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Dynamics of electron wave propagation in photoionization microscopy. II.
Quantum-mechanical formulation
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Complementary to the semiclassical method developed in the preceding paper, here we develop a quantum-
mechanical approach to characterize propagation of electron waves to large distances in photoionization
microscopy of hydrogen atoms in uniform external electric fields. A formula for outgoing electron waves from
the atomic source produced in photoionization has been derived. Spatial distributions of electron probability
densities can be determined using the obtained formula. The electron waves that propagate to a large distance due
to photoionization from the n = 2 initial state of hydrogen atoms in electric fields has been calculated and the
resulting probability densities are presented. Comparison with semiclassical results is made, and they are found to
be in good agreement. A detailed analysis is given of strong quantum tunneling effects found in our calculations.
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I. INTRODUCTION

This is the second of the two papers about the dynamics
of electron wave propagation in the combined Coulomb
and uniform external electric fields. In the first paper [1],
a semiclassical open-orbit theory has been presented. This
theory, based on an assumption that electron waves propagate
along classical motion paths, provides a clear and intuitive
physical picture (see Fig. 1 therein) to interpret structures of
observed geometrical interference patterns in photoionization
microscopy. With the help of an analysis from quantum-
mechanical calculations, open-orbit theory predicted a strong
quantum tunneling effect in photoionization microscopy. In
this paper, we develop a quantum-mechanical approach, with
which quantum-mechanical calculations were performed in
Ref. [1], to compute spatial distributions of electron wave
functions, or more strictly square moduli.

The problem of H atoms in the presence of uniform external
electric fields has been investigated by many authors (see, e.g.,
Landau and Lifshitz’s book [2]). Several methods of numerical
integrations of the Schrödinger equations were developed,
such as the power-series expansion method of Damburg
and Kolosov [3], the Numerov method of Luc-Koenig and
Bachelier [4], and the renormalized Numerov method of
Alijah et al. [5]. The positions and widths of resonances and
photoionization cross sections were published and found to
be in excellent agreement with experiment. However, to our
knowledge, no quantum-mechanical calculations have been
reported predicting spatial distributions of electron probability
densities for H atoms in electric fields. Such a theoretical
investigation becomes indispensable with the development of
experimental technology in photoionization microscopy, and
therefore it is the aim of the present paper.

This paper is organized as follows. In Sec. II, we derive
the expression for outgoing wave functions. In Sec. III,
numerical solutions of the Schrödinger equation are outlined
in mixed parabolic and semiparabolic coordinates. In Sec. IV,
spatial distributions of probability densities of electron wave
propagation, produced by photoionization of hydrogen atoms
from the n = 2 initial states in electric fields, are presented and
compared with results from calculations of open-orbit theory.
Section V summaries the approach and the main conclusion.

II. FORMULATION OF OUTGOING WAVES

Let us consider H atoms placed in a uniform external
electric field and assume that the electric field is directed along
the z axis. The Hamiltonian for this system is, in atomic units,

Ĥ = −1

2
∇2 − 1

r
+ F z, (1)

where F denotes the electric field strength measured in F0 =
m2e5/h̄4 ≈ 5.142 × 109 V/cm. The Schrödinger equation is
separable in parabolic coordinates [6]. Here for convenience
of numerical computations, we adopt mixed parabolic and
semiparabolic coordinates, suggested by Alijah et al. [5]:

ξ = √
r + z, (2)

η = r − z. (3)

The energy eigenfunctions of the Schrödinger equation may
be written as

�(ξ,η,φ) = u(ξ )√
ξ

v(η)√
η

eimφ

√
2π

, (4)

where u(ξ ) and v(η) satisfy the ordinary differential equations(
d2

dξ 2
+ 1 − 4m2

4ξ 2
− F ξ 4 + 2Eξ 2 + 4β1

)
u (ξ ) = 0, (5)(

d2

dη2
+ 1 − m2

4η2
+ F

4
η + β2

η
+ E

2

)
v (η) = 0, (6)

where m is the magnetic quantum number, E is the energy of
the electron, and β1 and β2 are separation constants related by
β1 + β2 = 1. Equations (5) and (6) have eigenvalues 2β1 and
E/4, respectively. The energy E in Eq. (5) is a parameter in
the effective potential, rather than a eigenvalue. A procedure
for the solution of these equations will be outlined in Sec. III.

To derive the expression for outgoing wave functions, one
has to deal with the interaction of H atoms and the radiation
field. Let us turn to the Schrödinger equation with a source,

(E − Ĥ )�+(r) = D�ini(r), (7)

where �+(r) is the outgoing wave function, D is the dipole
operator, and �ini(r) is the wave function for the initial bound
state of the system. The radiation field acting on the initial
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FIG. 1. (Color online) Comparison between numerical solutions (red or dark gray) of the Schrödinger equations and Bessel functions (cyan
or light gray). Hydrogen atoms are placed in an electric field F = 600 V/cm, and the electron energy is selected to be E = −120 cm−1. u(ξ )
and v(ξ ) specified with the cyan (light gray) curves are equal to, respectively, κu

√
ξJm(

√
4β1ξ ) and κv

√
ηJm(2

√
β2η), where Jm denotes the

Bessel function, and κu and κv are constants for matching the normalized u(ξ ) and energy-normalized v(η).

bound state produces the term, which is regarded as a source
term in the Schrödinger equation [7,8], on the right-hand side
of Eq. (7). The solution �+(r) can be expressed as the Green’s
function G(r,r ′), acting upon the source,

�+(r) =
∫

G(r,r ′)D�ini(r ′)d r ′. (8)

The Green’s function satisfies[
E −

(
−1

2
∇2 − 1

r
+ F z

)]
G(r,r ′) = δ(r − r ′). (9)

Let us expand the three-dimensional Green’s function
G(r,r ′) using the eigenfunctions

un1 (ξ )√
ξ

and eimφ√
2π

,

G(r,r ′) =
∑
n1,m

u∗
n1

(ξ ′)√
ξ ′

e−imφ′

√
2π

gn1,m(η,η′)
un1 (ξ )√

ξ

eimφ

√
2π

, (10)

where n1 is the parabolic quantum number specifying the
eigenstate. In the mixed parabolic and semiparabolic coordi-
nates, the operator ∇2 and the delta function δ(r − r ′) can be
written as

∇2 = 1

ξ 2 + η

[
1

ξ

∂

∂ξ

(
ξ

∂

∂ξ

)
+ 4

∂

∂η

(
η

∂

∂η

)]
+ 1

ξ 2η

∂2

∂φ2
,

(11)

δ(r − r ′) = 2

ξ (ξ 2 + η)
δ(ξ − ξ ′)δ(η − η′)δ(φ − φ′). (12)

Substitution of Eqs. (10)–(12) into Eq. (9) and multiplication

of the resulting equation by ξ2+η

2 gives(
∂

∂η
η

∂

∂η
− m2

4η
+ F

4
η2 + β2 + E

2
η

)
×

∑
n1,m

u∗
n1

(ξ ′)
e−imφ′

√
2π

gn1,m(η,η′)un1 (ξ )
eimφ

√
2π

= δ(ξ − ξ ′)δ(η − η′)δ(φ − φ′), (13)

where Eq. (5) has been used. Multiplying the two sides of this

equation by un1 (ξ ′) eimφ′
√

2π
and integrating over ξ ′, φ′, we have(

∂

∂η
η

∂

∂η
− m2

4η
+ F

4
η2 + β2 + E

2
η

)
gn1,m(η,η′)

= δ(η − η′), (14)

where the normalization of un1 (ξ ) is assumed, that is,∫
u∗

n1
(ξ )un1 (ξ )dξ = δn1n1 , (15)

and the overlines of n1 and m in Eq. (14) are removed after
the operation. Defining a modified Green’s function for the η

coordinate,

gn1,m
(η,η′)

√
η
√

η′ = gn1,m(η,η′), (16)

053418-2



DYNAMICS OF ELECTRON WAVE . . . . II. QUANTUM- . . . PHYSICAL REVIEW A 81, 053418 (2010)

we obtain the inhomogeneous differential equation(
d2

dη2
+ 1 − m2

4η2
+ F

4
η + β2

η
+ E

2

)
gn1,m

(η,η′)

= δ(η − η′). (17)

The solution of the equation is continuous, but its derivative
suffers a discontinuity at η = η′. Integrating this equation with
respect to η from η = η′ − ε to η = η′ + ε yields

lim
ε→0

dgn1,m
(η,η′)

dη

∣∣∣∣η=η′+ε

η=η′−ε

= 1. (18)

The boundary conditions require that the Green’s function
gn1,m

(η,η′) behaves as [9]

gn1,m
(η,η′) ∼

{
vreg(η), η → 0,

vout(η), η → ∞,
(19)

where vout(η) = vreg(η) + ivirreg(η) represents the outgoing
wave in the η coordinate, and vreg(η) and virreg(η) are,
respectively, regular and irregular solutions of the Schrödinger
equation (6). Except in the vicinity of η = η′, the Green’s
function gn1,m

(η,η′) should satisfy Eq. (6). This further implies
that the form of this Green’s function in the η coordinate is

gn1,m
(η,η′) =

{
Cvreg(η)vout(η′), η � η′,

Cvout(η)vreg(η′), η � η′,
(20)

where C is a constant that can be determined by the discon-
tinuity of the derivative of gn1,m

(η,η′) at η = η′. Substitution
of Eq. (20) into Eq. (18) gives −CW = 1, where W is the
Wronskian for vreg(η′) and vout(η′). It is readily determined
to be W = i

2π
utilizing Eq. (34). The Green’s function in

Eq. (20) is further written as

gn1,m
(η,η′) = 2πivreg(η<)vout(η>), (21)

where η> = max(η,η′) and η< = min(η,η′). Inserting this
equation into Eq. (10), we have the expression for the
three-dimensional Green’s function, and as a consequence the
outgoing wave function is finally obtained as

�+ (ξ,η,φ) =
∑
n1,m

un1 (ξ )√
ξ

vout
n1

(η)
√

η

eimφ

√
2π

Dn1,m, (22)

with the dipole transition matrix element

Dn1,m = 2πi

∫
un1 (ξ ′)√

ξ ′
v

reg
n1 (η′)√

η′
e−imφ′

√
2π

D�ini(ξ
′,η′,φ′) d r ′.

(23)

III. DESCRIPTION OF CALCULATIONS

According to Eq. (22), regular and irregular solutions
of the homogeneous differential equation (6) are needed in
order to compute the outgoing wave functions. In the section,
we describe how to numerically integrate the Schrödinger
equations (5) and (6). The forms of the two equations show that
the motion along the ξ coordinate is always finite, while that
along the η coordinate is oscillatory as η → ∞ [i.e., Eq. (5)
is a bound-state eigenvalue problem with the eigenvalue 2β1,
while Eq. (6) is a continuous-state eigenvalue problem with the

eigenvalue 1
4E]. Thus u(ξ ) and v(η) represent, respectively,

the eigenfunctions for discrete states and continuum states.
The two equations are interrelated by β1 + β2 = 1.

A. Numerical integration of bound-state equations

We divide the one-dimensional ξ space into two regions,
the inner region and outer region. The inner region is a small
vicinity near the nucleus, and the outer region is outside the
small vicinity up to a sufficiently large value of ξ . In the first
region, we expand u(ξ ) in a power series about the origin
ξ = 0 [3],

u(ξ ) = ξ |m|+ 1
2

∞∑
i=0

ciξ
i, (24)

where the indexes i are zero and positive even integers, and ci

(i 	= 0) are the expansion coefficients of the series, given by a
recursion relation

c2 = − β1c0

1 + m
, (25)

c4 = −2β1c2 + Ec0

4(2 + m)
, (26)

ci = −4β1ci−2 + 2Eci−4 − F ci−6

i(i + 2m)
(i � 6). (27)

All ci are expressed in terms of c0 using these recurrence
relations, while c0 is determined by the normalization of u(ξ ).

In the outer region, the renormalized Numerov method of
Johnson [10] is adopted. Outward integration of Eq. (5) begins
from the boundary of the inner region and inward integration
is from a large value of ξ , denoted with ξmax. For the cases we
considered, we could take this value to be 100 � ξmax � 200.
If parabolic instead of semiparabolic coordinates were used,
the range of ξ increases to 104 rather than 102; that would make
the integration more time consuming because many more mesh
points would be required.

The wave functions for the outward and inward integrations
are matched at a suitable point. We first give the node number
of the wave function u(ξ ) and then the eigenvalue can be found
by an iterative procedure. The node number is the parabolic
quantum number specifying the eigenstate.

B. Numerical integration of continuous-state equations

The one-dimensional η space is also divided into two
regions, the inner region and outer region. In the inner region,
a small vicinity near the nucleus, the eigenfunction v(η) is
expanded in a power series about the origin η = 0 (also see
Eq. (10) of Ref. [5]),

v(η) = η
|m|+1

2

∞∑
i=0

diη
i . (28)

where di (i = 0,1,2, . . .) are the expansion coefficients of the
series, given by

d1 = − β2d0

1 − 1
4m2

, (29)

d2 = −β2d1 + 1
2Ed0

4 − 1
4m2

, (30)
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di = −β2di−1 + 1
2Edi−2 + 1

4Fdi−3

i2 − 1
4m2

(i � 3). (31)

All the coefficients are expressed in terms of d0 with these
recursion relations, while d0 is determined by matching v(η)
in the inner and outer regions.

The wave function v(η) oscillates rapidly for the high
excited states, so it is difficult to directly integrate Eq. (6). In the
outer region, we first apply an approach in which oscillatory
terms of the wave functions are extracted out, as proposed
by Milne [11]. Based on the approach of Milne, Eq. (6) is
transformed into the nonlinear Milne equation,

d2M(η)

dη2
= −ω(η)M(η) + 1

M3(η)
, (32)

with

ω(η) = 1 − m2

4η2
+ F

4
η + β2

η
+ E

2
, (33)

where M(η) is the Milne function. We numerically integrate
the Milne equation so as to obtain the Milne function. Finally,
the wave functions v(η) are expressed as the Milne function
times oscillatory terms,

v(η) =
{

CMM(η)sin [ϕ(η) + ϕ0] ,

CMM(η)cos [ϕ(η) + ϕ0] ,
(34)

with the asymptotic form at η → ∞

v(η) →

⎧⎪⎪⎨⎪⎪⎩
Cv(

η+ 2E
F

)1/4 sin
[√

F
3

(
η + 2E

F

)3/2 + ϕ0
]
,

Cv(
η+ 2E

F

)1/4 cos
[√

F
3

(
η + 2E

F

)3/2 + ϕ0
]
,

(35)

where ϕ(η) satisfies

dϕ(η)

dη
= 1

M2(η)
, (36)

ϕ0 is the initial phase, and CM and Cv are constants determined
by the normalization of v(η) (see Appendix). The two
expressions of Eq. (34) are regular and irregular solutions,
respectively [i.e., vreg(η) and virreg(η)]. Equation (36) should
be jointly solved with the nonlinear Milne equation. Since the
Milne function is very smooth, it is possible to take relatively
large size mesh points when integrating the Milne equation.

The renormalized Numerov method [10] is applied to
numerically solve the Milne equation. The outward integration
begins from the boundary between the inner and outer regions,
while the inward integration begins from a sufficiently large
η value. Matching the wave functions from the outward and
inward integration determines the initial phase ϕ0. Thus, the
outgoing waves in the η coordinate, vout(η), are constructed.
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FIG. 2. (Color online) Spatial distributions of probability densities, integrated over the angular variable φ, of the ejected electrons at several
electron energies. Hydrogen atoms are placed in an electric field F = 5714 V/cm. The detector is placed at zdet = −1 µm. The red (dark
gray) curves represent the summation in Eq. (22) over all n1 until convergence, while the cyan (light gray) curves are the same as the red (dark
gray) curves but the contribution from the state (n1,m) = (17,0) is removed. The curves in the lower panels denote that only the state (17,0) is
included. Note the changes in vertical scales, and note that the red (dark gray) curve in the upper central panel is multiplied by 0.1. The shape
and magnitude of the cyan (light gray) curves change only moderately with energy; in contrast, the shape of the blue curves in the lower panels
does not change much as the energy passed through the resonance, but the magnitude changes dramatically.
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IV. RESULTS AND DISCUSSION

In the current calculations, assume that H atoms in the
ground state placed in a uniform electric field are irradiated by
a laser light beam with an adjustable frequency. Let the atoms
be first excited to n = 2 states with m = 0 and then ionized
into states near ionization threshold by π -polarized laser light.
For the n = 2 initial states, the Coulomb potential is much
larger than the interaction between the electron and electric
field, so the initial state may be calculated with perturbation
theory. This is the well-known linear Stark effect. Let us choose
the wave function for the initial state �ini(r) = 1√

2
[ψ2s(r) −

ψ2p(r)], where ψ2s(r) and ψ2p(r) denote wave functions
for field-free H atoms. For the final states, the approach
described in the previous section is used to calculate the wave
functions.

It is useful to check our numerical solutions by comparison
with known analytical results. Let us consider special areas
where ξ and η are small. In these areas, two terms of the
effective potential in Eq. (5), −F ξ 4 and 2Eξ 2, and one term
of the effective potential in Eq. (6), F

4 η, are negligible, and
therefore the differential equations (5) and (6) reduce to the
Bessel equations [12]. Solutions of the resulting equations
are the Bessel functions. Obviously, in the small vicinity of
the nucleus, the numerical solutions should be consistent with
the known Bessel functions. Figure 1 plots the compared
results in an electric field F = 600 V/cm and at the electron
energy E = −120 cm−1. One sees excellent agreement
between our numerical solutions (red or dark gray) and the
Bessel functions (cyan or light gray) near the origins. This
substantiates the reliability of our computation.

To analyze quantum tunneling effects, we calculated the
outgoing electron wave functions of H atoms in an electric
field F = 5714 V/cm with electron energies near the reso-
nances. The probability densities, integrated over the angular
variable φ, that is, P = ∫ |�+(ρ,zdet,φ)|2ρdφ, are plotted in
Fig. 2 at three energies E = −160, −162.36, and −164 cm−1.
Striking variations of distributions of the total probability
densities (red or dark gray) are observed with energies. The
total probability densities at −162.36 cm−1 are one order of
magnitude larger than those at −160 and −164 cm−1. The
discrepancy is attributed to the presence of a narrow resonance
(n1,n2,m) = (17,3,0) with a width of 0.15 cm−1 [13], where
n2 is a quantum number specifying a resonance state in v(η)
at E = −162.36 cm−1. In general, a product state in Eq. (4) is
labeled by energy E, the number of nodes n1 of u(ξ ) related
to the separation constant β1, and azimuthal quantum number
m [i.e., (E,n1,m)]. A similar quantum number n2 specifying
a continuous state in Eq. (6) is usually undefined. Only at
resonance energies is it suitable to define such a quantum
number n2. Its value is equal to the number of nodes of v(η)
inside the effective potential barriers [5]. Even so, one may
always specify a state using (n1,m) together with energy E.

We compared the integrated probability densities (blue or
dark gray) including only the (n1,m) = (17,0) state at the
three energies in the lower panels in Fig. 2. The shape of
the probability densities does not change much as the energy
passes through the resonance, but the magnitude changes
dramatically (up to two orders). To quantitatively see the effect
of the resonance state on the total probability densities, we
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FIG. 3. (Color online) Contour plots of the integrated probability
densities corresponding to Fig. 2.

remove the contribution of the (n1,m) = (17,0) state from
the total probability densities and the results are plotted in
the same figures (cyan or light gray). It is found that the
partial probability densities are of the same order of magnitude
and display similar spatial distributions at the three energies.
In contrast with the situation at E = −162.36 cm−1, the
(n1,m) = (17,0) state makes only a small contribution to
the total probability densities at E = −160 and −164 cm−1.
Contour plots of the probability densities at E = −160,
−162.36, and −164 cm−1 are shown in Fig. 3. One may vividly
observe the spatial distributions of probability densities and the
strong quantum tunneling effect from these contours.

In the upper panel of Fig. 4, the probability densities from
the quantum-mechanical calculations are compared with those
from semiclassical open-orbit theory at E = −100 cm−1.
The quantum-mechanical probability densities (orange or wide
light gray) are in good agreement with the semiclassical ones
(cyan or narrow light gray) except in the regions near the
caustics where the semiclassical wave functions are divergent.
The uniform approximation (blue or dark gray) has fixed the
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FIG. 4. (Color online) Upper panel: Com-
parison of integrated probability densities
among quantum-mechanical (orange or wide
light gray), semiclassical (cyan or narrow light
gray), and uniform-approximation (blue or dark
gray curve) calculations. The energy of the
ejected electron is E = −100 cm−1, and the
electric field is taken to be F = 5714 V/cm.
The detector is placed at zdet = −1 µm. Lower
panel: The total (orange or light gray) and
partial (green or dark gray) integrated proba-
bility densities from the quantum-mechanical
calculations.

divergent behaviors of the wave functions near the caustics
and excellent agreement is seen between quantum-mechanical
and uniform-approximation probability densities. A slight
discrepancy between the quantum and uniform-approximation
results is visible near ρ = 7200 a.u. To examine whether
quantum tunneling through the potential barrier in v(η) gives
rise to this discrepancy, total and partial probability densities
are compared in the lower panel. Our calculations show that
the total probability densities are convergent at n1 = 22, and
the height of the potential barrier begins to be larger than the
effective energy from n1 = 20. We remove the contribution of
the wave functions for n1 = 20–22 from the total probability
density and the resulting partial probability density is plotted
together with the total probability density in the lower panel.
The agreement between the two curves in the lower panel
indicates quantum tunneling is small at this energy. The small
difference between the quantum and uniform-approximation
results in the upper panel appears to provide a measure of the
accuracy of open-orbit theory away from resonances.

V. SUMMARY

A quantum-mechanical approach has been developed to
characterize propagation of electron waves to large distances
in photoionization microscopy of hydrogen atoms in uniform
external electric fields. We derived the expression for outgoing
wave functions from the atomic source due to photoionization
and developed a program to numerically solve the Schrödinger
equation in mixed parabolic and semiparabolic coordinates.
The spatial distributions of probability densities of electron
wave propagation, produced by photoionization of hydrogen
atoms from the n = 2 initial states in electric fields, are
presented. Comparison has been made with the results from
semiclassical open-orbit theory. It is found that open-orbit
theory reliably predicts “background” probability densities
which vary slowly with energy; resonances, whose positions
are easily calculated using the Bohr-Sommerfeld quantization
condition described in the preceding paper [1], change spatial
distributions of electron probability densities dramatically.
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APPENDIX: NORMALIZATION OF WAVE FUNCTIONS
FOR CONTINUOUS STATES v(η)

In this appendix, we prove that the asymptotic amplitude
of the wave function v(η) equals

Cv = 1

π1/2F 1/4
. (A1)

We let vE(η) satisfy the energy-normalized condition∫ ∞

0
vE(η)vE′(η)dη = δ(E − E′); (A2)

that is, in a small but finite energy interval �, vE is normalized
such that∫

�

∫ ∞

0
vE(η)vE′(η)dηdE =

∫
�

δ(E − E′)dE

=
{

0, E′ outside �,

1, E′ inside �.
(A3)

The proof begins from the Schrödinger equation without a
source [6],(

d

dη
η

d

dη
− m2

4η
+ F

4
η2 + β2 + E

2
η

)
vE(η)√

η
= 0. (A4)

It is completely equivalent to Eq. (6). Multiplying both sides
of Eq. (A4) on the left by vE′ (η)√

η
, we have

vE′ (η)√
η

d

dη
η

d

dη

vE(η)√
η

+
(

−m2

4η
+ F

4
η2 + β2 + E

2
η

)
×vE (η) vE′ (η)

η
= 0. (A5)
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By interchanging E and E′ of this equation, a similar equation
can be obtained. Subtracting the resulting equation from
Eq. (A5) yields

vE′(η)√
η

d

dη
η

d

dη

vE(η)√
η

− vE(η)√
η

d

dη
η

d

dη

vE′ (η)√
η

+ E − E′

2
vE (η) vE′ (η) = 0. (A6)

Integrating this equation over η from 0 to η and letting η → ∞
give

E − E′

2
I = lim

η→∞

∫ η

0

vE(η)√
η

d

dη
η

d

dη

vE′ (η)√
η

dη

− lim
η→∞

∫ η

0

vE′ (η)√
η

d

dη
η

d

dη

vE(η)√
η

dη, (A7)

where I is defined by

I =
∫ ∞

0
vE(η)vE′(η)dη. (A8)

For simplicity, let us use the notation Q to denote the left-hand
side of Eq. (A7). With the aid of integration by parts, we obtain

Q = lim
η→∞

[
vE(η)√

η
η

d

dη

vE′ (η)√
η

− vE′ (η)√
η

η
d

dη

vE(η)√
η

]η

0

= lim
η→∞

[vE(η)v̇E′(η) − vE′ (η)v̇E(η)]η0 , (A9)

where v̇E(η) represents the derivative of vE(η).
This is an important equation for determining Cv . In the

next step of the derivation, we turn to seek the asymptotic
form of vE(η). As η goes to ∞, Eq. (6) reduces to the Airy
equation

d2vE(η)

dη2
+

(
F

4
η + E

2

)
vE (η) = 0. (A10)

The asymptotic behavior of its solution, the Airy function,
was just the first expression of Eq. (35). Correspondingly, its
derivative is

v̇E(η) = Cv

(√
F

2
µ1/4cosν − 1

4
µ−5/4sinν

)
(A11)

with

µ = η + 2E

F
, (A12)

ν =
√

F

3

(
η + 2E

F

)3/2

+ ϕ0. (A13)

Replacing E in vE(η) and v̇E(η) by E′, we obtain two similar
equations. Substituting these equations into (A9) gives

Q = lim
η→∞

C2
v

√
F

2
sin(ν − ν ′)

= lim
η→∞

C2
v

√
F

2
sin

(
E − E′
√

F

√
η

)
, (A14)

where the boundary condition vE(η = 0) = 0 is used, and
ν is expanded into a Taylor series, in which only the
first two terms are kept. Combining Eqs. (A8) and (A14),
we have

I = lim
η→∞

C2
v

√
F

sin
(

E−E′√
F

√
η
)

E − E′ . (A15)

Integrating Eq. (A15) over E yields∫
�

IdE = lim
η→∞

C2
v

√
F

∫
�

sin
(

E−E′√
F

√
η
)

E − E′ dE = C2
v

√
Fπ.

(A16)

Noticing Eq. (A3), we finally obtain the asymptotic amplitude
of the wave function vE(η) [i.e., Eq. (A1)].
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