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Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules
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A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization
of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies
on the Born-Oppenheimer separation of electronic and nuclear dynamics and provides a consistent theoretical
framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum
electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time
step the nuclear dynamics can be solved separately for each molecular charge state. Our model circumvents
the solution of a multiparticle Schrödinger equation and makes it possible to extract the kinetic energy release
spectrum via the Coulomb explosion channel as well as the physical origin of the different structures in the
spectrum. The computational effort is restricted and the model is applicable to any molecular system where
electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear
coordinates can be determined.
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I. INTRODUCTION

When a molecule is exposed to a strong laser pulse the
system is excited and ionizes and it starts to dissociate. For
intense pulses of interest in current experiments, for example,
wave lengths ∼800 nm, peak intensities ∼1014 W/cm2, and
durations in the femtosecond regime, all these processes
are, in principle, accurately described by the time-dependent
Schrödinger equation (TDSE). The dynamics introduced by
the external field, however, is so strong that the solution of this
equation including all degrees of freedom is impossible even
for H2, and modeling has accordingly focused separately on
either electronic ionization or nuclear dissociation dynamics.

In the existing modeling of strong-field dissociative double
ionization of the simplest neutral molecule, H2, it is assumed
that one of the electrons is removed early in the pulse [1–4].
In the parallel geometry, full ab initio calculations are then
possible for the remaining part of the pulse [5] and in this way
a high degree of agreement with experiments may be achieved.
However, the method still treats the first ionization in an ad
hoc manner and gives only a little hope for extensions to
larger molecular systems. Simpler models have been proposed
to fulfill the desire of potential extensions. Using the Born-
Oppenheimer (BO) approximation, and including only the two
lowest electronic states patterns in the kinetic-energy release
(KER) spectrum were reproduced for certain pulse parameters
[1,6]. Experiments also exist using H+

2 from ion sources [7–9],
and an understanding of some features of the KER spectra was
obtained in terms of a Floquet picture [9].

The purpose of the present work is to give a detailed
description of the Monte Carlo wave packet (MCWP) tech-
nique, which we recently introduced for the description of
dissociative multiple ionization by an intense near-infrared
laser pulse in [10]. The technique provides a consistent
theoretical framework that accounts for both ionization and
dissociation dynamics, and is applicable to any molecular sys-
tem where electronic structure, dipole moment functions, and
ionization rates as a function of internuclear coordinates can be
determined. As an example, illustrating the methodology and

calculations in a particular case, we study double ionization of
H2 using pulses of 800 nm, 40 fs, and 1 × 1014 W/cm2. From
the example it is clear that including many different times for
the first ionization event as well as many intensity components
of the field is very important. In a sequel to this paper [11],
several other experiments on D2 as well as H2 are discussed.

Based on the BO approximation we start in the electronic
and nuclear ground state of H2 and study the nuclear dynamics
as the population is transferred to states of H+

2 and subse-
quently ionized leading to Coulomb explosion. This is done by
treating both ionization steps as decay processes, incorporated
in a master equation for the molecular density matrix. By
this approach we benefit from the explicit separation of the
fast electronic dynamics from the nuclear dynamics, and
within the validity of our model, a consistent separation of
the multichannel problem into different ionization stages.
The MCWP technique was first introduced for dissipative
processes in quantum optics [12–14], and has later been
used for example in molecular physics [15,16]. In numerous
studies [14,17–21], the method has been used to replace the
solution of the density matrix master equation by the solution
of stochastic Schrödinger equations for an ensemble of wave
functions. The ensemble simulations are considerably easier
when the Hilbert space dimension N is large and the number
of density matrix elements N2 is very large.

The paper is organized as follows. First Sec. II gives
a brief summary of how density matrices and the master
equation are used in quantum optics to solve interacting
quantum systems (Sec. II A) and how this can be applied to
study ionization events as well (Sec. II B). This constitutes
background material for Sec. III, where the MCWP technique
is introduced as a method to simulate the master equation
(Sec III A). As shown in Sec. III B, the MCWP approach can
also be derived directly from the dynamics of the molecule,
conditioned on the simulated detection of electrons escaping
the molecule at random instants of time. Up to this point,
the discussion is general, however, in Sec. IV we turn
to study dissociative double ionization of H2 as a special
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example, including first a derivation of the Hamilton operator
(Sec. IV A) and the jump operators (Sec. IV B) followed
by a discussion of the calculational strategy (Sec. IV C).
In Sec. V we show how different elements of the MCWP
method come into play in addressing this problem and account
for the agreement between our calculations and experiments.
Section VI concludes the paper.

Atomic units (h̄ = me = e = 1) are used throughout this
paper unless stated otherwise.

II. DENSITY MATRIX AND MASTER EQUATION
APPROACH TO DISSOCIATIVE DOUBLE IONIZATION

The conventional TDSE describes the evolution of an
isolated quantum system or a quantum system driven by
an external interaction, which can be parameterized by an
operator V̂ (t) acting on only the quantum mechanical degrees
of freedom of the system of interest. Interacting particles
that form composite quantum systems are in the same way
described by the TDSE, which now has to be solved for a state
vector in the tensor product Hilbert space. Except for specific
cases, such a TDSE calculation is, in practice, so complicated
that it prevents exact quantum mechanical calculations and
very good approximations have been established to deal with
different interesting cases. One of these cases includes a single
quantum system interacting weakly with an environment,
whose properties permit an effective replacement of the full
system-environment dynamics by an effective description of
the system alone. The evolution is no longer unitary, and if
energy is dissipated irreversibly into the environment, one can
introduce decay and decoherence rates and solve a so-called
master equation for the density matrix of the smaller quantum
system of interest.

The purpose of the present section is first to recapitulate the
density matrix approach to dissipative processes in quantum
optics, where photon emission (e.g., by an atom) is described
by rate equation terms in a master equation (Sec. II A), and
second to describe in an equivalent manner the situation where
electrons leave a molecular system (Sec II B).

A. The quantum optical master equation

A key example of the approximate solution of interacting
quantum systems is the Weisskopf-Wigner approach [22] to
spontaneous atomic decay, where an excited atom decays into
low-lying electronic states by emission of light. Treating the
atom as the small system, the environment is here defined as
the quantized electromagnetic radiation field occupying space
around the atom. The coupling between the two systems is the
usual minimal coupling between charges and radiation, where
the radiation field is expressed in terms of field operators,
which lead to the creation and destruction of photons (e.g., in
traveling wave field modes). The TDSE for the composite
system can be used to propagate the quantum amplitudes
on the atomic excited state (with no photons) and on the
various states of the field with a single photon populating light
modes propagating in different directions in space (leaving a
ground-state atom behind). The state vector of the composite
system has infinitely many amplitudes associated with the
wave vectors and polarization of the emitted photons, but to an

excellent approximation, the total population of all these states
grows according to a simple rate process, and the coupling
precisely accounts for the atomic decay rate.

If the atom also interacts with a laser field, as represented
by a coherent coupling between the ground and excited states,
it may become re-excited and emit photons several times, and
thus populate states of the environment with multiple photons
present. This exploration of larger and larger photon number
components of the Hilbert space makes the solution of the
full TDSE impossible. It is possible, however, to combine the
rate equations and the coherent atomic dynamics in the master
equation for the atomic density matrix σ (t) [21],

d

dt
σ (t) = i[σ (t),Hs] + Lrelax(σ (t)), (1)

where σ is an operator on the reduced Hilbert space of the iso-
lated atom, and where Hs , acting on the same space, includes
the Hamiltonian of the isolated atom and its interaction with the
classical laser field. The commutator term is fully equivalent
to the Schrödinger equation evolution of the state vector of an
isolated system. The relaxation term, Lrelax(σ (t)), includes the
rate equations for the atomic populations and coherences, the
diagonal and off-diagonal elements of σ , respectively.

It has been proven, that a linear, continuous differential
equation for the density matrix has to be of so-called Lindblad
form, if the density matrix must retain its physical properties
as a density matrix of a quantum system [21].

This canonical form of the relaxation superoperator,
Lrelax(σ (t)) is parameterized as [21]

Lrelax(σ (t)) = −1

2

∑
m

[C†
mCmσ (t) + σ (t)C†

mCm]

+
∑
m

Cmσ (t)C†
m, (2)

where the operators Cm have dimension of (time)−1/2. In case
of a two-level quantum system that decays with the rate � from
its excited to its ground state, |e〉 → |g〉, the master equation
contains a single Cm operator, C = √

�|g〉〈e|, while more
complicated problems employ several Cm operators to account
for branching ratios between different decay channels.

For an atom with only two coupled states, the corresponding
2 × 2 density matrix has only four elements, and the master
equation, Eq. (1), is readily solved and provides the values of
these four elements and hence also the expectation value of
any atomic observable as a function of time.

Although the field is formally eliminated from the descrip-
tion, and its intensity, spectral distribution, and so on, have to be
inferred by a subsequent analysis, we may formally represent
the density matrix as a sum [20,23],

σ (t) =
∑

n

σ (n)(t), (3)

where each term σ (n)(t) represents the atomic state associated
with the component of the full quantum state with exactly n

photons present in the quantized radiation field. The ground-
state population of σ (n) is fed by the atomic decay rate from
the excited-state component of σ (n−1), and the master equation,
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Eq. (1), can be directly interpreted as the result of summing
up the full set of coupled equations for the individual σ (n)’s,

d

dt
σ (n)(t) = i[σ (n)(t),Hs] + Lloss(σ (n)(t))

+ Lfeed(σ (n−1)(t)) (4)

where the relaxation terms are now separated in a loss term
and a feeding term. For the spontaneous emission problem, the
two terms correspond precisely to the first and second sums in
(2), respectively. For continuous laser irradiation, terms with
larger and larger values of n become significant with time,
illustrating the associated computational challenge.

B. Dissociative ionization as a system-reservoir problem

In this work we present a formulation of dissociative
ionization of molecules as a system-environment interaction
problem, and we establish a master equation for the molecule
or molecular ion along the same lines as the quantum optical
master equation for the light-emitting atom. The environment
is the space around the molecule, which is initially empty, but
due to ionization it becomes populated with electrons in every
ionization step, analogous to the creation of photons in the
light-emission problem in quantum optics (see the discussion
in Sec. II A). It is a significant difference between the quantum
optics and ionization problems that the light-emitting atom is
left intact, and hence the atomic σ (n)’s associated with different
numbers of emitted photons in (3) and (4) are all density
matrices on the same Hilbert space, while the emission of an
electron from the molecule leaves the molecule in an ionized
state belonging to an entirely different Hilbert space. This
physical difference, however, does not invalidate Eq. (3) and its
probabilistic interpretation of the density matrix as a statistical
mixture of different possible states, which in the current case
includes different charge states of the quantum system.

The formal identification of our problem with a system
and an environment component does not imply the validity
of a master equation of the form given in Eq. (1), and the
derivation of the Weisskopf-Wigner theory of spontaneous
emission, indeed, contains a delicate analysis of the system-
environment interaction. This analysis is often referred to as
the Born-Markov approximation [18,20] to signal that the
interaction is weak and thus treated by perturbation theory,
while the environment is Markovian (i.e., a quantum excitation
of the environment degrees of freedom spreads rapidly and
previously dissipated excitations are not re-absorbed by the
small quantum system at later times). Mathematically, this
spreading occurs if the environment supports a wide band of
states so that a superposition of energy eigenstates, formed at
a given time t , has rapidly evolving relative phases between
different components which destroys its coherent coupling
to the small system already shortly after the emergence of
an excitation in the environment. In the Weisskopf-Wigner
theory, this mathematical dephasing is caused by the energy
spread of photon states with different wave numbers, which in
turn is equivalent to the physical argument that photon wave
packets propagate away from the emitter at the speed of light.
The weakness of the system-environment coupling ensures
that the photon indeed travels far away from the atom and is
irretrievably lost during the emission process.

To apply a similar description for the ionization process, we
thus assume that the ionized continuum electrons are released
and leave the molecular ion so fast that re-absorption does
not occur. The separation of time scales is not as favorable
as in the optical case, and some TDSE calculations of atomic
and molecular ionization [24–26], indeed, show a short time
oscillatory behavior rather than a linear monotonous increase
in the ionization probability. These short transients, however,
have only low probability weight, and the dominant ionization
is compatible with a rate process. The very convincing
agreement between the present theory and experiment (see
also [10,11]) shows that this assumption is well justified
for a range of laser parameters used in recent strong-field
dissociative ionization studies and we shall hence assume the
validity of the master equation model of the ionization process.

III. MONTE CARLO WAVE PACKET THEORY

The density matrix is an operator on the system Hilbert
space characterized by a number of variables which is the
square of the Hilbert space dimension used to represent the
quantum system. For few-level systems, the master equation,
Eq. (1), is thus readily solved, but for problems with a large
Hilbert space, such as spatial motion, the solution of the
master equation may present a formidable task, even though
the environment degrees of freedom have disappeared from the
formalism. For these problems, it is useful to apply the MCWP
technique, which replaces the density matrix by an ensemble of
individual state vectors which are evolved stochastically with
time [12–14]. In this section we will give a basic introduction
to this method and explain its functioning for the ionization
problem.

A. Formal equivalence of master equation and stochastic
wave-function solutions

As shown in [18], a master equation with relaxation terms
of the form given in Eq. (2) can be simulated by propagating
an ensemble of pure-state wave functions subject to a non-
Hermitian Hamilton operator

H = Hs − i

2

∑
m

C†
mCm, (5)

where Hs is the Hamiltonian without the relaxation terms
and Cm are the Lindblad relaxation operators. Additionally,
random jump events are included. The jump events between
states of the system are implemented as follows: Due to
the non-Hermitian correction to the Hamiltonian, it does not
conserve the norm of the wave function when it is propagated
in time. In each time step, the reduction in norm dP provides
the probability that the wave function is subject to a quantum
jump process. These jump processes are implemented as the
action of one of the operators Cm on the wave function. To
simulate the jumps with the desired probabilities, a random
number generator is used, and the following operations have
to be performed for every wave function and in every time step
during the evolution of the system:

1. Propagate the quantum state |�(t)〉 of the system using
the non-Hermitian Hamiltonian H

|�̃(t + dt)〉 = exp(−iHdt)|�(t)〉, (6)
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where it is assumed that dt is so small that H can be considered
constant over this time interval.

2. Determine the reduction in norm dP of the propagated
state

dP = 1 − 〈�̃(t + dt)|�̃(t + dt)〉. (7)

In the case of a several Lindblad relaxation operators Cm, we
have to first order in dt

dP =
∑
m

dPm ≡
∑
m

〈�(t)|C†
mCm|�(t)〉dt. (8)

3. Make a probabilistic decision, whether the system is
subject to a quantum jump (probability dP ) or not (probabilty
1 − dP ): Pick a random number ε uniformly distributed
between zero and unity.

3a. If ε > dP : No transition occurs and the wave function
|�̃(t + dt)〉 is renormalized

|�(t + dt)〉 = 1√
1 − dP

|�̃(t + dt)〉. (9)

3b. If ε < dP . A transition occurs by application of one of
the “quantum jump” operators Cm, picked at random according
to their relative weights/branching ratios dPm/dP ,

|�(t + dt)〉 = NnCn|�(t)〉, (10)

where Nn = 1/
√

dPn/dt is the appropriate normalization
constant.

4. Return to point 1 for the next time step.
The equivalence between the master equation and the

average over a large number of stochastic wave functions can
be explicitly demonstrated by averaging the statistical operator
σ (t + dt) = |�(t + dt)〉〈�(t + dt)| over the outcomes of the
stochastic procedure just outlined. Using that at time t + dt

the system with probability (1 − dP ) is in the renormalized
state |�̃(t + dt)〉/√1 − dP and with probability dPn occu-
pies the state Cn|�(t)〉/√dPn/dt , one readily obtains the
weighted-average evolved state [14]

σ (t + dt) = (1 − dP ) × |�̃(t + dt)〉〈�̃(t + dt)|
1 − dP

+
∑

n

dPn

Cn|�(t)〉〈�(t)|C†
n

dPn/dt

= σ (t) + idt[σ (t),Hs] + dtLrelax(σ (t)). (11)

Using the linearity of this equation, we can similarly provide
the time evolution of the average of |�〉〈�| for an ensemble
which already at time t constitutes a mixed state σ (t),

dσ (t)

dt
= i[σ (t),Hs] + Lrelax(σ (t)). (12)

This linear equation is identical to the master equation (1), and
we therefore conclude that the statistical average evolution
of the ensemble state vectors reproduces the master equation
solution for the density matrix.

B. Physical meaning of stochastic wave functions

The stochastic wave functions are not only a computational
trick to simulate the density matrix evolution. They can be
obtained directly from the system-environment problem, and

in this way, via Eq. (11), they offer an alternative derivation of
the master equation itself. In our simple example (Sec. II A)
with an atom that decays by spontaneous emission, the full
quantum description uses as an initial state an atomic state
atom with no photons present. In the course of the system-
environment interaction, the system evolves continuously into
a modified atomic state and no photons, plus a component
with the atomic ground state and a single photon present.
If the ground-state atom is re-excited by a laser field, more
and more state vector components appear with also 2, 3, and
more photons present in the environment. At this stage atomic
observables are accounted for by the atomic density matrix,
which can be interpreted as an incoherent sum of the terms
with the different photon number components given in Eq. (4).
Instead of obtaining this atomic state as a weighted sum over
all possible components with different photon number in the
environment, one may simulate the effect of measurements of
the photon number and thus at every time-step project the state
of the field and choose the associated atomic-state component
according to the random outcome of the measurement.

This idea rests on the validity of the Born-Markov ap-
proximation [18,20] (i.e., that photons that were previously
dissipated into the environment are not coming back to affect
the future evolution of the system). Any physical process
applied to them, including measurements, should hence not
change the average dynamics of the system.

We now come to the simulation of dissociative multiple
ionization of molecular systems. Here, the environment is
associated with the electrons escaping the molecular ion, and
the hypothetical measurement of these electrons effectively
removes them from the quantum description and projects the
remaining molecular system on the charge state corresponding
to the measurement outcome. The Born-Markov approxi-
mation limits the method to processes where the recapture
of liberated electrons is not a significant component of the
dynamics. In comparison with the quantum optical case, we do
not only change state, but we also change the physical system
whenever an electron is detected. However, as we shall see in
the following, we still have a definite procedure to deduce a
pure quantum state at all times during time evolution.

We conclude this section by emphasizing that the equiva-
lence between the simulated average outcome and the master
equation is a mathematical result, which holds irrespective
of the formal correspondence between the random elements
in the procedure and an idealized measurement procedure.
The MCWP simulations make physical predictions also for
experiments, where the electrons are not being measured.

IV. DISSOCIATIVE DOUBLE IONIZATION OF H2

Having introduced the MCWP technique, we now apply the
method to dissociative double ionization of H2 in short intense
laser pulses. Based on the BO approximation, the electronic
and nuclear degrees of freedom are separated and an overview
of the dissociative ionization process is given in Fig. 1.
Starting in the ground state of H2, only one electronic state
is included, namely (1sσg)2 and the system is propagated in
this state until the first quantum jump (i.e., until the imaginary
electron detector measures one emitted electron). The nuclear
wave function is then instantaneously transferred to the H+

2
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FIG. 1. (Color online) Illustration of the four field-free Born-
Oppenheimer potential energy curves used in the present MCWP
description of dissociative double ionization of H2. During the
ionizing pulse the wave packet is transferred from the neutral to the
singly ionized, and further to the doubly ionized state. Both transitions
occur at a specific time, however, calculations using all possible jump
times are made and only upon averaging the correct physical picture
is obtained (see the discussion in Sec. IV).

system. For the singly ionized molecule, two electronic states
are included, the bonding 1sσg state and the dissociative 2pσu

state, and until the detection of a second electron the system
evolves on these coupled electronic states. At the time of the
second detection, the system is subjected to a second quantum
jump and the nuclear wave function is transferred to the final
Hilbert space. Here only two protons are present and the
absence of electrons leads to an effective 1/R potential due
to the nuclear repulsion. The approach is straightforwardly
extended to include more states such as the autoionizing states
of H2. The four electronic states mentioned here, however,
are sufficient to illustrate the method and to obtain very good
agreement with many experiments (see Fig. 7 and [11]).

A. The Hamilton operator

To quantify the MCWP approach to dissociative double
ionization of H2, the non-Hermitian operator, Eq. (5), is first
to be determined. This operator contains both a relaxation term
and a Hermitian part Hs . The latter is the system Hamiltonian
leaving out interactions that induce transitions among the
different charge states. This operator can be separated into
three terms

Hs = Tnuc + Lelec + Helec. (13)

The kinetic-energy operator of the nuclei is here denoted
Tnuc, the coupling of the electrons to the external field is
denoted Lelec and the remaining terms including electronic
kinetic energy and electrostatic interaction is contained in the
electronic Hamiltonian Helec. Having made this separation we
adapt the BO approximation and study the nuclear evolution
in a basis of electronic states, |φRa〉, fulfilling

Helec(R)|φRa〉 = Ea(R)|φRa〉. (14)

The solutions depend on both the energy Ea for the electronic
state a and the internuclear separation R. Even though there
are infinitely many electronic states, we only include four in
the present example. These are (1sσg)2 in H2, 1sσg and 2pσu

in H+
2 , and the doubly ionized state H++

2 , for short denoted
h, g, u, and c, respectively. The total state ket |�〉 is now
expanded in these four orthonormal states

|�〉 =
∑

a

∫
d �R Xa( �R,t)|φRa〉 ⊗ | �R〉, (15)

where the prefactors Xa( �R,t) are the nuclear wave functions,
| �R〉 the position eigenkets of the nuclear coordinate, and a =
{h,g,u,c} the different electronic states.

To derive the equations of motion for the nuclear wave
functions, we turn to the time-dependent Schrödinger equation
i d

dt
|�〉 = Hs |�〉. Inserting Eq. (15), projecting on both sides

with 〈R′| ⊗ 〈φR′a′ | and using that the Hamiltonian is local in
space, we obtain

i
d

dt
Xa′ ( �R′,t) =

∑
a

∫
d �Rδ( �R′ − �R)〈φR′a′ |HsXa( �R,t)|φRa〉.

(16)

The matrix element on the right-hand side contains three terms
due to the separation of Hs in Eq. (13). The matrix elements of
Helec give a delta function in a and a′ and the known electronic
energies Ea [27].

〈φR′a′ |HelecXa( �R,t)|φRa〉 = δa′aXa( �R,t)Ea(R). (17)

Turning to the electron-field interaction, the length gauge is
adapted and the coupling between an electron at position �qj

and the external field �F takes the form �qj · �F .

〈φRa′ |LelecXa( �R,t)|φRa〉
= |F | cos θ0

∑
j=1,2

〈φRa′ |qj |φRa〉Xa( �R,t), (18)

where θ0 denotes the angle between the field polarization and
the internuclear vector �R. In the following, rotation of the
molecule is neglected, since the characteristic time scale is
on the order of 170 fs and θ0 is approximately constant for
each molecule during the shorter pump pulse (see [28] for a
recent detailed discussion of this axial recoil approximation).
Evaluation of 〈φRa′ |qj |φRa〉 should, in principle, be done for
all combinations of a and a′. However, since only terms in
the Hamiltonian not responsible for coupling among different
Hilbert spaces are of concern, just a single term 〈φRg|qj |φRu〉
and its complex conjugate survive [27].

The last term to evaluate is the matrix element concerning
the kinetic energy of the nuclear motion Tnuc = 1

2µ
�P 2

�R , where

µ is the reduced mass of the nuclei and �P �R = −i∇ �R is the
momentum operator of the relative coordinate �R. In writing
out the operator, the neglect of rotations during the pulse in
combination with the BO approximation gives

〈φRa′ |TnucXa( �R,t)|φRa〉 = −δa′a
1

2µ

1

R

∂2

∂R2
RXa( �R,t). (19)
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Additionally, the nuclear wave function can be expressed
as

Xa( �R,t) = 1

R
Ka(R,t)Wθ0,φ0 (θ,φ), (20)

with Wθ0,φ0 (θ,φ) specifying a thight static internuclear orien-
tation along polar angles θ0,φ0.

Using the above matrix elements in combination with
Eq. (16) and the time-dependent Schrödinger equation, the
Hermitian part of the Hamiltonian becomes

Hs =
∑

a

∫
d �R

[
− 1

2µ

1

R

∂2

∂R2
R + Ea

]
|φRa〉〈φRa| ⊗ | �R〉〈 �R|

− |F | cos θ0

∫
d �R 〈φRg|qj |φRu〉[|φRg〉〈φRu|

+ |φRu〉〈φRg|] ⊗ | �R〉〈 �R|. (21)

B. The jump operators

The non-Hermitian part responsible for the jumps among
the different Hilbert spaces is now to be determined. All
electronic transitions are assumed to be vertical in Fig. 1,
i.e., to occur without displacement or recoil of the nuclear
motion. The transition jump operator responsible for the first
ionization, bringing population from the ground state in H2 to
the lowest state in H+

2 , is local in the nuclear coordinate and
reads

Ch =
∫

d �R
√

�h( �R)|φR,g〉〈φR,h| ⊗ | �R〉〈 �R|. (22)

In this paper the static field rates �h( �R) calculated for H2 in
Ref. [29] were used as instantaneous ionization rates changing
in every time step according to the current strength of the
oscillating external field. No overall phase is included since
the different contributions to the final KER spectrum are added
incoherently and hence independent on the relative phase of
the nuclear wave functions in the different evolutions of the
system.

The jump operator Ch represents a transition from the
ground state in H2 to the lowest field-free state in H+

2 . As the
ionization occurs during the pulse, where the states 1sσg and
2pσu are strongly coupled, one may alternatively consider the
ionization process as occurring toward the corresponding field-
dressed states. By including Lelec in the electronic Hamiltonian
and diagonalizing the electronic Hamiltonian in the basis of
the two states |φR,g〉 and |φR,n〉 one obtains the lowest dressed
state

|φR,low〉 = Mg|φR,g〉 + Mu|φR,u〉 (23)

(see, e.g., Ref [30] for explicit expressions of Mg and Mu).
We can treat the ionization process as a transition toward this
dressed state with a jump operator

Ch =
∫

d �R
√

�h( �R)(Mg|φR,g〉 + Mu|φR,u〉)〈φR,h| ⊗ | �R〉〈 �R|,
(24)

which now coherently feeds population into both the 1sσg and
2pσu states. We have applied simulations with both Eqs. (22)
and (24), and find that the difference is very small, see Fig. 2.
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FIG. 2. (Color online) (a) Calculated KER spectra for pulses of
λ =800 nm, τFWHM = 40 fs and I = 6 × 1013 W/cm2 using both the
1sσg state [Eq. (22)] and the lowest field-dressed state [Eq. (24)]
as initial state in H+

2 (no focal volume averaging). (b) and
(c) Total nuclear probability distribution in the H+

2 system [i.e.,∑
a=g,u |Ka(R,t)|2] given a first jump 3.8 fs prior to the peak of

the pulse in the two different cases. The same logarithmic color scale
is used in (a) and (b) for any discrepancy to be visible.

Apart from a weak and unphysically fast dissociating compo-
nent contained in the wave function obtained with Eq. (22)
there is no significant difference in the KER spectra obtained
using the two approaches. When dealing with larger systems
one might thus choose the simpler approach of Eq. (22) to
avoid the diagonalization step.

The second ionization can occur either from the 1sσg state
or from the 2pσu state, and the two pertaining jump operators
are written as

Cg =
∫

d �R
√

�g( �R)|φR,c〉〈φR,g| ⊗ | �R〉〈 �R|, (25)

Cu =
∫

d �R
√

�u( �R)|φR,c〉〈φR,u| ⊗ | �R〉〈 �R|. (26)

Here �g( �R) and �u( �R) represent instantaneous ionization rates
from the 1sσg and the 2pσu states, respectively. As for the first
ionization we assume the static ionization rates, changing with
the time-dependent strength of the field, applies. The static
field rates for ionization of H+

2 are available from Ref. [31].
To maintain the simplicity of the MCWP theory we

choose to treat the second ionization step as a process
occurring from the field-free electronic eigenstates Eqs. (25)
and (26). A description based upon the dressed states would
introduce coherent contributions to the ionization, described
by superposition jump operators of the form (C = Cg ± Cu).
The difference between a coherent and an incoherent treatment
of the ionization from the pair of H+

2 states is, however, washed
out by the rapid phase evolution and the sampling over the
random times at which the jumps occur. Based on the good
agreement with the experimental results obtained, the choice
of using Eqs. (25) and (26) seems a plausible one.
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Once the Hamilton and jump operators are known, the total
non-Hermitian operator (5) is written as

H = Hs − i

2

∑
a=h,g,u

∫
d �R�a(R)|φRa〉〈φRa| ⊗ | �R〉〈 �R|, (27)

and the MCWP calculations can be performed. Figure 3
provides an overview of the simulation procedure (see points
1–4 in Sec. III A).

C. Calculation strategy

1. Simulations

Starting in the electronic and vibrational ground state of
H2 the time evolution operator is applied and the drop in norm
dP associated with the non-Hermitian part of the Hamiltonian,
Eq. (27), is determined. A random number ε between zero and
unity is drawn and depending on the values of this number
compared to the drop in the norm, we either renormalize or
jump |�〉 → Ch|�〉 and subsequently renormalize. The time
where this first jump occurs in a given simulation is denoted
T1. Time evolution proceeds in the H+

2 system until the draw
of a random number determines that a second jump occurs.
We denote this transition time T2. In the H+

2 system, the two
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FIG. 3. (Color online) Overview of the calculational strategy for
dissociative double ionization of H2 with the MCWP approach. Each
circle to the left corresponds to a computational task. The drawing
of random numbers leads to a variety in the outcome of different
realizations. A possible realization is illustrated to the right.

jump possibilities |�〉 → Cg|�〉 and |�〉 → Cu|�〉 are
distinguished by different probabilities

dPg/dP = 〈�|C†
gCg|�〉

〈�|C†
gCg + C

†
uCu|�〉

, (28)

dPu/dP = 〈�|C†
uCu|�〉

〈�|C†
gCg + C

†
uCu|�〉

. (29)

After application of either Cg or Cu, the system is in
the doubly ionized state and further propagation of the wave
function is not necessary since all the information concerning
the kinetic-energy distribution of the outgoing fragments is
already present in the wave function Kc(R,t) through a
projection onto the energy eigenstates of the Coulomb problem

EKER
a (T1,T2) =

∣∣∣∣∫ KE(R) Kc(R,t) dR

∣∣∣∣2

. (30)

Here KE(R) is the energy normalized Coulomb wave of energy
E. If the calculation is performed in a box of size Rmax a factor

of
√

Rmaxµ

πk
, k = √

2µE is to be multiplied on the wave function
to obtain the correct energy normalization [32].

2. Deterministic sampling

When propagating the wave function with the MCWP
method the initial state is the same in all cases, and the
evolution of the wave function up until the first jump will
not differ in different realizations. Likewise, the evolution
in the coupled 1sσg-2pσu system will be identical given a
specific time for the first jump. These facts can be utilized
to dramatically reduce the amount of calculations and replace
the stochastic part of the approach by a deterministic weighted
average.

Starting in the H2 ground state, a single wave function
is propagated in the H2 system using the non-Hermitian
Hamiltonian until the end of the pulse without renormalization.
This leads to a nuclear wave function as a function of time with
a continuously decreasing squared norm Nh(t). One can show
that the distribution of times for the first jump T1, following
the procedure outlined previously for each short time step is
given by

Ph(T1) = − d

dt
Nh(t)|t=T1 . (31)

This implies that we can sample the effect of the first jumps as
a weighted sum over histories, with jump times T1 belonging
to an equidistant grid with weight factor Ph(T1). At every
one of these sample times, the jump operator Ch is applied
to the no-jump wave function, and the starting conditions for
propagation in the singly ionized H+

2 state is obtained for
every T1 free from stochastic sampling errors and with only
one initial propagation in the H2 system.

Concerning the evolution in the H+
2 system similar simplifi-

cations can be made. Unfortunately, here the initial conditions
are not identical in all runs and the evolution in the no-jump
case must be done for every possible entering time T1. The
drop in squared norm of both the 1sσg state Ng(t) and the
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2pσu state Nu(t) now determines the conditional probability
of a second jump at time T2 given an initial jump at time T1

Pgu(T2 | T1) = − d

dt
[Ng(t) + Nu(t)]|t=T2 . (32)

To sample the effect of the second jump, where either Cg or
Cu is randomly applied in accordance with Eqs. (28) and (29),
both components are simply evaluated separately with these
probabilities as deterministic weight factors.

In the doubly ionized state, the KER spectrum is determined
for all values of the two jump times T1 and T2 and using both
a Cg and a Cu jump. Following the previous discussion, the
final result is obtained by evaluating the weighted summation

EKER
tot =

∑
T1,T2

Ph(T1)Pgu(T2|T1)

×
[ ∑

a=g,u

P (a|{T1,T2})EKER
a (T1,T2)

]
, (33)

where P (a|{T1,T2}) = dPa/dP [Eqs. (28) and (29)] evaluated
for wave functions with the specific jump times T1 and T2. A
very dense time grid is used for our numerical propagation of
the Schrödinger equation, but it is not necessary to determine
all possible contributions to EKER

g (T1,T2) and EKER
u (T1,T2)

with the same time resolution. Indeed, the full calculation of
a molecule exposed to an intense laser pulse of 40 fs and
800 nm reduces to one propagation in the H2 system, and
approximately 15 propagations in the H+

2 system with different
initial times suffice for convergence of the results. After
completing the H2 evolution, the remaining calculations can be
made in parallel. Each of the propagations takes approximately
15 min on an AMD/Opteron 2.6 GHz processor and hence the
total cost in CPU time for obtaining a KER spectrum for one
intensity component of the field is only a few hours.

V. RESULTS

Using the MCWP technique the results of several different
experiments on the double ionization of H2 (D2) in short
intense laser pulses can be reproduced. Many of these
experiments are discussed in [11] including a detailed analysis
of the physical insight gained. In this paper, the results on
H2 in pulses of 800 nm, 1.0×1014 W/cm2, and a Gaussian
pulse of 40 fs in duration (FWHM) is given as an example
to emphasize the importance of the different elements in the
MCWP technique. The Keldysh parameter γ [33] for both
the first and the second ionization lies for these pulses in the
range 1.17–1.26, depending on the internuclear separation at
the time of the ionization event, partly supporting the tunneling
picture adapted in the use of static field ionization rates. The
same results are briefly discussed in Ref. [10].

Starting in the electronic and nuclear ground state of H2, the
evolution of the neutral molecule is the first to be calculated.
The results are given in Fig. 4 using the peak of the pulse as
the origin of the time axis. Panel (a) gives the nonnormalized
probability density |K̃h(R,t)|2 in the electronic state (1sσg)2

as a function of both internuclear separation and time. The
tilde on the wave function indicates that the wave function is
not normalized. Integrating over all possible separations, the
squared norm is obtained and plotted in panel (b). As seen
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FIG. 4. (Color online) MCWP realization for H2 exposed to
pulses of 800 nm, 40 fs, and 6 × 1013 W/cm2. (a) Nonnormalized
population density in the (1sσg)2 state |K̃h(R,t)|2 and (b) the
integrated squared norm. (c) The amount of population entering
the 1sσg state |Mg

√
�h(R) K̃h(R,T1)|2 and (d) the 1pσu state

|Mu

√
�h(R) K̃h(R,T1)|2 as a function of the first jump time T1.

from the norm, only approximately 0.002% of the molecules
undergo ionization at the intensity 6×1013 W/cm2. Together
with the initial condition this results in almost no changes in
the probability distribution of panel (a) as a function of time.
However, dynamics do indeed appear as seen from panels (c)
and (d), which show the probability density entering the 1sσg

and 2pσu states, respectively. More precisely, the state of panel
(a) is projected using the jump operator Ch of Eq. (24), and
the result is normalized and weighted by the jump probability
Ph(T1) for all values of T1 and the population density is plotted
as a function of this parameter. Since the jump probability can
be shown to equal Ph(T1) = �h(R)|K̃h(R,T1)|2dt and the nor-
malization constant is 1/K̃h(R,T1), the populations entering
the 1sσg and the 2pσu states are |Mg

√
�h(R) K̃h(R,T1)|2 and

|Mu

√
�h(R) K̃h(R,T1)|2, respectively, where Mg and Mu are

defined in Eq. (23). The population is seen to be transferred
mostly at the extrema of the external field with maximum at
the peak of the pulse just as expected. To the careful eye it is
seen that the density is shifted a little toward larger internuclear
distances reflecting the tendency in the rate �h as a function
of internuclear distance R.

Even though the density distribution entering the singly
ionized state is shifted in R compared to the equilibrium
distance in the ground state of H2, it is still centered at relatively
small internuclear distances (∼1.5 a.u.). Since the equilibrium
distance in H+

2 is 2.0 a.u. this induces nuclear dynamics as seen
from Fig. 5(a) showing the population density in the 1sσg state
|K̃g(R,t)|2 under the assumption that the first ionization occurs
at T1 = −13 fs. The characteristic vibrational time scale of
15 fs in the 1sσg state is reflected in the nuclear dynamics.
Figure 5(b) shows the population density in the 2pσu state
|K̃u(R,t)|2, using the same initial conditions and here popu-
lation transfer from the 1sσg state is seen due to the strong
dipole coupling. The 2pσu state is dissociative and the wave
function spreads out.
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FIG. 5. (Color online) MCWP realization for H2 exposed to
pulses of 800 nm, 40 fs, and 6 × 1013 W/cm2. To illustrate the
dynamics, the first ionization event is restricted to one specific time
T1 = −13 fs. (a) Nonnormalized population density in the 1sσg state
|K̃g(R,t)|2 and (b) 100 times the nonnormalized population density in
the 2pσu state |K̃u(R,t)|2 using the same color scale. (c) The amount
of the population entering the doubly ionized state from the 1sσg

state |√�g(R) K̃g(R,T2)|2 as a function of the second jump time T2.
(d) The population entering the doubly ionized state from the 2pσu

state |√�u(R) K̃u(R,T2)|2 multiplied by 0.001, on the same color
scale as (c).

In addition to modulations as a function of time, |K̃u(R,t)|2
shows modulations as a function of internuclear separation as
well due to the structure of the ionization rate �u(R) at large
distances [31]. The evolution shown is calculated in the no-
jump case, but the dynamics is still affected by the ionization
rate, a fact referred to as the Lochfrass effect [34,35]. In regions
of a high ionization rate, the probability density is lowered,
while it is raised in regions of low ionization rate. The same
effect is responsible for the population of “dark states” in
quantum optics (cf. the discussion in [12]).

The modulation in the population density is also seen in the
states entering the doubly ionized space. Figures 5(c) and 5(d)
show the probability density right after the second jump from
1sσg and 2pσu, respectively. That is |√�g(R) K̃g(R,T2)|2 and
|√�u(R) K̃u(R,T2)|2. In the 2pσu case a clear enhancement of
the probability density is seen for large internuclear separations
and charge resonance enhanced ionization (CREI) [31,36] at
R=7 a.u. and R=11 a.u. gives two separate structures. Turning
to the 1sσg case, the same enhancement at large separations is
observed. This occurs despite the fact that the wave function
in the 1sσg state has almost no weight in this region. The
population transferred, accordingly, corresponds to molecules
that first couple to the 2pσu potential curve, dissociate, and
later couple back to the 1sσg state [see the right corner of panel
(a), where the population density is multiplied by 100]. Due to
this more complicated scheme involving two transitions in the
singly ionized space and a lower ionization rate, the amount of
population transferred in this way is down by a factor of 1000
compared to the amount transferred directly from the 2pσu

state.

Having determined the probability density right after the
second jump a projection onto repulsive continuum Coulomb
states will give the KER spectra. Figure 6(a) shows the result
summed over all possible second jump times T2, but restricted
to one specific first jump time T1 for four different values
of T1. The spectrum is clearly different for different T1’s.
Hence theoretical models attempting to describe dissociative
double ionization using only one specific starting time in the
single ionized state will most probably fail to predict future
experiments. To see how much the individual jump times
contribute to the overall spectrum Fig. 6(b) shows integrated
jump probabilities. The dotted bars indicate the probabilities
of a first ionization Ph(T1) at time T1 and show, as expected,
to be centered around the peak of the pulse. The gray bars, on
the other hand, show the probability of a second ionization at
any time given a first ionization at time T1

P2(T1) =
∫ ∞

T1

Pgu(t |T1)dt. (34)

The maximum in ionization probability is here at T1 =15 fs,
allowing the wave function to reach regions of high rates at
maximum intensity. Multiplying the two probabilities gives
the weight of the individual KER spectra and peaks at −3 fs
as indicated by the black bars. This result shows that if the
dissociative double-ionization process in H2 was modeled by
initiating the propagation in the H+

2 system at T1 = −3 fs,
a good agreement might accidentally occur. However, since
many different jump times contribute significantly, this is far
from certain, and perfect agreement can only be obtained by
including them all.

Including all possible jump times is not the only summation
required to obtain the correct KER spectrum. Using short
intense laser pulses the extent of the molecular sample is
most often larger that the waist of the pulse and a focal
volume averaging is necessary [37]. Figure 7(a) shows the
total KER spectra of four different intensities, which after
averaging over a pulse of 7×1013 W/cm2 in center peak
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FIG. 7. (Color online) (a) The KER spectrum calculated at four
different intensities (no focal volume averaging). (b) The KER
spectrum after focal volume averaging (full line) and experimental
results [6] (points) using pulses of 800 nm and 40 fs. The peak
intensity in the experiments is 1 × 1014 W/cm2 and a peak intensity
of 7 × 1013 W/cm2 is used in the simulations.

intensity leads to the total spectrum given in Fig. 7(b). A
comparison to experiments [6] can now be performed and as
seen from Fig. 7(b) the agreement is very convincing. The
experiments were carried out at the same pulse duration and
wavelength as the calculations, however, at a slightly higher
peak intensity (1×1014 W/cm2). Given that the uncertainty in
peak laser intensity is stated to be ∼10% [6], we consider the
agreement obtained very good.

VI. CONCLUSION

Using the MCWP technique we have presented an approach
to study dissociative multiple-ionization processes in diatomic
molecules as a system-environment interaction problem. The
system of concern is the molecule, while the environment

is associated with the electrons escaping the molecular ion,
and the method is formally equivalent to solving the master
equation for this problem. For systems including spatial
motion the Hilbert space is, however, too large for a direct
solution of the master equation and instead the density
matrix is replaced by an ensemble of individual state vectors,
which are evolved stochastically with time. By propagating
an ensemble of pure-state wave function subject to a non-
Hermitian Hamiltonian operator, the drop in norm in every
time step is determined and in combination with a random
number generator this leads to quantum jumps among the
different charge states at different instances of time. Physically,
these jumps can be interpreted as hypothetical measurements
of the escaping electrons effectively removing them from the
quantum description and projecting the remaining molecular
system on the charge state corresponding to the measurement
outcome. The technique relies on the Born-Markov approxi-
mation and assumes a weak interaction and a rapid spread of
quantum excitation of the environment degrees of freedom
(i.e., electron recapture is not a significant process in the
ionization dynamics).

The MCWP technique is relatively simple to implement and
runs at a low computationally cost and hence the technique is
a very good candidate for calculations on larger molecules
than H2 or in other pulse regimes. For example, N2 in extreme
ultraviolet pulses [38]. As long as the electronic energies and
dipole moment functions are known and the ionization rates
can be determined, the MCWP technique offers insight into
the dynamics of ionization events and makes it possible to both
predict future experiments and address physical explanations.
A detailed comparison with a range of experimental data
available for H2 and D2 [6,39,40] can be found in [11].

ACKNOWLEDGMENTS

This work was supported by the Danish Research Agency
(Grant No. 2117-05-0081).

[1] S. Chelkowski, A. D. Bandrauk, A. Staudte, and P. B. Corkum,
Phys. Rev. A 76, 013405 (2007).
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