-dominated case, where the coherence extends only
within a few maxima of the density and the system is in the
so-called Lifshitz glass phase [12].

VIII. CONCLUSIONS

We have studied the phase diagram of a 1D Bose gas
at zero temperature in presence of correlated disorder. We
analyzed the changes in the Bogoliubov excitations that entail
the phase transition: we have found that the DOS diverges
in the Bose-Glass phase while it approaches a constant value
in the quasicondensed case. Moreover, the localization of the
excitations always shows an E−α divergence and α = 1 marks
the phase transition. We have established the phase diagram
by inspecting the long-range decay of the one-body density
matrix. This analysis led to the identification of two regimes

in which the boundary follows a power-law relation between
disorder and interaction: a WN zone, where a 3/4 power-law
relation holds, and a TF regime, where the relation becomes
linear. This phase diagram has been confirmed by inspecting
the superfluid fraction of the system.

This theoretical analysis could be very useful for future
investigations aimed at the determination of the superfluid to
Bose glass phase transition in 1D weakly interacting alcali
gases.
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APPENDIX: WHITE NOISE LIMIT

The WN limit argument applies to arbitrary dimensionality
D to predict the behavior of the phase boundary at the origin.
The correlation of the potential is given by [30] 〈V (r)V (r′)〉 =
�2fr−r′ , where for a Gaussian correlation we have fr−r′ =
e−(r−r′)2/2η2

. In the WN case the potential is equivalent to a
delta correlated one,

〈W (r)W (r′)〉 = wδ(r − r′), (A1)

so that, if we assume h̄2/2M = 1, w has the dimensionality
[E2−D/2] and in the WN limit every quantity having dimension
of an energy must be proportional to E0 = w2/(4−D). On the
other hand, if we take the limit for η → 0 of the Gauss-
correlated potential we get fr−r′ ∝ ηDδ(r − r′). Comparison
with Eq. (A1) implies w ∼ �2ηD . In particular the critical
interaction energy should be proportional to E0 in the WN
limit. Using ηD ∝ E

−D/2
c , we conclude that

�

Ec

∝
(

U

Ec

)1− D
4

. (A2)

The prediction for the 2D and 3D cases are, respectively,
κ = 1/2,1/4. Thus the slope in the origin remains infinite and
the difference with respect to the linear relation in the TF limit
becomes more pronounced in higher dimensions. These results
are the same that have been found by Falco and coworkers [11].
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