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Hybrid orbital and numerical grid representation for electronic
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A general approach for ab initio calculations of electronic continuum processes is described in which the
many-electron wave function is expanded using a combination of orbitals at short range and the finite-element
discrete-variable representation (FEM-DVR) at larger distances. The orbital portion of the basis allows efficient
construction of many-electron configurations in which some of the electrons are bound, but because the orbitals are
constructed from an underlying FEM-DVR grid, the calculation of two-electron integrals retains the efficiency of
the primitive FEM-DVR approach. As an example, double photoionization of beryllium is treated in a calculation
in which the 1s2 core is frozen. This approach extends the use of exterior complex scaling (ECS), successfully
applied to helium and H2, to calculations with two active electrons on more complicated targets. Integrated,
energy-differential and triply-differential cross sections are exhibited, and the results agree well with other
theoretical investigations.
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I. INTRODUCTION

Numerical grid methods combining the finite-element
discrete-variable representation (FEM-DVR) approach with
exterior complex scaling (ECS) [1] have allowed effectively
exact calculations of electron impact ionization [2] and
double-photoionization cross sections for two-electron atomic
[3] and molecular targets [4] over the last decade. The
FEM-DVR approach has formed the basis of numerically
accurate solutions of the time-dependent Schrödinger equation
for such systems under the influence of ultrashort radiation
pulses [5–7]. On the other hand, the success of atomic and
molecular electronic structure calculations of many-electron
systems depends on expressing those wave functions in terms
of configurations with orthogonal orbitals. The configuration
interaction (CI) method and its variants are orbital based,
and that is the standard approach and the natural language
of electronic structure theory.

Here, we describe a method that has the advantages of
both approaches. It exploits the finite element aspect of the
FEM-DVR to allow the construction of orbitals from only
the DVR polynomial basis in the first few finite elements
to describe electrons in bound orbitals. The remainder of
DVR grid representation is left untouched and describes the
continuum portions of the wave function. We have previously
demonstrated that a particular advantage of the DVR approach
is that the two-electron integrals in the DVR basis are given by
simple formulas and are diagonal in the two pairs of indices that
label them. That fact results in remarkable simplifications even
when the DVR basis is transformed to atomic or molecular
orbitals, as we will discuss below.

As a demonstration of this numerical method, we choose
the relatively simple case of double photoionization (DPI) of
the beryllium atom in which the orbital in the 1s2 core remains
frozen. Since the 1s2 core electrons lie energetically far below
the 2s valence shell and the mean value 〈r〉 of the 1s and
2s orbitals are very different [8], correlation effects between
electrons occupying different shells are likely to be minimal.

Thus, a reasonable approximation to double photoionization
from beryllium allows for the valence electrons to be correlated
separately from the closed-shell core electrons, and recent
theoretical investigations on Be that have followed this
approach to produce fully differential DPI cross sections
include convergent-close coupling (CCC) [9], time-dependent
close coupling (TDCC) [10], and the hyperspherical R-matrix
method with semiclassical outgoing waves (HRM-SOW) [11].
Integral DPI cross sections have also been computed more
recently using B-spline basis methods [12] as well as with
the R-matrix-with-pseudostates (RMPS) method [13]. Each of
these methods has been modified to account for the presence of
core electrons in some way in order to apply these techniques
to beryllium. Only limited experimental investigations of DPI
from beryllium have been conducted [14–16].

In this work, we calculate cross sections for DPI from
beryllium at 20 eV above the double-ionization threshold,
and compare the resulting triply differential cross sections
with those of other theoretical approaches using different core
potential approximations and methods of solving DPI problem.
In Sec. II, we describe the hybrid orbital and FEM-DVR basis
numerical method and the resulting implementation of the
ECS approach to solving the double-ionization problem. The
method, used previously in ECS calculations on two-electron
systems [2,3], of extracting the amplitudes pertaining to double
ionization from the scattering wave function must be modified
in the presence of the field of the frozen core, and these
details are also given in Sec. II. Section III presents the
calculated cross sections for DPI from beryllium, including
the integral, energy-differential, and triply-differential cross
sections. Finally, some brief conclusions and future work are
discussed in Sec. IV.

II. THEORETICAL APPROACH

The amplitude for double photoionization is constructed
from a solution of the driven equation for the first-order wave
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function that is obtained when the radiation field is treated as
a perturbation:

(E0 + ω − H )�+
sc = (ε · µ)�0, (1)

where H is the atomic Hamiltonian, ω is the photon frequency,
ε is the photon polarization vector, µ is the electronic
dipole operator, and �0 is the wave function describing the
initial state of the atom with energy E0. Equation (1) must
be solved with outgoing-wave boundary conditions. Those
boundary conditions are rigorously applied, as discussed for
example in [2], by transforming the radial coordinates of the
electrons according to the exterior complex scaling (ECS)
transformation, which scales those coordinates by a phase
factor beyond some radius R0:

r →
{

r, r � R0

R0 + (r − R0)eiθ , r > R0.
(2)

This transformation causes wave functions with pure outgoing
boundary conditions to decay exponentially beyond the exte-
rior complex scaling radius R0, thereby allowing the problem
to be treated on a finite grid while preserving the true physical
wave function inside of R0.

For two-electron problems, we can solve Eq.(1) using an
FEM-DVR description of the radial motion of the electrons
[a radial DVR basis of functions χi(r)] and a spherical
harmonic basis Ylm(�) to describe angular motion. The
resulting description of electron-electron repulsion in this
product basis is remarkably simple and efficient, because the
radial two-electron integrals, as we shall see explicitly below,
are diagonal in pairs of their four indices. That is the central
reason why full CI in this large product basis is a practical
computational approach to double-ionization problems.

To treat double-continuum processes in a many-electron
atom, one would ideally like to expand the wave function
in configurations in which two electrons are represented by
the FEM-DVR product basis and the rest are represented by
atomic orbitals. For a four-electron system, for example, we
would have (suppressing the spin functions) an expansion of
the form

� =
∑
n,i,j

Cn,i,j |ϕn1 (1)ϕn2 (2)χi(r3)Ylimi
(�3)χj (r4)Ylj mj

(�4)|.

(3)

Immediately the question arises of how to construct a
combined orbital and DVR basis such that all functions
are mutually orthogonal, and how to perform the resulting
two-electron integrals between the orbital and DVR basis
functions. That question is present even if the same set of
orbitals {ϕni

} appears in all the configurations, as would be the
case in a frozen-core calculation. Without loss of generality,
that is the case we treat here.

A. Hybrid orbital and FEM-DVR representation of the core
and valence electrons

Treating an atomic problem with two active electrons
and the rest occupying frozen orbitals requires a procedure
to account for the interaction of the two valence electrons
with the core. Two methods that have been previously
utilized for double photoionization of beryllium include:

FIG. 1. (Color online) Sketch of hybrid basis constructed from
DVR-based orbitals and the primitive finite-element discrete-variable
representation.

(1) model potentials that represent the combined effects of core
polarization and nuclear screening with a semiempirical local
potential and (2) pseudopotentials which alter the one-electron
residual ion (core + 1 electron) orbitals to force orthogonality
back to the core orbitals. A more detailed description of the
advantages and disadvantages of these two frameworks can be
found in Ref. [11]. Briefly, the limitations on model potentials
are the need to remove contributions to the wave function
from unphysical states (see below), while the limitation of
pseudopotentials is the arbitrary but incorrect behavior of
the nodeless valence orbital in the core region resulting in
inaccurate cross sections calculated in gauges that emphasize
the region near the nucleus.

The present treatment uses neither model nor pseudopoten-
tials, but rather constrains the core electrons to doubly occupy
a set of orbitals {ϕo} and then properly accounts for direct
and exchange interactions with the valence electrons. The
doubly occupied orbitals are obtained from a Hartree-Fock
calculation on the neutral target atom and then reexpanded in
an FEM-DVR basis using only the DVR functions in the first
two or three finite elements. The idea is sketched in Fig. 1.

In the case of beryllium, there is only one such orbital, and
we note in passing that the it is quite insensitive to whether
it is derived from a Hartree-Fock treatment of Be++, Be+, or
neutral Be, indicating that the properties of the 1s2 closed shell
are dominated by the nuclear attraction and insignificantly
polarized by the 2s orbital penetration into the core region.

With the orbital restriction on the core electrons, the
effective Hamiltonian for the two active electrons can be
written (atomic units throughout unless otherwise indicated):

H = h(1) + h(2) + 1

r12
, (4)

where 1/r12 is the Coulomb repulsion between the active
electrons. The one-body operator h is

h = T − Z

r
+

∑
o

2Jo − Ko, (5)

where T is the one-electron kinetic energy operator, Z/r the
nuclear attraction (with Z = 4 in the present case) and 2Jo

and Ko are the direct and exchange components of the core
interaction with the valence electrons, respectively. Explicitly,
the Coulomb operator for orbital ϕo is given by

Jo(r) =
∫ |ϕo(r′)|2

|r − r′| dr′, (6)
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while the nonlocal exchange operator acting on an orbital χ (r)
is

Ko(r)χ (r) = ϕo(r)
∫

ϕ∗
o (r′)χ (r′)
|r − r′| dr′. (7)

In our previous studies of DPI in helium [17] and H−
[3], the two-electron Hamiltonian was diagonalized in a
product basis of primitive FEM-DVR radial functions times
spherical harmonics for each electron, which gives a full
configuration-interaction (CI) treatment of the problem in
the underlying basis. In the present case, however, using
an unconstrained primitive basis with the effective two-
electron Hamiltonian in Eq. (5) would lead to the appear-
ance of unphysical (bosonic) states that result from over-
population of the doubly occupied orbitals by more than
two electrons, and so the formulation must be modified to
impose strict orthogonality between the core and valence
electrons.

An obvious way to accomplish this would be to carry out
the calculation in an atomic orbital (AO) basis, where the
AOs are expressed as linear combinations of DVR functions,
and simply exclude the doubly occupied core orbitals from
all configurations. Such an approach, however, fails to take
advantage of a key simplification in the calculation of two-
electron integrals when using FEM-DVR basis functions;
namely, as mentioned above, that the radial portion of the
electron-electron repulsion matrix elements are diagonal in
the DVR index of each electron [2]. Specifically,

〈ij |Vλ|kl〉 ≡
∫

drdr ′χi(r1)χj (r1)
rλ
<

rλ+1
>

χk(r2)χl(r2)

= δij δklf (i,l), (8)

when χ (r) is a DVR function and f (i,l) is given in [2]. In the
present context of a calculation on Be, we can use primitive
DVRs for all basis functions with 	 �= 0, since there are no
restrictions in those symmetries. In general for closed shell
cores, we can use primitive DVRs for all the angular momenta
not appearing in doubly occupied core orbitals. In the case of
Be, for the 	 = 0 functions, we first make use of the fact that the
1s orbital is nonzero only over a limited range near the nucleus,
so we can choose a finite element boundary beyond which φ1s

is effectively zero and form a set of orthonormal s-type AOs
φα using only primitive DVR functions (χi,i = 1, . . . ,M) that
lie within the relevant range,

ϕα(r) =
M∑

j=1

Uαjχj (r). (9)

as indicated in Fig. 1. Because the DVR functions are orthogo-
nal, the orbitals created out of the first M DVR functions by this
unitary transformation are not only orthogonal to each other;
they are orthogonal to all the remaining primitive FEM-DVR
functions in the basis.

〈ϕα|χk〉 = 0 k > M. (10)

If we consider, for example, two-electron matrix elements
where all four basis functions have 	 = 0, then they can be
grouped into six classes:

(1) 〈χiχj ||χkχl〉 – all primitive DVR,

(2) 〈ϕαϕβ ||ϕγ ϕδ〉 – four orbitals,
(3) 〈χiχj ||φαϕβ〉 – two orbitals,
(4) 〈χiχj ||χkϕα〉 – one orbital,
(5) 〈ϕαχi ||ϕβϕγ 〉 – three orbitals,
(6) 〈ϕαχi ||ϕβχj 〉 – two orbitals.

Classes (4)–(6) are zero because they pair an atomic orbital
with index less than or equal to M with a primitive DVR which,
by construction, has index greater than M . The class-(1) matrix
elements are those given by Eq. (8). The class-(2) integrals are
written, using Eqs. (8) and (9), as

〈ϕαϕβ ||ϕγ ϕδ〉 =
M∑

i,j=1

UαiUβif (i,j )UγjUδj . (11)

Because the primitive integrals are diagonal in the DVR indices
for each electron, there are only two sums needed to evaluate
the class-(2) matrix elements directly. The class-(3) matrix
elements involve only a single sum in their evaluation. Matrix
elements involving both s-type and higher 	-type orbitals can
be similarly calculated and never involve sums over more than
two indices. The “four-index transformation,” familiar from
electronic structure theory, is reduced in this approach to an
effective two-index transformation.

These simplifications are a result of the compact support of
the primitive DVR polynomial basis functions χi(r) within
the finite-element boundaries and will lead to an efficient
CI representation of many electron systems in which two
electrons can be in the continuum.

B. Calculation of the double-photoionization amplitudes

The scattered wave (as well as the initial target state) is
expanded in a product basis formed from FEM-DVR functions
and spherical harmonics:

�+
sc =

∑
l1m1

∑
l2m2

ψl1m1,l2m2 (r1,r2)

r1r2
Yl1m1 (r̂1)Yl2m2 (r̂2). (12)

In the case of beryllium, having projected the 1s orbital (but
not the other ϕα orbitals) from the basis, we diagonalize the
effective two-electron Hamiltonian in 1S symmetry to obtain
the Be ground state and then construct the Hamiltonian in
1P symmetry to solve Eq. (1). The scattered wave �+

sc is then
used to compute the amplitudes for double photoionization. As
described earlier [2,4,17], this can be accomplished by using
a testing function that not only extracts the double-ionization
amplitude, but also removes any spurious contributions from
single ionization at the same photon energy that could
contaminate the desired result. For helium, the appropriate
testing functions are simply the continuum Coulomb wave
functions �+

(c)(k,r) with Z = 2, while for H2 the testing
functions are continuum states of H+

2 .
Following a similar logic, the testing functions that will

separate the double-ionization continuum from the other
energetically open channels must be continuum states of Be+,
which are orthogonal to the bound states of the singly charged
ion produced by single ionization. To construct these states,
we follow a procedure similar to the one used to treat DPI of
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H2 [4]. The full testing function �+(k,r) is decomposed as the
sum

�+(k,r) = χ (k,r) + �+
(c)(k,r) (13)

of a scattered part χ (k,r) and a long-range Coulomb wave
function �+

(c)(k,r) with asymptotic charge Z = 2 because the
long-range behavior of the direct operator for the occupied 1s2

core is to screen the the Z = 4 nucleus of beryllium,

2J1s(r) ∼
ri→∞

2

r
. (14)

Because the exchange operator K1s in Eq. (5) has the range
of the 1s orbital, there is no complication in solving a driven
Schrödinger equation of the form(

k2

2
− h

)
χ (k,r) =

(
h − k2

2

)
�+

(c)(k,r)

=
(

−2

r
+ 2J1s − K1s

)
�+

(c)(k,r), (15)

where k2/2 is the energy of the electron. To be able to describe
the amplitude for an arbitrary direction of the momentum, we
expand the testing function as well as the Coulomb function
in partial waves:

�+(k,r) =
∑
	,m

ϕk
	 (r)

r
Y ∗

	m(k̂)Y	′m(r̂), (16)

�+
(c)(k,r) =

(
2

π

)1/2 ∑
	,m

i	eiη	

kr
φ

(c)
	,k(r)Y	m(r̂)Y ∗

	m(k̂), (17)

where φ
(c)
	,k(r) is a radial Coulomb function behaving asymp-

totically as

φ
(c)
	,k(r) → sin[kr + (Z/k) ln(2kr) − 	π/2 + η	(k)], (18)

for r → ∞ with Coulomb phase η	 given by

η	(k) = arg �(	 + 1 − iZ/k), (19)

with Z = 2. This decomposition leads to a radial driven
Schrödinger equation for each partial-wave component of the
testing function:(

k2

2
− h	

)
ϕk

	 (r) =
(

−2

r
+ 2J1s − K1s

)
φ

(c)
	,k(r)

kr
. (20)

The double-photoionization amplitude to produce outgoing
electrons with momenta k1 and k2 is expressed as the coherent
sum of partial-wave amplitudes [3,17]:

f (k1,k2) =
∑
l1,m1

∑
l2,m2

(
2

π

)
i−(l1+l2)eiηl1 (k1)+iηl2 (k2) (21)

×Fl1,l2,m1,m2 (k1,k2)Yl1m1 (k̂1)Yl2m2 (k̂2), (22)

where the radial amplitudes Fl1,l2,m1,m2 (k1,k2) are evaluated
along a hypersphere ρ0 in the (r1,r2) plane just inside the ECS
turning point R0. The radial amplitudes are computed using a
surface-integral formulation that amounts to the integration of
the Wronskian between the scattered wave decomposition of

the full solution ψl1m1,l2m2 (r1,r2) and the partial-wave testing
functions [2,3,17]:

Fl1,l2,m1,m2 (k1,k2)

= ρ0

2

∫ π/2

0

[
ϕ

k1
l1

(r1)ϕk2
l2

(r2)
∂

∂ρ
ψl1m1,l2m2 (r1,r2) (23)

−ψl1m1,l2m2 (r1,r2)
∂

∂ρ
ϕ

k1
l1

(r1)ϕk2
l2

(r2)

] ∣∣∣∣
ρ=ρ0

dα. (24)

C. Definition of the cross sections from the radial amplitudes

The triply-differential cross section (TDCS) for double
photoionization is computed from the amplitudes in Eq. (21)
by

d3σ

dE1d�1d�2
= 4π2ω

c
k1k2|f (k1,k2)|2, (25)

in the length gauge. Integration of the TDCS over the angles
�1 and �2 of the electrons yields the singly differential cross
section (SDCS) which describes the cross section as a function
of the energy sharing E1 + E2 = E alone. This is given simply
by

dσ

dE1
= 4π2ω

c
k1k2

(
2

π

)2 ∑
l1m1

∑
l2m2

|Fl1,l2,m1,m2 (k1,k2)|2. (26)

With this definition of the SDCS, the total integrated cross
section for double photoionization at photon energy ω with
excess energy E = ω + E0 is

σ =
∫ E

0

dσ

dE1
dE1. (27)

Since the SDCS is symmetric about E/2, previous experi-
mental and theoretical treatments have often scaled the SDCS
according to

dσ̃

dE1
= 2

dσ

dE1
, (28)

so that the total DPI cross section is computed by integrating
the scaled cross section over half the available energy range:

σ =
∫ E/2

0

dσ̃

dE1
dE1. (29)

To compare with the previous theoretical calculations on
beryllium, we continue to use the latter definition of the SDCS
here.

III. DOUBLE PHOTOIONIZATION OF BERYLLIUM

A. Computational details

The driven Schrödinger equation in Eq. (1) was solved with
a radial grid using 15th order DVR with real FEM boundaries
at 2.0, 7.0, 12.0, 20.0, 30.0, and 40.0 bohr, followed by two
complex finite elements with the end of the grid located
at r = 70.0 bohr. The ECS rotation angle in Eq. (2) was
30.0◦. The atomic s-type orbitals used in the construction and
projection of the 1s orbital, as outlined in Sec. II A, were built
using DVR points only from the first two elements (i.e., up to
r = 7.0 bohr). To construct the Be ground state, we used all
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radial grid points out to r = 20.0 bohr, along with an angular
basis consisting of all lm pairs for both electrons consistent
with the 1S symmetry of the initial state up through lmax = 7.
With these parameters, the double-ionization potential of
ground-state beryllium is calculated here to be 1.007 90 atomic
units (a.u.), compared to the calculated value of 1.011 80 a.u.
[18,19]. For the final state 1P continuum, we of course use the
full ECS grid. To connect the final state with the bound state
via the dipole operator, lmax = 8 was chosen for the final 1P

continuum.

B. Convergence tests

Convergence data for various parameters of the beryllium
DPI calculation is presented in Fig. 2. The TDCS plotted in
these figures shows the cross section for a particular energy
sharing with one electron fixed as the other is varied in the plane
defined by the fixed electron and the polarization vector. In
Fig. 2, the fixed electron energy and direction are E1 = 30 eV
and θ1 = 20◦, respectively. All angles are measured relative to
the linear polarization direction of the photon.

The upper-left panel of Fig. 2 shows convergence with
respect to the angular basis. The cross sections appear to be
converged with lmax = 7, being graphically indistinguishable
from the lmax = 8 results. The upper-right panel shows
the gauge dependence of the calculated cross sections. We
note that the height of the dominant peak varies by a few
percent between the length and velocity gauges. This differs
from our earlier calculations on helium, which gave identical
results in length, velocity, and acceleration gauges [17]. The
small differences seen here are due to the emphasis that a
particular gauge selection places on the inner region of the
wave function, and the fact the core electrons are restricted
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FIG. 2. (Color online) Convergence tests for DPI of beryllium.
The TDCS above were calculated with one outgoing electron
fixed with 65% energy sharing of 20-eV available excess energy
at the angle θ1 = 20◦. Clockwise from upper-left panel shows
(a) convergence with respect to the angular expansion basis lmax,
(b) gauge representation of the dipole operator, (d) size of the purely
real ECS radial grid R0, and (c) extraction radius ρ for evaluation of
the DPI partial-wave amplitudes. Cross sections are in units of barns
(b) per eV per steradian (sr); 1 b = 10−24 cm2. R0 and ρ are in units
of a0; 1 a0 = 0.529 × 10−8 cm.

to doubly occupy the same orbital. Calculations performed
with model potentials [9–11], which do not represent the
short-range dynamics near the nucleus with any fidelity, show a
much larger gauge dependence in the calculated cross sections.
Evidently, our particular representation of the core-valence
interaction impacts the results only slightly. For consistency
with comparisons to other theoretical calculations of DPI from
beryllium, all results subsequently presented are shown in the
length gauge.

The lower-left panel of Fig. 2 shows that the calculated
TDCS does not depend on the location of the arc ρ along which
the partial wave amplitudes in Eq. (22) are extracted. The
lower-right panel also shows that the cross sections computed
do not vary as the size of the radial grid is increased by
extending the ECS turning point R0. Taken together, these
panels indicate that a suitable radial and angular basis has been
selected and produces results that do not change, thus signaling
convergence of the results with respect to the parameters of
the calculation.

C. Total cross section

Most of the data in the literature for DPI of beryllium
concerns the integral cross section. Figure 3 presents much of
the existing theoretical and experimental data. Present results
(stars) are shown along with fitted RMPS results [13] (solid
curve), CCC results [9] (solid circles), TDCC results [10]
(solid squares), B-spline results [12] (solid triangles), and
experimental results [16] (solid diamonds). For clarity, results
calculated by the HRM-SOW method [11] in various gauges
are not shown, but generally agree with these results, differing
only by slightly larger magnitudes closer to threshold as has
been observed before [20]. Overall agreement between the
different theoretical treatments and between theory and the few
experimental values is good. The data indicates that the
maximum in the cross section occurs in the range of ∼12 eV
above the DPI threshold. The results calculated in the present
work agree very well with the calculation of Laulan and
Bachau [12] over the energy range above the maximum in
the cross section, differing most on the rising shoulder of the
cross section near 5 eV.

D. SDCS results at 20-eV above threshold

The single differential cross section (SDCS) for DPI of
beryllium at 20-eV above threshold is shown in Fig. 4 . Also
displayed are SDCS calculations from TDCC [10] and HRM-
SOW [11] treatments, both calculated in the length gauge. The
present results are in better agreement with the TDCC results,
differing only in the depth of the “smile” in the cross section at
equal energy sharing. In contrast to the present results and to
the TDCC results, the HRM-SOW calculation gives an SDCS
that is relatively flat.

E. TDCS results at 20-eV above threshold

For the triply differential cross sections that are presented
in the following section, we compare our length gauge results
directly with TDCC results calculated in the same gauge [10].
We note that length-gauge results from the HRM-SOW study
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FIG. 3. (Color online) Total DPI cross section from beryllium
at various energies. Stars give the present results, the solid curve
is a polynomial fit to RMPS calculation [13] of Griffin et al., solid
circles are the CCC results of Kheifets and Bray [9], solid squares
are the TDCC results of Colgan and Pindzola [10], solid triangles are
theB-spline results of Laulan and Bachau [12], and solid diamonds
with error bars are the experimental measurements of Wehlitz et al.
[16]. 1 kb = 10−21 cm2.

[11], while close in shape to the present results, are generally
10%–20% higher at the major peaks.

Figure 5 shows TDCS at 20-eV excess photon energy for
equal energy sharing between the ejected electrons. This case
represents the highest degree of electron correlation in the
final state. Each of the panels displays the TDCS for a fixed
direction of one of the electrons θ1 = 0◦, 30◦, 60◦, and 90◦,
with all angles measured relative to the linear polarization
direction and in the same plane. The angular distributions that
result for DPI of beryllium bear a remarkable similarity to
those observed for helium, both showing a similar pattern in
the location and relative heights of the major and minor peaks,
indicating that the gross features of the angular patters arise
mostly as a consequence of the atomic state symmetry [21].
The relative widths of the TDCS peaks in He and Be, however,
show considerable differences, the latter being considerably
narrower. It has been argued [9,11] that these differences can
be related to the stronger effect of initial state electronic cor-
relations in the case of beryllium, as reflected in the behavior
of the parametrized gerade component of the DPI amplitudes
for the two systems [22]. An alternative explanation has also
been given [23], which states in essence that the strength
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FIG. 4. (Color online) Single differential cross section (SDCS)
results for DPI of beryllium at 20 eV excess photon energy. The solid
curve gives the present results, the dashed curve shows the results of
Colgan and Pindzola [10], the dotted curve shows the HRM-SOW
results of Citrini et al. [11].

of the angular correlation in DPI comes primarily from the
momentum distribution of the corresponding orbital of the
singly ionized target, which is considerably narrower for
the 2s orbital in Be+ than for the 1s orbital in He+.

The present results are seen to agree very well with the
TDCC results, both in magnitude and in the angular distri-
bution profile. Furthermore, both theoretical results exhibit
the signature of a parity selection rule whose consequence
at equal energy sharing prohibits the electrons from being
ejected back-to-back [24], as can be seen in each of the
four panels of Fig. 5. It is noteworthy that the length gauge
results from both studies agree almost exactly despite different
representations of the valence-core interaction, indicating
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FIG. 5. (Color online) Triply differential cross section (TDCS)
results for DPI of beryllium at 20-eV excess photon energy. The
electrons share equal amounts of energy E1 = E2 = 10 eV. Each of
the panels shows a different fixed value of the direction of the first
electron θ1. The solid curve shows the present results and the dashed
curve shows the results of Colgan and Pindzola [10].
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as the energy sharing allocated to the first electron is varied from
E1 = 5% in the upper-left panel through E1 = 95% in the lower-right
panel. The solid curve shows the present results, whereas the dashed
curve gives the results of Colgan and Pindzola [10].

that at this excess photon energy the dynamics of double
photoionization are mostly dominated by the accuracy of the
2s orbital in the valence region and not over the range of the
1s orbital.

Figure 6 shows TDCS results at 15%, 50%, and 85%
energy sharing, with the fixed electron aligned with the photon
polarization direction. There is again excellent agreement with
the TDCC results. Furthermore, the cross sections again bear
a striking similarity to DPI from helium considered under
similar conditions.

The final set of results displayed in Fig. 7 shows the TDCS
for nine energy sharings when the angle of one electron is fixed
at θ1 = 30◦. Once again, the angular distributions and relative
peak heights of the cross sections are very similar to those for
helium DPI. Agreement with the TDCC results is again very
good, with only small differences visible in the maximum peak
heights at the energy-sharing extremes. The best agreement
occurs at equal energy sharing, similar to the results in Fig. 6.

IV. CONCLUSIONS

The triply differential, singly differential, and integral cross
sections for double photoionization from beryllium presented
here agree very well with those previously published [9–13].
The results indicate that beryllium DPI produces angular
distributions and relative cross section magnitudes that are
quite similar to those for helium DPI at the same excess
photon energy.

Comparison with the results of other theoretical studies that
employed model potentials to replace the core electrons shows
that the calculated cross sections are similar, provided the
length gauge is used in the comparison. This further supports
the notion that the core and valence electrons are truly distinct
with correlation between the inner and outer shells being
negligible. Thus, DPI from the valence shell proceeds much
like in helium.

While the differential DPI cross sections from the ground-
states of He and Be are found to be very similar, one expects
to see much bigger differences in the cross sections when
starting from excited states. For example, in the case of the 1,3P
states, the two valence electrons in Be have the same principal
quantum number, a similar radial extent, and are thus more
strongly correlated than the 1s and 2p electrons in the 1,3P
states of helium. Moreover, as shown in a recent experiment
[25] on atomic lithium, the particular symmetry of the target
initial state can profoundly impact the consequences of double
photoionization. These considerations offer new opportunities
to study DPI from non-spherical atomic targets with the robust
methods presented here. Work on DPI from excited Be is
underway and will be report in a future publication.
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