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Orientation-dependent stopping power of a degenerate electron gas for slow homonuclear dimers
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We present a theoretical study on the orientation-dependent retarding force experienced by slow homonuclear
dimers moving at arbitrary alignment with the direction of their flight in a three-dimensional degenerate electron
gas of metallic densities. The analytical results are derived within the approximate framework of Brueckner
for elastic scattering of an electron by a system of two auxiliary potentials of short range. The influence of
the screened field of a single constituent of the slowly moving composite projectile on the scattering electron
is modeled by an effective phase shift parameter η in the short-range potential in order to characterize the
real-constituent system coupling due to displacement. The orientation-dependent closed expressions reveal the
dependence of observables on the classical geometry and quantum dynamics. The interplay of wave-interference
and multiple scattering in the orientation-dependent friction is analyzed for realistic sets of the input parameters.
Comparison with experimental data is made and good agreement is found.
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I. INTRODUCTION

The de Broglie wave nature of massive particles, like
an electron, has always been an essential ingredient in the
conceptual development [1,2] and applications of quantum
mechanics. For instance, the description of the outgoing wave
and thus the scattering amplitude in electron scattering off an
atomistic field of single or multicenter character is an important
theoretical challenge [3] of considerable experimental rele-
vance in the area of heavy-particle penetration in condensed
matter [4,5]. The experimentally observable quantities, like
the stopping power of the target material, can be related to
integrated cross sections derived theoretically by considering
the effect of electron-intruder interaction on the scattering of
independent electrons of the solid-state environment.

The present paper is motivated by experimental data
obtained for a carbon target with slow H2

+ and C2
+ projectiles

[6–8]. The low-velocity data show convincing evidence of
reduced stopping, the possibility of which was pointed out
in the perturbative work of Arista for a random situation [9].
Particularly, the intact nature [8] of a carbon dicluster in pene-
tration suggests the possible importance of an almost complete
alignment with the direction of flight. The experimentally
found strong reduction, about 50%, in a carbon dicluster
stopping at low velocities in self-supported foils would fit to a
simple classical picture by using an effective area to represent
one carbon atom behind which the second atom travels in the
shadow in a precisely aligned manner. Here is, therefore, a
real challenge to develop an easily controllable approximation
based on wave mechanics. The knowledge achieved in such a
way could be useful in other, more complex cases [10,11] with
clusters.

The key quantity in such a description of stopping is
the quantum mechanical single-particle scattering amplitude,
F (k,k′), which characterizes the matrix element between
initial (k) and final (k′) electron states in an elastic scattering
(k = k′). In our work we model the condensed matter as
a three-dimensional (3D) degenerate gas of free electrons.
Therefore, it is the fundamental Pauli exclusion principle

which governs the quantum statistical aspect of the many-
body problem and thus prescribes the allowed single-particle
excitations responsible for the irreversible [12] slowing down
process. For the investigated case of slow (v < vF ) intruders,
these allowed one-electron states are characterized by the
kF Fermi wave number. Atomic units, h̄ = me = e2 = 1, are
used in this work. Notice that the collective wake effect [13]
becomes important only at high enough (v > vF ) projectile
velocities.

Our treatment rests on the model of two short-range
potentials, and a so-called effective spherical-wave approx-
imation to derive a complex scattering amplitude [14–16]
in terms of a real, effective phase shift η(k). The value of
this parameter will be fixed by considering the effect of
the potential gradient (force) representing an embedded-atom
displacement [17–20] in an electron gas. Thus in our treatment
via auxiliary short-range potentials, the phase shifts (δl) of the
conventional partial-wave expansion of electron scattering off
a regular static potential field appear in pairs, i.e., we use the
η ≡ (δ0 − δ1) ansatz in the present case. Remarkably, such an
sp-based prescription for an effective (s-like) phase shift is
in a complete agreement with an earlier result [21] based on
muffin-tin potentials in multiple scattering. By our ansatz we
model the effective coupling of constituents of a slowly moving
homonuclear dimer to electrons at the Fermi level beyond the
conventional assignment, δ0 → η, applied routinely to fix the
strength of a static short-range potential.

The rest of the calculation is performed without any further
assumption, for arbitrary alignment of a homonuclear disclus-
ter. In such a way we derived closed analytical expressions for
the friction components which contain the effect and interplay
of interference and multiple scattering. These expressions
show that the modulating influence of multiple scattering
on the outgoing wave of the scattering electron becomes
negligible only asymptotically when (kF d) � 1, where d is
the internuclear distance between dimer constituents.

Notice, in passing, that the underlying two-body scattering
kinematics and the classical two-center geometry of our
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treatment is in complete harmony with earlier [22,23] numeri-
cal works, where an overlapping range (small d) was carefully
treated to model the F (k,k′) key quantity. Unfortunately,
these two-center approximations, applied for H2

+, cannot
reproduce [22] the separated-atom limit of the underlying
methods. Namely, this limit must correspond to two screened
H− in a local density-functional theory, while the two-center
approximation gives two localized electrons in the field of
two (well-separated and screened) protons. Such a theory
cannot describe accurately the dissociation of even the simplest
molecules as was emphasized recently in an insightful work
[24] on the proper physics.

The range is a delicate question. We know from molecular
physics that in H2 and C2 molecules (m) in vacuum the bond
lengths are about dm = 1.40 and dm = 2.35, respectively. The
internuclear distances in vacuum are about di = 2.06 and
di = 2.46, respectively, for singly-ionized (i) molecules. Con-
sequently, in a penetration phenomenon with slow diclusters
small d values are in the nature of a mathematical construct;
indeed the (kF d) products are not small, but we are still
not in an asymptotic limit. The average charge state [25] of
constituents of a singly-ionized dicluster intruder should be
around zero in a screening environment. Since the chemical
radius (R0, beyond which there is one electron) is of the order
of unity [26] or less (∝ Z−1/3), with neutral constituents in
a dimer one gets a conservative (2R0) < d estimation. Our
modeling is, therefore, quite realistic.

Section II is devoted to the theoretical details of our
calculation and the obtained results. These are compared with
motivating data. In Sec. III, we give a predictive summary.

II. THEORY AND RESULTS

The basic expression [22,23] for the magnitude of the
energy loss per unit path (denoted here by S for simplicity) of
a slow (v < vF ) dicluster has the following decomposition in
terms of the parallel (‖) and perpendicular (⊥) transport cross
sections:

S(α) = n0kF v[cos2(α)σ ‖
tr (kF ) + sin2(α)σ⊥

tr (kF )], (1)

where n0 = k3
F /(3π2) is the density of the electron gas in 3D.

In Eq. (1) α is the polar angle between the dimer orientation and
its velocity direction. Notice, that these vectors define a plane
in which two coordinate axes can be introduced. In the random
situation we have for the angle averages: 〈cos2(α)〉 = (1/3)
and 〈sin2(α)〉 = (2/3), in 3D.

The directions of the scattering electron momenta, k and
k′, in the center-of-mass system and in 3D, are not necessarily
in the above-defined plane. This geometrical fact introduces
an azimuthal angle (ϕk) needed for solid-angle integrations;
d�k = dϕk sin θkdθk in 3D, where ϕk ∈ [0,2π ] and θk ∈
[0,π ]. The relevant transport cross sections in 3D are [22]
as follows:

σ
‖
tr (kF ) = 3

4π

∫
d�kF

∫
d�k′

F

(
cos θkF

− cos θk′
F

)
× cos θkF

|F (kF ,k′
F )|2, (2)

σ⊥
tr (kF ) = 3

4π

∫
d�kF

∫
d�k′

F
sin2 θkF

cos2 ϕkF
|F (kF ,k′

F )|2.
(3)

In order to implement the above expressions, we need the
complex scattering amplitude which encodes the effect of
geometry and field on the scattering of the one-electron wave.

In the spirit of our detailed Introduction on the physics of
the problem, we shall use

F (k,k′) = 2b

a2 − b2
cos

[
(k − k′) · d

2

]
− 2a

a2 − b2

× cos

[
(k + k′) · d

2

]
, (4)

following earlier works [14–16] in stationary scattering theory
in 3D. To this equation we have a = eikd/d and b = ik[1 +
cot η(k)], where η(k) is a phase shift parameter [15] introduced
to characterize, via short-range potentials, the effect of an
individual slowly moving atom on electrons at the Fermi level.
Since the geometric factor (a), prescribed by the 3D Green’s
function with outgoing boundary condition, is not zero in
our case because d is finite, the multiple scattering effect on
the electron-wave should have an impact on integrated cross
sections also. A detailed quantification of this impact is the
main goal of our study.

The first step to Eqs. (2) and (3) is to characterize the
flux, i.e., to evaluate the |F (k,k′)|2 quantity, which is an areal
quantity in 3D. In this evaluation [(1/b) ≡ (1/k)eiη sin η] with
the form given by Eq. (4), we found it useful to introduce the
following abbreviations:

A(x,η) = 1

1 + ( sin η

x

)2 − 2 sin η

x
cos(x + η)

, (5)

B(x,η) = 1

1 + ( sin η

x

)2 + 2 sin η

x
cos(x + η)

, (6)

C(x,η) = 1 − ( sin η

x

)2

[
1 − ( sin η

x

)2]2 + [ 2 sin η

x
sin(x + η)

]2 , (7)

where x ≡ kF d is a shorthand. The rest of the calculation
needs only a long but fairly straightforward algebra. Using
k · d = (kd) cos θk also, finally we arrived at

σ
‖
tr (kF )(

4π
/
k2
F

)
sin2 η

= (A + B)
[
1 + 3j 2

0 − (6/x)j0j1
]

+ 4(A − B)[j0 − (3/2x)j1] − 6Cj 2
1 , (8)

σ⊥
tr (kF )(

4π
/
k2
F

)
sin2 η

= (A + B)[1 + (3/x)j0j1]

+ (A − B)[j0 + (3/x)j1], (9)

in which the argument of spherical Bessel functions of the
first kind is x = kF d. The above closed expressions show the
nontrivial interplay of quantum dynamics and geometry in
wave-mechanical electron scattering. They allow a detailed
and easy analysis of the orientation-dependent stopping power,
without uncontrollable steps.

First, we discuss a few limits for the stopping power. With
A = B = C = 1, i.e., without the multiple scattering effect,
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one gets after orientation averaging the simple form of

1

2

〈S〉(
4π

/
k2
F

)
sin2 η

= (n0kF v)
[
1 + j 2

0 (x) − j 2
1 (x)

]
, (10)

derived [27] earlier by performing an angle average in the Born
scattering amplitude (in momentum space) with a ≡ 0. In this
case, as was emphasized [5,23] earlier, the geometric part of
the result is very similar to the one obtained in dielectric theory
with point charges. The minimum of the right-hand side is at
x � 2.74, and thus one has [1 + j 2

0 (x) − j 2
1 (x)] � 0.87.

Notice at this important point that the dielectric (linear-
response) theory corresponds to the first-order Born approx-
imation for the (real) scattering amplitude obtained from the
Fourier transform of a screened scattering potential [9]. On the
other hand, this theory can be formulated as an infinite-order
expansion for the scattering amplitude in terms of Born
phase shifts. Thus the observed strong similarity of the above
right-hand-side form with the final result of a dielectric theory
implies that the proximity effect is described very well with
few leading Bessel functions. This fact suggests to us that one
can use a substitution only in the left-hand-side denominators
with

σtr(kF ) = 4π

k2
F

∞∑
l=0

(l + 1) sin2[δl(kF ) − δl+1(kF )], (11)

the exact transport cross section if the description of the influ-
ence of an individual slow atom requires such a representation
to the magnitude of the stopping power.

Still with A = B = C = 1, the stopping expression for a
completely aligned dicluster has a slightly more complicated
form

1

2

S(α = 0)(
4π/k2

F

)
sin2 η

= (n0kF v)
{
1 + 3

[
j 2

0 (x) − j 2
1 (x)

− (2/x)j0(x)j1(x)
]}

. (12)

In this case the minimum is at x � 2.32, and we have {· · ·} �
0.40 for the geometrical factor. This value is very similar to
the one obtained earlier [28] in linear response (dielectric)
theory for the same geometrical (α = 0) situation with point
charges. This observation gives a further credit to the statement
based on the above averaged form for the proximity effect. The
right-hand-side forms are sensitive only to the leading Bessel
functions, in practice.

It is easy to show by the careful Taylor expansions of
Eqs. (8) and (9) that all of the transport cross sections behave
as

σtr(kF → 0) = 2[4(πd2)]. (13)

This fact is well known from the pioneering work [14]
of Brueckner. The above equation describes, at kF → 0
in quantum mechanics, the case of two hard spheres [3].
Remarkably enough, (4πd2) is close (with d � 2) to the
spin-averaged electron-hydrogen cross section [∼18π (in a2

0)]
of the static-exchange approximation, at the scattering length
(vanishing scattering momentum) limit [29]. We do not
consider the d → 0 case since a so-called united atom
limit of two slow charged constituents (nuclei) is in the
nature of mathematical construct. The realistic value of d is
governed (c.f., the Introduction) by proper physics. It is not

an arbitrarily tunable parameter, especially not to a vanishing
value.

Next, we turn our attention to the realistic range. A
simple inspection of the denominator structures of Eqs. (5)–
(7) heralds that the (kF d + η) argument quantity in the
corresponding trigonometric functions can play an important
role. In fact, the important A(x,η) and B(x,η) modulating
functions can still be close to unity, at not too small x values
and for (kF d + η) � m(π/2), with m = 1,3, . . . . The change
from unity in the C(x,η) function is second order in the
inverse of x. Furthermore, it is this C(x,η) function with a
strong negative character which determines a reduction in
σ

‖
tr (kF ). These details suggest that the estimation obtained

in Eq. (12) for the minimum value could have a broader
validity.

In Fig. 1 we exhibit the illustrative ratios (denoted as
R) of S‖ (solid), S⊥ (dashed), their averages 〈S〉 (dotted),
and the common 2[(4π/k2

F ) sin2 η] quantity. The underlying
computations rest on the analytical, closed expressions given
above. The curves in the three panels are calculated, respec-
tively, with η = (π/4) (top panel), η = (π/2) (middle panel),

0
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0
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1

ℜ

0 1 2 3 4 5

x = k
F 

d

0
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1

FIG. 1. Illustrative dimensionless ratios, R, showing the orienta-
tion dependence of the renormalized stopping power of a degenerate
electron gas for homonuclear diclusters under parallel (‖) (solid
curves), perpendicular (⊥) (dashed curves), and random (dotted
curves) conditions of traversing the target material. The curves are
exhibited for the x ∈ [0,5] range, where x = kF d . The input effective
phase shifts are from the η ∈ [π/4,3π/4] intervallum, in steps of
	(η) = π/4.
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and η = (3π/4) (bottom panel) inputs. They are plotted for
the mathematical range of x ∈ [0,5], where x = kF d is a
dimensionless product.

The motivating experimental (expt) data obtained in carbon
targets (vF = 1.2) by slow (v < vF ) H2

+ projectiles at a ran-
dom condition [5,7], and with C2

+ projectiles [8] at a presum-
ably close-to-parallel (‖) situation, are about Rexpt(H2

+) �
(0.8–0.9) and Rexpt(C2

+) � (0.46–0.56), respectively. The
presumed orientation in traversing reflects the emphasized [8]
intactness of carbon dimers. We note furthermore that for a 1
µg/cm2 carbon foil, the experimentalRexpt(C2

+) is only about
(0.25–0.3). On the other hand, as was carefully [8] stated, this
particular target is not a self-supported one, and some cavities
of several µm in diameter were opened through the whole
thickness of it.

In order to implement our theory for the above-discussed
experimental cases with dimers, we need to specify the
effective phase shift parameter [η ≡ (δ0 − δ1)] and geometrical
factor (d) values. These last factors are considered as about
x � 2.5 for the H2

+ case, and about x � 3 for the C2
+

case. The practical estimation (c.f., the Introduction) for the
η parameters rests on phase shifts values obtained [30] within
the Kohn-Sham orbital version of density-functional theory for
atom embedding in the electron gas of a carbon target. Thus, we
use (δ0 − δ1) � 0.70 for the case of H2

+, and (δ0 − δ1) � 2.30
for the case of C2

+.
Our results are 〈R〉 � 0.82 and R‖ � 0.53 for hydrogen

(random) and carbon (parallel) dimers. The agreement of
these theoretical values with the before-mentioned [6–8]
motivating data is good. More recent data [31,32] obtained
by slow H2

+ under channeling conditions in a gold target
also show reduced stopping powers, i.e., a negative vicinage
effect. The agreement with different data sets supports our
detailed analyses given above in Eqs. (10) and (12) on the
determining role of the first few Bessel functions, and of
our physically motivated sp-based ansatz for an effective
phase shift parameter introduced to characterize the relevant
coupling via auxiliary short-range potentials.

III. SUMMARY

Closed, analytical results are derived for the orientation-
dependent stopping power of a degenerate electron gas for slow
homonuclear diclusters. We characterized the slowly moving
scattering object by two short-range (auxiliary) potentials, and
considered the effect of multiple scattering at an effective
spherical wave level. Using realistic parameters, a good agree-
ment with two different experimental data sets, obtained by
slow H2

+ and C2
+ intruders in a carbon target, is established.

The analytical expressions derived in this work could be useful
for other (for instance, for N2

+ or O2
+ intruders) homonuclear-

dimer–metallic-target cases, in a computer simulation [31]
with slow dimers, and for orientation-dependent [33] friction
coefficients of molecules on surfaces.

Notice, finally, that the box-like character of our R‖ in
the bottom panel is quite intact. Namely, a very similar shape
for the R‖ quantity appears, in the given range of x = kF d,
for about (δ0 − δ1) ≡ η ∈ [2,3] with small alterations. This
character, similarly to the well-known [14] peaked structure
at smaller x, is the result of a nontrivial interplay between
classical geometry and quantum mechanical interference.
We can call the box-like behavior a robust one since the
important η(kF ) parameter is in the above range for embedded
carbon and heavier atoms, at the practically important metallic
densities, i.e., for the range of 0.6 < kF < 1.3. Thus, using
detailed phase-shift Tables [30] and Eqs. (5)–(9), one could
easily obtain realistic estimations for orientation-dependent
vicinage effects in cases of other dimer-intruder–metallic-
target combinations.
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