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We study the possibility for generating a new type of spin-orbit coupling for the center-of-mass motion of cold
atoms, using laser beams that resonantly couple N atomic internal ground states to an extra state. After a general
analysis of the scheme, we concentrate on the tetrapod setup (N = 4) where the atomic state can be described by
a three-component spinor, evolving under the action of a Rashba-Dresselhaus-type spin-orbit coupling for a spin
1 particle. We illustrate a consequence of this coupling by studying the negative refraction of atoms at a potential
step and show that the amplitude of the refracted beam is significantly increased in comparison to the known case
of spin 1/2 Rashba-Dresselhaus coupling. Finally, we explore a possible implementation of this tetrapod setup,
using stimulated Raman couplings between Zeeman sublevels of the ground state of alkali-metal atoms.
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I. INTRODUCTION

The electron’s spin degree of freedom plays a key role
in the emerging area of semiconductor spintronics [1–3]. A
first scheme for a semiconductor device is the spin field-effect
Datta-Das transistor (DDT). It was proposed 20 years ago [4]
and implemented recently [5]. Atomic and polaritonic analogs
of the electron spin transistor have also been suggested [6,7].
An important ingredient of the DDT is the spin-orbit coupling
of the Rashba [8–10] or Dresselhaus [11,12] types. This
Rashba-Dresselhaus (RD) coupling scheme is described by
a vector potential which can be made proportional to the
spin-1/2 operator of a particle within a plane [13]. It applies
to electrons [3,9,10] or atoms with two relevant internal
states [14–22].

In the case of atoms, the spin-orbit coupling can be gener-
ated using two counterpropagating light beams [17–19,22] (or
two standing waves [16,20,21]) and a third beam propagating
in an orthogonal direction, the beams being coupled to the
atoms in a tripod scheme [15,23,24]. The tripod atoms have two
degenerate internal dressed states known as dark states, which
are immune to atom-light coupling. The center-of-mass motion
of the dark-state atoms is described by a two-component spinor
and is equivalent to the motion of a spin-1/2 particle with
spin-orbit coupling [16–22] of the RD type.

In the present article we investigate the possibility to
generalize the RD spin-orbit coupling scheme to spins
larger than 1/2. We show that this can be achieved using
cold atoms with more than two internal dark states. We
start our analysis with the general scheme in which N

laser beams couple N atomic internal ground states to
a common excited state, thus forming the N -pod setup
shown in Fig. 1. In the (N + 1)-dimensional Hilbert space,
we identify N − 1 dark states, that is, zero-energy eigen-
states of the atom-light Hamiltonian that are superpositions
of the N ground states and are immune to atom-light
coupling.

Subsequently, we analyze the tetrapod case (N = 4) for
which the center-of-mass motion of the dark-state atoms is
described by a three-component spinor and thus corresponds
to the motion of a spin-1 particle. We show that the resulting
spin-orbit coupling can be made of the RD type and yields three

cylindrically symmetric dispersion branches. Two of them are
similar to those for the familiar RD spin-1/2 Hamiltonian, so
the atom can exhibit the well-known quasirelativistic behavior
[18,20] for small wave vectors. Furthermore, there is an extra
branch with a flat dispersion around zero momentum. The
formation of the latter branch leads to interesting phenomena,
such as a possibility to have a negative refraction at a potential
step, characterized by a larger amplitude as compared to the
spin-1/2 case.

Finally, we explore a possible implementation of the tetra-
pod scheme for alkali-metal atoms using Raman transitions.
To avoid a strong heating due to spontaneous emission, all
the states forming the tetrapod scheme are chosen among the
Zeeman sublevels of the atomic ground state and are coupled
by far-detuned Raman lasers beams.

II. THE N-POD SCHEME

A. Atomic Hamiltonian

We are interested in the center-of-mass motion of atoms in
the field of several light beams. The atoms are characterized by
N internal ground states |1〉, |2〉, . . . , |N〉, which are resonantly
coupled to an extra state |0〉 by laser beams. This provides the
N -pod configuration shown in Fig. 1. Note that the state |0〉
does not necessarily represent an electronic excited level; it can
be a sublevel of the atomic ground state coupled to the states
|1〉, |2〉, . . . , |N〉 via stimulated Raman transitions. A more
detailed discussion on practical implementation is presented
in the Sec. VIII.

The Hamiltonian describing the motion of an atom in the
presence of the light beams is

H0 = p2

2m
+ V0 + V1, (1)

where m is the atomic mass and p = −ih̄∇ the atomic
momentum operator. The terms V0 and V1 describe the atom-
light interaction in the N -pod configuration and a possible
additional external potential, respectively. We assume for
simplicity that all couplings |j 〉 ↔ |0〉, j = 1, . . . ,N are
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FIG. 1. N -pod configuration. An atomic state |0〉 is coupled to N

different atomic states |j〉, j = 1, . . . ,N by N resonant laser fields.

resonant, so that V0 reads using the interaction representation
and the rotating wave approximation

V0 = h̄

N∑
j=1

�j (r)|0〉〈j | + H.c., (2)

where �j is the Rabi frequency that couples the internal state
|j 〉 to the common state |0〉, with j = 1,2, . . . ,N . The coupling
V0 can be rewritten as

V0 = h̄�(r)[|0〉〈B(r)| + |B(r)〉〈0|], (3)

with

|B〉 = 1

�

N∑
j=1

�∗
j |j 〉, �2 =

N∑
j=1

|�j |2. (4)

Here |B〉 is the so-called bright (coupled) state and � is the
total Rabi frequency.

The diagonalization of the atom-light interaction potential
V0 is straightforward:

(a) The coupling between the bright state |B〉 and the state
|0〉 with a strength equal to the Rabi frequency � in Eq. (3)
gives rise to the two eigenstates

|±〉 = (|B〉 ± |0〉)/
√

2, (5)

with energies ±h̄�.
(b) The remaining orthogonal (N − 1)-dimensional sub-

space corresponds to dark states. We denote |Dn〉, n =
1, . . . ,N − 1 an orthonormal basis of this subspace. All
dark states are eigenstates of the Hamiltonian Ĥ0 with zero
eigenenergy: Ĥ0|Dn〉 = 0. They are orthogonal to the bright
state and to the state |0〉: 〈B|Dn〉 = 〈0|Dn〉 = 0.

Although the eigenenergies of the dark states are position-
independent, the states |Dn〉 depend on the atomic position
through the spatial variation of the Rabi frequencies �j . This
leads to the appearance of the gauge potentials to be considered
next.

B. Adiabatic motion of dark-state atoms

We now suppose that the atoms are prepared in the dark-
state subspace, and that they move sufficiently slowly to remain
in this manifold. This adiabatic approximation is justified if
the light fields are strong enough, so that the energy difference
±h̄� between the dark-state manifold and the other eigenstates
|±〉 of V0 is large compared to the detuning due to Doppler

shifts. The atomic state-vector |�〉 can then be expanded on
the dark-state basis

|�〉 =
N−1∑
j=1

�j (r)|Dj (r)〉, (6)

where �j (r) is the wave function for the center-of-mass motion
of the atom in the j th dark state. The atomic center-of-mass
motion is described by an (N − 1)-component wave function

� =
⎛
⎝ �1

. . .

�N−1

⎞
⎠ , (7)

obeying the Schrödinger equation

ih̄
∂

∂t
� = H�, (8)

with the Hamiltonian

H = 1

2m
(−ih̄∇ − A)2 + � + V. (9)

The potentials governing the atomic center-of-mass motion
A, �, and V are (N − 1) × (N − 1) matrices. Here A and
� are the geometric potentials that emerge due to the spatial
dependence of the atomic dark states [15,25–29]. The matrix
A(r) represents a non-Abelian vector potential, with the matrix
elements

An,m = ih̄〈Dn(r)|∇Dm(r)〉, n,m = 1, . . . ,N − 1. (10)

The matrix �(r) is an effective scalar potential known as the
Born-Huang potential. It can be expressed through the matrix
elements of the vector potential between the dark states and
the bright state |B〉 ≡ |D0〉:

�n,m = 1

2m
An,0 · A0,m, n,m = 1, . . . ,N − 1. (11)

The matrix V (r) represents the restriction of V1(r) to the dark
state subspace. For simplicity we assume in the following
that (i) the matrix elements of V1 between the dark-state
manifold and the states |B〉 or |0〉 are negligible, so that V1

cannot cause any significant departure of atoms from the dark
state manifold; (ii) V is proportional to the identity matrix in
the dark-state subspace, so that it does not break the gauge
symmetry of (A,�). For the particular case of alkali-metal
atoms, this occurs when the trapping is provided by far-detuned
laser beams. The confinement potential is then the same for all
sublevels of the electronic ground state, in particular for the
states |j 〉 (j = 1, . . . ,N) considered here.

The non-Abelian vector potential A provides a curvature
(or effective “magnetic” field)

B = ∇ × A + 1

ih̄
A × A. (12)

The first term represents the usual curl. Note that the second
term A × A does not vanish in general, since the Cartesian
components of the vector potential A do not necessarily
commute (i.e., the vector potential is non-Abelian). Therefore,
in contrast to the Abelian case, even a constant vector potential
can produce a nonzero curvature and thus provide nontrivial
topological effects, leading, for example, to unusual dispersion
curves.
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III. EFFECTIVE FIELDS GENERATED BY PLANE-WAVE
LASER BEAMS

A. Dark states and gauge potentials

From now on we focus on the case where the laser beams
represent plane running waves characterized by wave vectors
kj , j = 1, . . . ,N . We suppose that the N Rabi frequencies
have equal amplitudes and read

�j = 1√
N

�eikj ·r, j = 1,2, . . . ,N. (13)

At this stage the directions of the wave vectors kj are still
arbitrary; we will address some specific geometries in Secs. V
and VI.

A convenient orthogonal set of N − 1 normalized dark
states is

|Dn〉 = 1√
N

N∑
j=1

|j 〉ei2πjn/N−ikj ·r, (14)

with n = 1,2, . . . ,N − 1. Note that the bright state given by
Eqs. (4) and (13) has the form of Eq. (14) with n = 0, so we
will use in the following the notation |D0〉 ≡ |B〉.

Equations (10) and (14) provide the matrix elements of the
vector potential

An,m = h̄

N

N∑
j=1

kj e
i2πj (m−n)/N . (15)

It is evident that the vector potential An,m depends only on the
difference n − m, that is, An,m = An−m,0.

Since the vector potential given by Eq. (15) is constant in
space, the effective magnetic field (12) simplifies to ih̄B =
A × A. Using Eq. (15), it can be expressed in terms of the
off-diagonal matrix elements of the vector potential An,0 and
A0,m:

Bn,m = i

h̄
An,0 × A0,m. (16)

B. Vector potential and angular momentum

We now address the following question: Can the vector
potential A be made proportional to a three-dimensional (3D)
angular momentum operator J, that is, A = γ J, where γ

is a constant? If the answer was positive, this would allow
one to achieve a three-dimensional RD-type coupling. This
would be formally similar to the effective spin-orbit interaction
discussed in [30], arising from non-Abelian gauge fields in
molecular physics. However, as we see now, one cannot use
the present scheme to achieve A ∝ J.

The angular momentum operator is known to obey the
following relations:

J × J = ih̄J. (17)

If A = γ J, the cross product of the vector potential should be
proportional to the vector potential itself: γ A × A = ih̄A or
simply γ B = A. Using Eq. (16), the last relationship would
lead to

γ An,0 × A∗
m,0 = −ih̄An−m,0, n,m = 1, . . . ,N − 1. (18)

Multiplying Eq. (18) by A∗
m,0, the left-hand side of the resultant

equation is zero. Thus, one arrives at

A∗
m,0 · An−m,0 = 0. (19)

Equation (19) should hold for all possible values of n and
m. In particular, by taking m = 1 and n = 2, one finds A∗

1,0 ·
A1,0 = 0. This equation can be fulfilled only if A1,0 = 0. Then
by taking m = 1, the relationship (18) yields that An−1,0 =
An+p,p+1 = 0 for integer n and p. This means that the vector
potential A = γ J should be identically equal to zero.

In this way, we have proved that when using the N -pod
scheme with plane waves of equal amplitudes it is not possible
to generate a nonzero vector potential which is proportional
to the 3D angular momentum operator J. In other words, it
is not possible to produce a 3D spin-orbit coupling of the
RD type using the N -pod scheme. Yet one can get a two-
dimensional (2D) RD coupling by means of the N -pod scheme.
This includes not only the usual spin-1/2 RD coupling but also
a generalized 2D RD coupling for the spin-1 case, as we shall
see later on.

IV. PLANE MATTER-WAVE SOLUTIONS

We suppose in the following that the external potential V

is uniform in space. In this case the Schrödinger equation (8)
has plane-wave solutions:

�k(r,t) = �ke
ik·r−ωkt , (20)

where ωk is an eigenfrequency and �k is a k-dependent spinor:

�k =
⎛
⎝ �1,k

. . .

�(N−1),k

⎞
⎠ . (21)

Note that the direction of the wave vector k is arbitrary and it
is not related to the wave vectors of the light beams kj .

The k-dependent spinor �k obeys the stationary
Schrödinger equation

Hk�k = h̄ωk�k,

with the k-dependent Hamiltonian

Hk = h̄2

2m
k2 − h̄

m
A · k + 1

2m
A2 + � + V. (22)

Exploiting Eqs. (11) and (15), the scalar term A2/2m + �

takes the form(
1

2m
A2 + �

)
n,m

= h̄2

2m

1

N

N∑
j=1

k2
j e

i 2π
N

(m−n)j . (23)

If the wave vectors of all the Rabi frequencies have the same
modulus k2

j = 2κ2, the term

1

2m
A2 + � = h̄2κ2

m
Î (24)

is proportional to the unit matrix Î for any arrangement
of the wave vectors (both planar and 3D). In this case the
Hamiltonian (22) simplifies to

Hk = h̄

2m
(h̄k2 − 2A · k + 2h̄κ2) + V. (25)
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If the external trapping potential V is proportional to the unit
matrix, the eigenvectors �

β

k of the Hamiltonian Hk are also
the eigenvectors of the operator Ak = A · k/k representing the
projection of the vector potential along the wave vector,

Ak�
β

k = −h̄κβ�
β

k , (26)

where the dimensionless parameter β ≡ βk depends generally
on the wave vector k. The corresponding eigenvalues of the
Hamiltonian Hk are

h̄ω
β

k = h̄2

2m
[(k + βκ)2 + (2 − β2)κ2] + V. (27)

For k = 0 all the eigenenergies h̄ω
β

k are equal and do
not depend on the branch parameter β. Consequently, all
dispersion branches merge to ω

β

0 ≡ ω0 at the origin where
k = 0. To find the eigenstates and the eigenenergies for k 	= 0,
one needs to specify the arrangement of the wave vectors kj .

V. PLANAR GEOMETRY

A. Wave vectors on a regular polygon

Let us analyze a situation where the wave vectors kj are
situated in a plane and form a regular polygon

kj =
√

2κ[−(cos αj )ex + (sin αj )ey] (28)

= −κ(eiαj e+ + e−iαj e−), (29)

with e± = 1√
2
(ex ± iey), where αj = 2πj/N is the angle

between the wave vector and the x axis. The scalar and vector
potentials, Eqs. (11) and (15), take the form

�n,m = h̄2κ2

2m
(δm,1δn,1 + δm,N−1δn,N−1), (30)

An,m = −h̄κ
∑
±

e±δn,m±1. (31)

The vector potential is thus a tridiagonal matrix whose
elements are proportional to ex ± iey , whereas the scalar
potential �n,m is a diagonal matrix with nonzero elements
only for n = m = 1 or n = m = N − 1.

Note that the matrices Ax and Ay , are proportional to the x

and y components of the angular momentum operator J only
for the tripod (N = 3) and tetrapod (N = 4) schemes. In these
cases the scalar potential is proportional to J 2

z .
The projection of An,m along the wave vector is

(Ak)n,m = − h̄κ√
2

(δn,m+1e
iϕ + δn,m−1e

−iϕ), (32)

where ϕ is the angle between the wave vector k and the x axis.
The eigenvectors of this operator are

�
β

k =
√

2

N

⎛
⎜⎜⎝

sin
(

πq

N

)
sin

(
2πq

N

)
eiϕ

· · ·
sin

[
(N − 1)πq

N

]
ei(N−2)ϕ

⎞
⎟⎟⎠ , (33)

with q = 1, . . . N − 1. The corresponding eigenvalues are
given by Eq. (26) with

β =
√

2 cos
(πq

N

)
. (34)

FIG. 2. (Color online) Planar arrangement of laser beams for
tripod (a) and tetrapod (b) setups.

It is to be emphasized that the dimensionless parameter β does
not depend on k for this particular geometry. The vectors �

β

k

represent eigenstates of the Hamiltonian with eigenenergies ω
β

k

given by Eqs. (27) and (34). This provides N − 1 dispersion
branches.

B. Tripod setup

Consider first the tripod setup (N = 3) in which the
wave vectors kj form an equilateral triangle [Fig. 2(a)]. The
parameter β featured in Eqs. (26) and (34) then takes the values
h̄β/

√
2 = ±h̄/2, representing the eigenvalues of the projection

of a spin 1/2 on a given axis. In such a situation the operator
A is related to the spin-1/2 operator h̄σ⊥, providing the RD
coupling along the xy plane as in the previous studies [16–22]:

A = −h̄κσ⊥/
√

2. (35)

It is noteworthy that the present setup produces a cylindri-
cally symmetric spin-orbit coupling in a more straightfor-
ward manner than the previously suggested tripod schemes.
Those schemes involved two counterpropagating light beams
[17–19,22] (or two standing waves [16,20,21]) and a third
beam propagating in an orthogonal direction. Consequently,
one needed to add a detuning potential and make the ampli-
tudes of the Rabi frequencies asymmetric in order to have
dispersion curves of the RD type, with the proper cylindrical
symmetry [16–22]. On the contrary, for the present regular
polygon arrangement of wave vectors, the dispersion relation
is naturally symmetric as long as the amplitudes of all four
Rabi frequencies are equal.

C. Tetrapod setup

For N = 4 one arrives at the tetrapod setup involving two
pairs of counterpropagating laser fields shown in Fig. 2(b). In
this case the vector potential reads

A = h̄κ√
2

⎛
⎝ 0 −ex + iey 0

−ex − iey 0 −ex + iey

0 −ex − iey 0

⎞
⎠ . (36)

The possible values for the parameter β featured in Eq. (26) are
h̄β = 0, ± h̄, representing the eigenvalues of the component
of a spin 1 along a given axis. Consequently, the operator A
is proportional to the projection J⊥ of a spin 1 operator along
the xy plane:

A = −κJ⊥, J⊥ = Jxex + Jyey. (37)
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FIG. 3. (Color online) Dispersion curves for the tetrapod scheme
calculated using Eq. (40) for V = 0. Here ω0 = h̄κ2/m.

The scalar potential can be represented in terms of the
z component of the spin operator

� = h̄2κ2

2m
Jz. (38)

The eigenstates and the eigenenergies of the Hamiltonian
are now

�±1
k = 1

2

⎛
⎜⎝

1

±√
2eiα

e2iα

⎞
⎟⎠ , �0

k = 1√
2

⎛
⎜⎝

−1

0

e2iα

⎞
⎟⎠ , (39)

and

h̄ω
β

k = h̄2

2m
(k2 + 2κkβ + 2κ2) + V, β = 0, ± 1. (40)

For β = ±1 the dispersion curves shown in Fig. 3 are
analogous to those of the spin-1/2 RD model. An additional
dispersion curve with β = 0 represents a parabola centered at
k = 0.

The dispersion curve with β = −1 has its minimum at
h̄ω = h̄2κ2/2m, whereas the other two dispersion branches
have minima at the double energy h̄ω = h̄2κ2/m (for V =
0). Therefore, all dispersion curves have a strictly positive
minimum energy. This nonzero minimum originates from
the micromotion of the atom in the light field, caused by
nonadiabatic transitions between the dark and the bright states
[31,32]. The associated kinetic energy gives rise to the scalar
potential given by Eq. (30), which has a nonzero contribution
even when acting on the dark states.

Finally, we note an important difference in the “topology”
of the eigenfunctions for the RD spin-1/2 and spin-1 problems,
even thought the β = ±1 branches have the same dispersion
in the two cases: The wave functions �

β

k exhibit a π Berry’s
phase in k space in the spin-1/2 case, whereas this Berry’s
phase is absent for the spin 1.

VI. TETRAHEDRON GEOMETRY

In this section we present an example of a nonplanar
setup, which has some advantages with respect to the planar
configuration investigated in the previous section, because it

leads to a simpler scalar potential. We consider again the
tetrapod setup (N = 4) with wave vectors kj arranged in a
regular tetrahedron geometry:

k̂j · k̂j ′ = − 1
3 , j 	= j ′, (41)

where k̂j = kj /kj is a unit vector. More precisely, we choose

k1,3 = κ ′(±ey

√
2 − ez), k2,4 = κ ′(±ex

√
2 + ez). (42)

Using Eq. (15), the vector potential then reads

A = h̄κ ′
√

2

⎛
⎜⎝

0 −ex + iey

√
2ez

−ex − iey 0 −ex + iey√
2ez −ex − iey 0

⎞
⎟⎠ . (43)

For atoms moving in the xy plane the vector potential can
be expressed in terms of a spin-1 operator in the xy plane:
A⊥ = −κ ′J⊥. Hence, we obtain as before a RD-type spin-orbit
coupling for the atomic motion in the xy plane, characterized
by the dispersion relation shown in Fig. 3. Yet we are
now dealing with a 3D problem, so the same dispersion
also characterizes the atomic motion along two other planes
perpendicular to the vectors ex + ey and ex − ey . By making
an atomic lattice along these directions, the atomic tunneling
will be influenced by a spin-1 RD coupling, thus extending the
previous studies of spin-1/2 RD coupling in lattices [33]. This
will be investigated in a separate study.

A distinguished feature of the tetrahedron geometry is that
the scalar potential is proportional to the unit matrix Î :

� = h̄2κ ′2

2m
Î . (44)

Thus, for atoms placed in a 3D lattice, there is no energy
mismatch between different dark states located in adjacent
sites. This contrasts with the planar tetrapod case [Eq. (38)],
where the spin components are likely to get frozen in the lattice
because tunneling matrix elements are normally much smaller
than the atomic recoil energy, which gives the scale for the
scalar potential.

It is noteworthy that the z component of the vector potential
given by Eq. (43) is not proportional to Jz. Hence, one cannot
generate a 3D Hamiltonian with RD-type spin-orbit coupling
for all directions of the atomic motion. This is a particular case
of the general conclusion reached in the Sec. III B.

VII. TRANSMISSION BY A POTENTIAL STEP

A spectacular consequence of spin-orbit RD coupling is
the negative refraction and reflection that occurs when a
matter wave is incident on a potential step. The problem was
investigated for spin-1/2 atoms [18,34] and electrons [35]. In
this case, one can calculate relatively easily the transmission
and reflection of the atomic wave packet. For small wave
vectors of the incident atoms, k � κ , the transmission prob-
ability is close to unity at zero angle of incidence. Here the
parameter κ characterizes the strength of the spin-orbit inter-
action [see Eq. (35)]. This nearly complete transmission is a
manifestation of the Klein paradox appearing also for electron
tunneling in graphene [36]. For a nonzero angle of incidence,
the transmission probability is less than 1 and decreases with
increasing angle. Furthermore, the transmitted matter wave
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experiences negative refraction [18], similar to the case of
electrons in graphene [37].

Particles with a spin larger than 1/2 have additional degrees
of freedom, which modifies the continuity conditions at the
potential step. This can lead to a significant increase of
the transmission probability of atoms, as we show now for
particles submitted to a spin-1 RD coupling.

A. The Hamiltonian

We consider in this section the motion of a particle in the
xy plane described by the Hamiltonian

H = 1

2m
(p̂2 + 2h̄κp̂ · J⊥ + 2h̄2κ2) + V (x), (45)

where J⊥ = Jxex + Jyey is the projection of a spin-1 operator
onto the xy plane. Such a Hamiltonian can be obtained using
the tetrapod setups described in the Secs. V C and VI. The
external potential V (x) is given by the step function along x

V (x) =
{

0, x � 0,

V0, x > 0,
(46)

with V0 > 0. It is convenient to introduce the wave vector
k0 = 2mV0/h̄

2κ characterizing the height of the barrier.
For a constant potential the eigenvalue equation has plane-

wave solutions (20) characterized by the spinor part �β
k

[Eq. (39)]. The corresponding eigenvalues h̄ωβ
k are given

by Eq. (40) with k = √
k2
x + k2

y and are plotted in Fig. 3.
Additionally, there can be evanescent wave solutions localized
in the vicinity of the potential step in the x > 0 region. In that
case we have kx = iq with q > 0, giving

k =
√

k2
y − q2, q2 < k2

y. (47)

For the present problem, only the evanescent wave with β = 0
will play a role,

�0
ky ,q

= c0
ky ,q

⎛
⎜⎝

−1

0
q+ky

q−ky

⎞
⎟⎠ , (48)

where c
β

ky,q
is the normalization factor.

B. Incident waves with β = 1

In this paragraph we restrict our analysis to the case where
the incident atom is prepared in the upper dispersion branch
(β = 1) in the region x < 0. Denoting its wave vector by k,
the incident wave is

�in = �1
keik·r. (49)

The potential step is assumed to be high enough,

k0 > k2/κ + 2k, (50)

so that there can be no propagating transmitted waves with
chirality β = 0 or β = 1 (see Fig. 4). At the same time, to
allow for propagation of plane waves in the region x > 0 for
the lower dispersion branch β = −1, the step height should
not be too large:

k0 < κ + k2/κ + 2k. (51)

FIG. 4. (Color online) Wave numbers of reflected and transmitted
waves and energy conservation at the potential step.

The directions of reflected and transmitted waves are depicted
in Fig. 5. The reflected waves generally contain all three
components,

�refl = r1�
1
k1

eik1·r + r2�
0
k2

eik2·r + r3�
−1
k3

eik3·r, (52)

where k1 = k, k2 = √
k2 + 2κk, and k3 = k + 2κ . The re-

flection angles are π − α, π − α2, and π − α3, with α2 =
arcsin[sin(α)k/k2] and α3 = arcsin[sin(α)k/k3]. The trans-
mitted waves are

�tr = t4�
−1
k4

eik4·r + t5�
−1
k5

eik5·r + t6�
0
k6

eik6·r, (53)

where k4 = κ −
√

(k + κ)2 − k0κ , k5 = κ +√
(k + κ)2 − k0κ , and k6 = k2 + 2κk − k0κ (see Fig. 4).

The first and second transmitted waves experience negative
and positive refraction, respectively, and propagate at the
angles π − α4 and α5, where α4 = arcsin[sin(α)k/k4] and
α5 = arcsin[sin(α)k/k5]. On the other hand, due to the
condition (50), the third transmitted wave with the helicity
β = 0 is an evanescent one along the x axis and thus is
characterized by the wave vector k6 = kyey + iqex , with
ky = k sin α and q = √

k2
y − k2

6. Note that there is no
evanescent transmitted wave in the upper dispersion branch
(β = 1) because it cannot comply with the momentum
conservation along the interface in addition to the energy
conservation.

The multicomponent wave function and its first derivative
in the x direction are required to be continuous at the barrier
(x = 0), providing six equations containing six unknown
coefficients r1, r2, r3, t4, t5, and t6. Of special interest is
the situation where k0 = 4k. In this case the wave number
of the first refracted wave coincides with the wave number of

FIG. 5. (Color online) Reflection and transmission of atoms at a
potential step. In addition, there is an evanescent transmitted wave
with k6 = kyey + iqex .
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the incident wave, k4 = k, so the angle of refraction is equal
to the angle of incidence for the first reflected wave, α4 = α.

The analytical solution for the six coefficients is generally
complicated. It is instructive to obtain approximate solutions
for small wave vectors and small angles of incidence, k � κ

and α � 1. In such a case one can restrict to reflected (52)
and transmitted (53) waves containing only the contributions
of k1, k2, k4, and k6. The transmitted wave with k6 represents
a rapidly decaying evanescent wave characterized by a spinor
component given by Eq. (48) with q 
 ky :

�0
k6

≈ 1√
2

⎛
⎜⎝

−1

0

1

⎞
⎟⎠ . (54)

The continuity of the wave function at x = 0 gives

�1
k + r1�

1
k1

+ r2�
0
k2

eik2·r = t4�
−1
k4

+ a�0
k6

. (55)

In addition, we require continuity of the derivative in the x

direction for the component with β = 0, which is the largest:

k2 cos(π − α2)r2�
0
k2

= iqa�0
k6

. (56)

Here k4 ≈ k0/2 − k and α2 ≈ √
k/2κ sin(α), with k2 = √

2κk

and q ≈ √
κ(k0 − 2k). Using the spinors (39) and (54) one

obtains the following solution to Eqs. (55) and (56):

t4 = 2 cos α

cos α + cos α4
ei(α+α4), (57)

r1 = cos α4 − cos α

cos α + cos α4
ei2α, (58)

r2 =
√

k0 − 2k√
k + i

√
k0/2 − k

cos α tan

(
α + α4

2

)
eiα. (59)

The calculated reflection and transmission coefficients r1 and
t4 obey the probability conservation up to terms of the order
of O(α2):

|r1|2 + cos α4

cos α
|t4|2 ≈ 1. (60)

If the barrier height is such that k0 = 4k, we have α4 = α. In
that case, |t4| ≈ 1 and |r1| ≈ 0, leading to an almost perfect
negative refraction, at the exact opposite refraction angle,
provided k � κ and the angles of incidence are not too large.

Figure 6 presents the comparison of the transmission
probabilities for the spin-1 and spin-1/2 RD coupling using
the exact numerical solutions of the continuity equations at
the boundary x = 0. For the spin-1/2 case the incident wave
is also prepared in the upper dispersion branch. The figure
shows a marked increase in the transmission probability for
small angles of incidence in the case of spin 1. Note that the
transmitted waves experience negative refraction both for the
spin-1 and the spin-1/2 cases.

VIII. IMPLEMENTATION OF THE TETRAPOD SETUP
WITH ALKALI-METAL ATOMS

We now discuss a possible implementation of the tetrapod
scheme. We consider the case of alkali-metal atoms, which are
the most frequently used in current experiments. In order to
avoid a strong heating due to spontaneous emission, we study

 0
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FIG. 6. (Color online) Transmission probability of negatively
refracted atoms at a potential step as a function of the angle of
incidence α for a spin-1 (solid red) and spin-1/2 (dashed green)
systems. The parameters used for the calculation are k/κ = 0.1 and
k0/κ = 0.4 for both systems.

the case where the state |0〉 is actually one of the Zeeman
sublevels of the ground state. The states |j 〉 (with j = 1, . . . ,4)
are also Zeeman sublevels of the ground state, and the coupling
between the state |0〉 and a state |j 〉 is provided by a pair of laser
beams that induce a Raman transition under the condition of
the two-photon resonance. The use of Raman transitions in this
context is an extension to the tetrapod case of a recent proposal
[38] to implement a 
-type scheme for the generation of an
effective magnetic field by means of the counterpropagating
laser beams [32,39].

We recall that the electronic ground level nS1/2 of alkali-
metal atoms is split by hyperfine interaction in two sublevels
with angular momenta F = I + 1/2 and F = I − 1/2, where
I is the nuclear spin. We consider in the following the case
I = 3/2 that is relevant for lithium (7Li, n = 2), sodium (23Na,
n = 3), or rubidium (87Rb, n = 5). In order to minimize the
rate of spontaneous emission processes, we restrict to Raman
transitions that are far detuned from the resonance with the
“true” excited states nP1/2 or nP3/2 of the D1 or D2 transitions.
More precisely, the typical one-photon detuning of the beams
involved in the Raman process is chosen much larger than
the hyperfine structure of the excited level nP1/2 or nP3/2

(0.8 GHz for the hyperfine splitting of the level 5P1/2 of
87Rb). At the same time the one-photon detuning should be
smaller than the fine structure splitting, that is, the difference
between the energies of nP1/2 and nP3/2 (7000 GHz for 87Rb).
When the one-photon detuning exceeds the hyperfine splitting,
the nucleus angular momentum does not play any role in
the selection rules that determine the allowed transitions for
photon absorption or emission. For the D1 (D2) transition, the
allowed couplings are the same as between a spin-1/2 ground
level and a spin-1/2 (3/2) excited level. In particular, the only
allowed Raman transitions correspond to a change �mJ = 0
or �mJ = ±1 of the azimuthal quantum number mJ .

A scheme that fulfills the aforementioned constraints is
represented in Figs. 7 and 8. The atomic motion along the z

direction is supposed to be frozen thanks to a trapping potential
mω2

zz
2/2 such that h̄ωz is much larger than the atomic kinetic

energy. The atom is placed in a uniform magnetic field B0

directed along the x direction. The role of this magnetic field
is to allow for a selective Raman excitation between two given
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FIG. 7. Directions of the laser beams used for implementing the
tetrapod coupling scheme with alkali-metal atoms, via stimulated
Raman transitions.

Zeeman sublevels. More precisely, the Larmor frequency ωL =
µBB0/h̄ (µB is the Bohr magneton) is chosen much larger
than the two-photon (Raman) Rabi frequency �. Typically,
we choose ωL/2π on the order of a few MHz (i.e., B0 on the
order of a few Gauss) and �/2π in the range 105 − 106Hz. The
latter choice is sufficient to ensure that the splitting h̄� between
the dark-state manifold and the states |±〉 is large compared
to the two-photon Doppler shift, as required for the adiabatic
approximation to be valid. The state |0〉 is chosen equal to the
|F = 1,mF = 0〉 sublevel and the states |j 〉 with j = 1, . . . ,4
are the |F = 2,mF = ±1〉 and |F = 1,mF = ±1〉 sublevels.
Here the quantization axis is the x axis, parallel to the direction
of the magnetic field B0. As indicated in Fig. 8(a), the transition
between |0〉 and |1〉 ≡ |F = 2,mF = +1〉 is driven by a pair
of laser beams (A,B) with a frequency difference equal to
ωhf + ωL/2, where ωhf is the hyperfine splitting between the
F = 1 and F = 2 manifolds (ωhf/2π is on the order of 7 GHz
for 87Rb). The laser beam A propagates along the y axis (wave
vector key, where ey is a unit vector). It is linearly polarized
along x, so that it carries no angular momentum along the
x axis. The laser beam B propagates along the x axis (wave
vector −kex) and is circularly (σ−) polarized. In the transition
|0〉 → |1〉 the momentum change of the atom is h̄k1 = h̄k(ex +
ey). One can readily check that the transition |0〉 → |1〉 is the
only one that is driven resonantly by this pair of beams, thanks
to the fact that the Landé factors are opposite for the F = 1
and F = 2 manifolds, as one can see in Fig. 8(a). Similarly, the
transition between |0〉 and |3〉 ≡ |F = 2,mF = −1〉 is driven
by a pair of laser beams (A′,B ′) with a frequency difference
equal to ωhf − ωL/2. The beam A′ propagates along y with

FIG. 8. Implementation of the tetrapod scheme for alkali-metal
atoms with two hyperfine levels of angular momentum F = 1 and
F = 2. The laser couplings involved in this scheme correspond to
stimulated Raman transitions between hyperfine states of the ground
atomic level. We choose |0〉 ≡ |F = 1,mF = 0〉. (a) The laser beams
A, A′, B, and B ′ induce the transitions |0〉 → |1〉 ≡ |F = 2,mF = 1〉
and |0〉 → |3〉 ≡ |F = 2,mF = −1〉. (b) The laser beams A′′ and
B ′′ induce the transitions |0〉 → |2〉 ≡ |F = 1,mF = 1〉 and |0〉 →
|4〉 ≡ |F = 1,mF = −1〉.

wave vector −key and is linearly polarized along x. The beam
B ′ propagates along x with wave vector kex and is circularly
(σ+) polarized. The atomic momentum change in the transition
|0〉 → |3〉 is h̄k3 = −h̄k1. The difference in the frequencies of
A and A′ is chosen large enough so that no transition is driven
with a significant probability by the pairs of beams (A,B ′)
and (A′,B).

The two remaining states of the tetrapod configuration are
|2〉 ≡ |F = 1,mF = +1〉 and |4〉 ≡ |F = 1,mF = −1〉. The
coupling between these states and the state |0〉 is provided
by a single pair of laser beams (A′′,B ′′), as in the recent
experiment [38], in which the 
 (ladder) type coupling was
generated within the Zeeman sublevels of the F = 1 manifold.
The wave vector of A′′ is key and this beam is linearly polarized
along x. The beam B ′′ propagates along x with wave vector
kex and is circularly (σ+) polarized. The frequency difference
between the beam A′′ and B ′′ is ωL/2 so that the pair (A′′,B ′′)
resonantly drives the transition |0〉 → |2〉 with a momentum
transfer h̄k2 = h̄k(ex − ey), and the transition |0〉 → |4〉 with
a momentum transfer h̄k4 = −h̄k2. Note that here again we
take advantage of the different signs of the Landé factors of
the F = 1 and F = 2 manifolds: The pair of beams (A′′,B ′′)
cannot resonantly drive a transition between two sublevels of
the F = 2 manifold [see Fig. 8(b)]. Note also that another
consequence of two-photon processes is a modification of the
energies of the states |j 〉 via the absorption and stimulated
emission of photons in the same laser beam. It can be accounted
for by including these energy shifts in the choice of the
two-photon detunings and, for example, by taking advantage
of the (small) second-order Zeeman shift.

This configuration therefore constitutes a suitable imple-
mentation of the scheme discussed in the first part of this
article. The momentum transfers h̄kj = h̄k(±ex ± ey) form
a square in the xy plane shown in Fig. 2(b) (subject to the
rotation of the coordinate system by 45◦). The intensities of the
various beams can be adjusted so that all Rabi frequencies �j

are equal, once the Clebsch-Gordan coefficients associated to
each Raman transition have been taken into account (note that
the two-photon Rabi frequencies for |0〉 → |2〉 and |0〉 → |4〉
transitions are equal by construction). With a one-photon
detuning of 3 nm, which represents 1/5 of the fine structure
splitting for rubidium atoms, the residual photon scattering
rate is below 1 s−1 for a two-photon Rabi frequency �/(2π ) =
105Hz. The corresponding heating rate is thus small enough to
provide enough time for the investigation of the RD coupling
studied in this article.

IX. CONCLUSIONS

In this article we have explained how to produce a spin-orbit
coupling of the RD type for a spin larger than 1/2. Our scheme
makes use of cold atoms with three or more internal dark
states so that their quasi-spin is equal to or greater than unity.
We have analyzed a general scheme in which N laser beams
couple N atomic internal ground states to an extra state, thus
forming an N -pod setup of light-matter interaction. In this case
the atoms have N − 1 dark states representing superpositions
of the N ground states that are immune to the atom-light
coupling.
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We have analyzed in detail the particular case of the tetrapod
setup (N = 4), in which the center of mass motion of the atoms
in their dark state manifold is described by a three-component
spinor and thus corresponds to the motion of a spin-1 particle.
We have shown that the resulting spin-orbit coupling can be
made of the RD type and yields three cylindrically symmetric
dispersion branches. Two of them are similar to those known
for the familiar RD spin-1/2 Hamiltonian, so the atom can
exhibit a quasirelativistic behavior [18–20] for small wave
vectors. Furthermore, we have shown that there exists an
extra branch with a flat dispersion around zero momentum.
We have studied the modifications that this extra branch
brings to the problem of negative refraction of matter waves
on a potential step and shown that it enhances the negative
refraction probability.

Finally we have discussed a possible implementation of
the tetrapod setup with cold alkali-metal atoms. We have
shown that in order to avoid heating due to spontaneous

emission, it is possible to choose all the states involved in
this tetrapod scheme among the various Zeeman sublevels of
the ground atomic state. All laser couplings are then provided
by stimulated Raman transitions. For rubidium atoms, realistic
parameters yield a residual spontaneous emission rate below
1 s−1, which makes the observation of this spin-orbit coupling
scheme experimentally feasible.
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