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Renormalization-group study of the four-body problem
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We perform a renormalization-group analysis of the nonrelativistic four-boson problem by means of a simple
model with pointlike three- and four-body interactions. We investigate in particular the region where the scattering
length is infinite and all energies are close to the atom threshold. We find that the four-body problem behaves
truly universally, independent of any four-body parameter. Our findings confirm the recent conjectures of others
that the four-body problem is universal, now also from a renormalization-group perspective. We calculate the
corresponding relations between the four- and three-body bound states, as well as the full bound-state spectrum
and comment on the influence of effective range corrections.
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I. INTRODUCTION

During the last decade, few-body physics experienced a
renewed interest thanks to the advent of experiments with
ultracold atomic gases. Whereas the study of few-body physics
in nuclear systems is hindered by the large complexity of the
interparticle potentials, the interactions in ultracold atomic
gases are describable to high accuracy with very simple short-
range models. In addition, ultracold atomic gases become
even more attractive as an ideal theoretical and experimental
playground, since they offer not only excellent experimental
control but also the amazing possibility of tuning the two-body
interaction strength over a wide range using the so-called
Feshbach resonances [1].

This made it possible, about 40 years after V. Efimov’s
seminal prediction [2] of the existence of universal three-body
bound states in systems with large two-body interactions, for
the first evidence in favor of the presence of these states to be
found in the remarkable experiment by Kraemer et al. in 2006
[3]. In his work, Efimov predicted the existence of infinitely
many trimer states for infinitely large scattering length where
the two-body interaction is just on the verge of having a bound
state. The energy levels form a geometric spectrum, and the
three-body system is found to be universal in the sense that
apart from the s-wave scattering length a, only one piece of
information about the three-body system enters in the form of
a so-called three-body parameter [4]. The findings of Kraemer
et al. stimulated extensive activity in the field of three-body
physics, both experimentally [5–9] and theoretically; for recent
reviews on also the latter, see [4,10] and references therein. As
a result, the Efimov effect in three-body systems is a well-
understood phenomenon today.

The next natural step is to raise the question of what the
physics of four interacting particles may be. Early attempts
toward an understanding of this system were made in the
context of nuclear physics using a variety of approaches
[11–14]. Also the four-body physics of 4He atoms has been
investigated in much detail; for an overview, see, e.g., [15].
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The simpler four-body physics of fermions with two spin
states, relevant for the dimer-dimer repulsion, has also been
studied [16].

In their pioneering work, Platter and Hammer et al. [17,18]
investigated the four-body problem using effective interaction
potentials and made the conjecture that the four-boson system
exhibits universal behavior. They also found that no four-body
parameter is needed for a self-consistent renormalization of the
theory. Calculating the energy spectrum of the lowest bound
states in dependence on the scattering length a, the existence
of two tetramer (four-body bound) states associated with each
trimer was conjectured.

Recently, von Stecher, D’Incao, and Greene [19,20] in-
vestigated the four-body problem in a remarkable quantum-
mechanical calculation. They found that the Efimov trimer
and tetramer states always appear as sets of states with two
tetramers associated with each of the trimer levels, and they
calculated the bound-state energy spectrum of the lowest
few sets of states. The calculation suggests that the energy
levels within one set of states are related to each other by
universal ratios, which were obtained from the behavior of
these lowest sets of states. In accordance with the results of
Platter et al. [17,18], the absence of any four-body parameter
was also demonstrated. In order to find experimental evidence
of the tetramer states, extremely precise measurements are
required. Remarkably, Ferlaino et al. were able to observe
signatures of the lowest two of the tetramer states in a recent
experiment [21].

While the calculations by Platter et al. [17,18] and von
Stecher et al. [19,20] rely on quantum-mechanical approaches,
in this work we want to shed light on the four-body problem
from a different perspective. A lot of insight into the three-body
problem has been gained from effective field theory and
renormalization-group (RG) methods [4,10,22,23], and it is
desirable to apply these also to the four-body problem. In
this paper, we will take a step toward such a description
that is complementary to the previous quantum mechanical
approaches.

Of special interest is the further investigation of universality
in the four-body system. In this context, the so-called unitarity
point, illustrated by the star in Fig. 1, is of particular
importance. In this limit, not only is the scattering length a
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FIG. 1. (Color online) Generalized Efimov plot for four identical
bosons. Here, we plot the energy levels of the various bound states
as a function of the inverse s-wave scattering length a as numerically
calculated in our approximative, effective theory. To improve the
visibility of the energy levels, we rescale both the dimensionless
energy E/�2 and the dimensionless inverse scattering length a−1/�,
where � denotes the UV cutoff of our model. Also, we only show the
first three sets of Efimov levels. The solid black line denotes the atom-
atom-dimer threshold, while the dotted black line gives the dimer-
dimer threshold. In the three-body sector, one finds the well-known
spectrum of infinitely many Efimov trimer states (green, dashed)
which accumulate at the unitarity point Eψ = a−1 = 0, indicated by
the orange star. In our pointlike approximation, the four-body sector
features a single tetramer (solid, red) associated with each trimer
state.

infinite, but also all binding energies in the problem accumulate
at the atom threshold at zero energy. Only at the unitarity
point does the physics becomes truly universal in the sense
that, for example, the ratio between the binding energies of
consecutive trimer levels assumes exactly its universal value,
En+1/En = exp(−2π/s0), with s0 ≈ 1.00624 the so-called
Efimov parameter. The unitarity point is therefore the most
interesting one from a theory point of view. Unfortunately, in
the previous calculations, only a few lowest lying states were
determined. The major advantage of the present RG approach
is that it allows one to investigate analytically the complete
spectrum and to address directly the unitarity point in order to
extract the universal relations between the three- and four-body
bound states in this limit.

We investigate the renormalization-group behavior of the
relevant four-body interactions with an approximate, but
simple and physically intuitive model which allows only for
pointlike (i.e., momentum independent1) three- and four-body
interactions. In the three-body problem, universality manifests
itself in an RG limit cycle of the three-body coupling. We
find that this three-body limit cycle leads in turn to a “self-
sustained” limit cycle of the four-body sector, leaving no room
for any four-body parameter.

1Throughout the paper, we will use the term “momentum inde-
pendence” to refer to combined spatial momentum and frequency
independence.

The RG method allows furthermore for computations away
from the unitarity point. We calculate the bound-state energy
spectrum in the pointlike approximation (see Fig. 1) and
investigate how the relations between tetramer and trimer
states approach the universal limit as one comes closer to
the unitarity point.

The paper is structured as follows. In Sec. II we introduce
the functional renormalization-group (FRG) method and set
up the microscopic model. Sections III and IV are devoted
to the FRG analysis of the two- and three-body sector. In
Sec. V we discuss the four-body sector and present our
numerical results. Our findings are summarized in Sec. VI.

II. METHOD AND DEFINITION OF THE MODEL

In this work, we are interested in the computation of the
few-body properties, such as the bound-state spectrum, of
four identical bosons. In a quantum-field-theory approach, the
information about these properties can be extracted from the
effective action � which is the generating functional of one-
particle irreducible vertex functions �(n) and which contains
all information about a given system. The computation of �

is a very complicated task, because quantum (and, as in the
case of nonzero density, statistical) fluctuations have to be
integrated out on all length and therefore momentum scales
q. In order to cope with this task, we rely on the functional
renormalization group [24]; for detailed reviews, we refer to
[25,26].

The central quantity of the FRG is a scale-dependent
effective action functional, the so-called effective flowing
action �k . The effective flowing action �k , which includes
all fluctuations with momenta q >∼ k, interpolates between
the classical action S at some ultraviolet (UV) cutoff scale
k = � and the full quantum effective action � in the
limit k → 0. The underlying idea is similar to Wilson’s
idea of momentum shell-wise integration of fluctuations.
The evolution of �k is governed by the Wetterich equation
[24], which is an exact, nonperturbative RG equation. It
reads

∂k�k = 1
2 Tr

(
�

(2)
k + Rk

)−1
∂kRk, (1)

where �
(2)
k is the flowing, full inverse propagator and the trace

Tr sums over momentum �q and Matsubara frequency q0 as well
as the internal degrees of freedom such as species of fields. The
dependence on the RG scale k is introduced by the regulator
Rk . At the UV scale k = �, the effective flowing action �k

equals the classical action S; and since we want to consider
dilute atomic gases, the UV scale � is set to be of the order
of the inverse Bohr radius a−1

0 . For most problems, quantum
and statistical fluctuations will generate infinitely many terms
in �k . Due to this fact it is in practice impossible to solve
Eq. (1) exactly. Therefore one has to decide for a truncation
of �k , which in turn corresponds to solving the theory only
approximately.

In this work, we investigate the four-boson problem
by approximately solving Eq. (1). Our truncation for the
Euclidean flowing action is given by a simple two-channel
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model:

�k =
∫

x

{
ψ∗(∂τ − � + Eψ )ψ

+φ∗
[
Aφ

(
∂τ − �

2

)
+ m2

φ

]
φ + h

2
(φ∗ψψ + φψ∗ψ∗)

+ λADφ∗ψ∗φψ + λφ(φ∗φ)2 + β(φ∗φ∗φψψ

+φφφ∗ψ∗ψ∗) + γφ∗ψ∗ψ∗φψψ

}
, (2)

where � denotes the Laplace operator, and we use the natural,
nonrelativistic convention 2M = h̄ = 1 with the atom mass M .
ψ denotes the field of the elementary bosonic atom, while the
dimer, the bosonic bound state consisting of two elementary
atoms, is represented by the field φ ∼ ψψ . Both the atom
and the dimer field are supplemented with nonrelativistic
propagators with energy gaps Eψ and m2

φ , respectively. In
our approximation, the fundamental four-boson interaction
∼λψ (ψ∗ψ)2 is mediated by a dimer exchange, which yields
λψ = −h2/m2

φ in the limit of pointlike two-body interactions.
The dynamical dimer field φ allows us to capture essential
details of the momentum dependence of the two-body interac-
tion. We introduce a wave function renormalization factor Aφ

for the dimer field in order to take into account an anomalous
dimension of the dimer field φ. The only nonzero interaction,
present at the microscopic UV scale k = �, is taken to be
the Yukawa-type term with the coupling h. Together with the
microscopic value of Aφ , the Yukawa interaction h at the
UV scale can be connected to the effective range reff in an
effective-range expansion. The atom-dimer interaction λAD as
well as the various four-body interactions λφ , β, and γ vanish
at the UV scale and are built up via quantum fluctuations during
the RG flow.

At this stage, we want to emphasize the meaning of the
term “pointlike approximation,” which must not be confused
with the notion of a zero-range (contact) model. Consider,
for example, the two-body contact interaction ∼λψ (ψ∗ψ)2,
which has no momentum dependence on the UV scale,
k = �. In order to describe the scattering of two particles
in quantum mechanics, one proceeds by solving the two-body
Schrödinger equation. From this, one obtains the well-known
result for the zero-range s-wave scattering amplitude f0(p) =
(−a−1 − ip)−1 (with p = | �p| denoting the momentum of
the colliding particles). The scattering amplitude becomes
momentum dependent. In the RG approach, one deals with
the effective vertex λψ which varies with the RG scale k. On
the UV (k = �) scale, λψ is momentum independent. When
including more and more quantum fluctuations, which means
lowering the RG scale k from � to eventually k = 0, the
effective vertex function λψ assumes a momentum dependence
which in the IR limit k = 0 is equivalent to the result for f0

in the zero-range model. In a pointlike approximation, one
ignores this generated momentum dependence. In the simple
model of Eq. (2), the three- and four-body sector is treated
strictly in the pointlike approximation. However, in the two-
body sector the momentum dependence of effective vertex λψ

is captured by the exchange of the dynamic (i.e., momentum

dependent) dimer propagator, such that the two-body sector is
treated beyond the pointlike approximation.

In the general case of nonzero density and temperature,
one works in the Matsubara formalism, and the integral
in Eq. (2) sums over homogenous three-dimensional space
and over imaginary time

∫
x

= ∫
d3x

∫ 1/T

0 dτ . Although our
method allows us to tackle a full, many-body problem at
finite temperature in this way, we are interested solely in the
few-body (vacuum) physics in this paper, for which density
n and temperature T vanish. For T = 0,

∫
x

reduces to an
integral over infinite space and time. Our truncation (2) is based
on the simple structure of the nonrelativistic vacuum, and,
as demonstrated in [23,27], numerous simplifications occur
when solving Eq. (1) compared with the general, many-body
case. The flowing action (2) has a global U(1) symmetry
which corresponds to particle number conservation. In the
vacuum limit, it is also invariant under space-time Galilei
transformations, which restricts the form of the nonrelativistic
propagators to be functions of ∂τ − � for the atoms and
∂τ − �/2 for the dimers. All couplings present in Eq. (2) are
allowed to flow during the RG evolution and are taken to be
momentum independent in Fourier space as explained above.

Besides the ansatz of �k , we must also choose a suitable
regulator function Rk in order to solve Eq. (1). Based on our
recent treatment of the closely related three-fermion problem
[28,29], we choose optimized regulators,

Rψ = (k2 − q2)θ (k2 − q2),
(3)

Rφ = Aφ

2
(k2 − q2)θ (k2 − q2),

with q = |�q|. These regulators are optimized in the sense of
[26,30] and allow us to obtain analytical results.

III. TWO-BODY SECTOR

A remarkable and very useful feature of the vacuum
flow equations is comprised of a special hierarchy: the
flow equations of the N -body sector do not influence the
renormalization-group flows of the lower (N − 1)-body sector
[23]. For this reason, the different N -body sectors can be
solved subsequently. In this spirit, we first solve the two-body
sector, then we investigate the three-body sector in order to
finally approach the four-body problem.

The solution for the two-body sector can be found analyt-
ically in our approximation2 (for the analogous problem con-
sidering fermions, see [28,31]). The only running couplings in
the two-body sector are the dimer gap m2

φ and its wave function
renormalization Aφ . The flow equations of the two-body sector
are shown in terms of Feynman diagrams in Fig. 2(a) and read

∂tm
2
φ = h2

12π2

k5

(k2 + Eψ )2
,

(4)

∂tAφ = − h2

12π2

k5

(k2 + Eψ )3
,

2Remarkably, the atom inverse propagator (one-body sector) is not
renormalized in the nonrelativistic vacuum.
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FIG. 2. Flow equations in terms of Feynman diagrams for the
(a) two-body, (b) three-body, and (c) four-body sectors. All internal
lines denote full, regularized propagators. The scale derivative ∂̃t

on the right-hand side of the flow equations acts only on the
regulators. Solid lines represent elementary bosons ψ , while dashed
lines denote composite dimers φ. The vertices are the Yukawa
coupling h (small black dot), atom-dimer vertex λAD (open circle),
dimer-dimer coupling λφ (black circle), coupling β (two circles),
and the atom-atom-dimer vertex γ (black square). Due to the large
number of diagrams for the latter two vertex functions, we only show
two exemplary diagrams.

where t = ln k
�

. As there are no possible nonzero flow
diagrams for the Yukawa coupling h, it does not flow in the
vacuum limit.

The infrared (IR) values of the couplings h and m2
φ

can be related to the low-energy s-wave scattering length

a via

a = − h2(k = 0)

16πm2
φ(k = 0,Eψ = 0)

. (5)

Knowing the analytical solution of the two-body sector, this
relation can be used to fix the initial values of our model. For
the UV value of the dimer gap m2

φ , we find

m2
φ(�) = − h2

16π
a−1 + h2

12π2
� + 2Eψ. (6)

The first term fixes the s-wave scattering length according to
Eq. (5), while the second term represents a counterterm taking
care of the UV renormalization of the two-body sector. Finally,
the last term accounts for the fact that the dimer consists of
two elementary atoms. Additionally, we choose Aφ(�) = 1,
which corresponds to the effective range reff = − 64π

h2 .
The action (2) can also be used for a quite accurate

description of Feshbach resonances. In this context, Eq. (2)
is referred to as a resonance model. In such a model, m2

φ is
proportional to the detuning energy of the molecule in the
closed channel with respect to the atom-atom threshold [32],
and the coupling h is proportional to the width of the associated
Feshbach resonance being a function of the strength of the
coupling to the closed channel. The choice Aφ(�) = 1 then
corresponds to the so-called characteristic length r∗ = − 1

2 reff

often used in literature [4,33].
In the limit of large, positive scattering length, there exists

a universal, weakly bound dimer state. In order to find its
binding energy, we calculate the pole of the dimer propagator,
corresponding to the condition m2

φ(Eψ,k = 0) = 0, which
yields in the limit Eψ/�2 � 1,

ED = −2Eψ = −2

⎛
⎝ h2

64π
−

√
h4

(64π )2
+ h2a−1

32π

⎞
⎠2

= − 2

r2
eff

(
1 −

√
1 − 2reff

a

)2

. (7)

In the limit h → ∞, corresponding to reff → 0, one recovers
the well-known result ED = −2/a2. The dimer bound-state
energy is shown as a function of the inverse scattering length
in Fig. 1 (black solid line). The deviation from the universal
1/a2 scaling for large inverse scattering lengths is due to the
finite size of h which is taken to be h2/� = 10 in Fig. 1. In the
regime of small scattering length a, one finds a crossover of
the behavior of the dimer binding energy which then has the
limiting behavior ED = 4/(areff).

IV. THREE-BODY SECTOR

The bound-state spectrum of the three-body sector is much
richer than the one of the two-body system. In his seminal
papers [2], Efimov showed the existence of an infinite series
of three-body bound states for strong two-body interactions.
These energy levels exhibit a universal geometric scaling
law as one approaches the unitarity point Eψ = a−1 = 0.
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Remarkably, these three-body bound trimer states exist even
for negative scattering lengths a where no two-body bound
state is present; they become degenerate with the three-atom
threshold for negative scattering length and merge into the
atom-dimer threshold for positive a. An additional three-
body parameter is needed in order to determine the actual
positions of the degeneracies [22]. In this section, we want to
briefly review how Efimov physics can be treated within our
approach. For a more detailed account of that matter and an
application to the three-component 6Li Fermi gas, we refer to
[23,28,29].

In our truncation, the three-body sector contains a single,
pointlike φ∗ψ∗φψ term with a coupling λAD , which is
assumed to vanish in the UV. It is built up by quantum
fluctuations during the RG flow, and the corresponding
Feynman diagrams of the flow equation for λAD is shown in
Fig. 2(b). First we investigate the unitarity point, Eψ = a−1 =
0. For this limit, we are able to obtain an analytical solution for
the flow equation of λAD while away from unitarity we have
to rely on a numerical solution.

At the unitarity point, all intrinsic length scales drop out
of the problem and the system becomes classically scale
invariant. At unitarity, the Yukawa coupling h is dimensionless,
and the only (extrinsic) length scale present is the inverse
ultraviolet cutoff �−1, which defines the validity limit of our
effective theory.

In our approximation, the dimer field φ develops a large
anomalous dimension η = − ∂tAφ

Āφ
= 1 at unitarity, which is

consistent with the exact solution of the two-body sector
[23,27]. Because the atom and dimer propagators have vanish-
ing gaps in the IR, the two-body sector respects a continuous
scaling symmetry.

To find the solution of the three-body sector, we switch
to the rescaled, dimensionless coupling λ̃AD ≡ k2

h2 λAD . One
finds that the flow equation for λ̃AD becomes independent of k

and h,

∂t λ̃AD = 24

25

(
1 − η

15

)
︸ ︷︷ ︸

a

λ̃2
AD −14

25

(
1 − 4η

35

)
︸ ︷︷ ︸

b

λ̃AD

+ 26

25

(
1 − η

65

)
︸ ︷︷ ︸

c

. (8)

As was demonstrated in [23,34], the behavior of the solution
of this type of flow equation is determined by the sign of the
discriminant D of the right-hand side of Eq. (8), which is
D = b2 − 4ac < 0. Equation (8) can be solved analytically,
and one finds

λ̃AD(t) = −b + √−D tan
[√−D

2 (t + δ)
]

2a
, (9)

where δ is connected to the three-body parameter and deter-
mines the initial condition. Most remarkably, the three-body
sector exhibits a quantum anomaly: The RG flow of the
renormalized coupling λ̃AD exhibits a limit cycle, which, due
to its periodicity, breaks the classically continuous scaling
symmetry to the discrete subgroup Z. The Efimov parameter
can be determined from the period of the limit cycle [23] and

is given in our approximation by

s0 =
√−D

2
≈ 0.925203. (10)

The exact result is given by s0 ≈ 1.00624 [4]. Considering the
simplicity of our pointlike approximation, which, as discussed
in Sec. III, does not resolve any momentum or frequency
structure of the effective (k dependent) interaction vertex of
the three-body sector, the agreement is quite good. In fact, in
previous work [23] we have shown how to obtain the exact
value of s0 using the FRG.

The presence of N -body bound states leads to divergencies
in the corresponding N -body vertices. The periodic divergen-
cies in the analytical solution of λ̃AD in Eq. (9) correspond
therefore to the presence of the infinitely many Efimov trimer
states at the unitarity point.

We can use the latter correspondence to calculate the
bound-state spectrum also away from unitarity. The trimer
binding energies are calculated by determining the atom
energies Eψ for which λ̃AD exhibits divergencies in the IR
as function of a−1. The trimer binding energy is then given
by ET = −3Eψ . The result is shown in Fig. 1. In this plot,
the dashed, green lines indicate the binding energies of the
Efimov trimer states. For calculational purposes, we switch to
the static trimer approximation which is completely equivalent
to our two-channel model in Eq. (2). We describe this
procedure in the Appendix.

At the unitarity point, the trimer binding energies form a
geometric spectrum and the ratio between adjacent levels is
given by

E
(n+1)
T

E
(n)
T

= e
− 2π

s0 , (11)

which can be understood from the limit cycle flow of λAD . At
each scale k = �et , where λAD diverges, one hits a trimer state.
The RG scale k can in turn be connected to the atom energy
Eψ [23,28,29], and since the divergencies appear periodically
in t , one easily obtains Eq. (11).

There is an additional universal relation obeyed by the
trimer energy levels which we may take as a measure of the
quality of our approximation. It is given as the relation between
the trimer binding energy E∗ for a → ∞ and the value of a for
which the trimer becomes degenerate with the atom-dimer (a∗

+)
and three-atom threshold (a∗

−), respectively. For comparison,
we define a wave number κ∗ by E∗ = −h̄2κ∗2/M (in our
convention, E∗ = −2κ∗2) and find

a∗
−κ∗ ≈ −1.68, a∗

+κ∗ ≈ 0.08, (12)

which has to be compared with the exact result a∗
−κ∗ =

−1.56(5), a∗
+κ∗ = 0.07076 from the fully momentum-

dependent calculation in [4,22]. The agreement with our
approximate solution suggests that our model should provide
a solid basis for the step to the four-body problem.

V. FOUR-BODY SECTOR

Recently, the solution of the four-body problem in the
low-energy limit has gained a lot of interest. In quantum-
mechanical calculations, the existence of two tetramer
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(four-body bound) states was conjectured for each of the
infinitely many Efimov trimers [17,18]. By calculating the
lowest few sets of bound state levels, von Stecher et al.
[19,20] concluded that both ratios of energies between the
different tetramers and the trimer state approach universal
constants. However, with the quantum-mechanical approach,
the calculation directly at the unitarity point (a−1 = Eψ = 0),
marked explicitly in Fig. 1, turns out to be difficult, although
this point is of great interest when one wants to gather
evidence for universality of the four-body system. In fact,
in the three-body sector, the infinite RG limit cycle appears
only exactly at the unitarity point and its universal appearance
is directly connected to the breaking of the continuous scale
symmetry. Within our approach, the unitarity region is easily
accessible.

To investigate the four-body sector, we include all possi-
ble U(1)-symmetric, momentum-independent interaction cou-
plings in the effective flowing action �k . If one assumes all
these couplings to be zero at the microscopic UV scale �, one
can show, by evaluating all possible Feynman diagrams and
using the vacuum hierarchy described in [23], that from all
possible four-body couplings, only the three couplings λφ , β,
and γ are built up by quantum fluctuations and are therefore
included in Eq. (2). Couplings other than λφ , β, and γ , such as
the term ∼ (ψ∗ψ)4, are not generated during the RG evolution.
This consideration leads to our ansatz for the effective average
action (2).

For the investigation of the unitarity point, we first switch
to rescaled, dimensionless couplings

λ̃φ = k3

π2h4
λφ, β̃ = k4

h3
β, γ̃ = π2k5

h2
γ, (13)

and obtain the corresponding flow equations by inserting
the effective flowing action �k , Eq. (2), into the Wetterich
equation (1). By the use of the rescaled couplings, we find
three coupled ordinary differential equations, which are again
coupled to the two- and three-body sectors, but become
explicitly independent of h and k. We show the diagrammatic
representation of the flow equations in Fig. 2(c). Their
analytical form at the unitarity point is given by3

∂t λ̃AD = 128
125 − 62

125 λ̃AD + 112
125 λ̃2

AD, (14)

∂t λ̃φ = 1
16 + 1

3 β̃ − 1
6 λ̃AD + 3λ̃φ + 128

15 λ̃2
φ, (15)

∂t β̃ = 188
125 β̃ + 1

6 γ̃ + 128
125 λ̃AD + 224

125 λ̃ADβ̃ − 156
125 λ̃2

AD

+ 4384
375 λ̃φ + 128

15 β̃λ̃φ − 3968
375 λ̃ADλ̃φ, (16)

∂t γ̃ = 4592
375 + 8768

375 β̃ + 128
15 β̃2 + 1

125 γ̃ − 79072
1875 λ̃AD

− 7936
375 β̃λ̃AD + 448

125 γ̃ λ̃AD + 74368
1875 λ̃2

AD − 5376
625 λ̃3

AD.

(17)

We pointed out in the last section that the appearance of
bound states is connected with divergent vertex functions �

(n)
k ,

3For illustrative purposes, we show the analytical form of the flow
equations at the unitarity point only. Away from this limit, their
explicit expressions become much more complex.

and we exploit this behavior to determine the bound-state
spectrum of the three- and four-boson system. At this point
we must note that these infinities are complicated to handle in
a numerical solution of the theory. In particular, the numerical
treatment of unbounded limit cycles is problematic due to the
periodic infinities during the RG flow. In order to circumvent
this difficulty, we used the method of complex extension,
developed in [34]. The basic idea is to extend the domain
of the running couplings to the complex plane

λAD → λAD,1 + iλAD,2, λφ → λφ,1 + iλφ,2,
(18)

β → β1 + iβ2, γ → γ1 + iγ2.

On the one hand, this effectively doubles the number of
real flow equations, and additional initial conditions must
to provided. We choose λAD,2 = ε = 10−11 in our numerical
calculation and take all other imaginary parts to be zero in the
UV. On the other hand, this procedure allows us to perform
the numerical integration of the flow equations, because it
regularizes the periodic infinities in the flow and makes
the numerical treatment feasible. Physically, by the complex
extension, we convert the stable bound states into metastable
resonances, and by taking different values of ε, we are able
to vary the decay width of the resonances. One may compare
this with the procedure of Braaten and Hammer [35] who
introduce a parameter η∗ in order to model the decay of the
trimers to deeply bound states which have not been included
in the effective model. In this line, we also view our complex
extension as a way to include these deeply bound states in
the FRG calculation. Specifically, we find that for ε � 1,
the decay width of the nth Efimov trimer �

(n)

T is given by

�
(n)

T = 4εE
(n)

T at unitarity. This is in agreement with the result
in [4],

�
(n)

T ≈ 4η∗

s0
E

(n)

T , (19)

which holds for small η∗. Thus, for ε � 1, the relation
to the parameter η∗ introduced by Braaten and Hammer is
given by

ε = η∗

s0
. (20)

The result of the numerical calculation of the four-body
sector at unitarity is shown in Fig. 3. Here, we display the
RG flows of the real parts of all nonzero three- and four-body
sector couplings as a function of the RG scale t = ln(k/�).
The three-body coupling λ̃AD,1 (black dotted line) exhibits
the well-known limit cycle behavior, described in Sec. IV,
with the period being connected to the Efimov parameter s0.
Remarkably, there is an additional limit cycle in the flow of the
four-body sector couplings with a periodic structure of exactly
the same frequency as the three-body sector. This four-body
sector limit cycle exhibits resonances which are shifted with
respect to the ones of the three-body system. The magnitude of
this shift is given by a new universal number, which is inherent
to the four-body sector.

Our observation is that the four-body sector is intimately
connected with the three-body sector at the unitarity point.
It is permanently attached to the running of the three-body
sector from the first three-body resonance on. From here on,
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FIG. 3. (Color online) Renormalization-group limit cycle behavior of the three- and four-body sectors at the unitarity point Eψ = a−1 = 0.
The real parts of the rescaled, dimensionless couplings λ̃AD,1, 4λ̃φ,1, β̃1/6, and γ̃1/1000 are plotted as functions of t = ln(k/�). Not only does
the three-body coupling λ̃AD,1 (dashed, black) exhibit a limit cycle behavior, but also the four-body sector couplings λ̃φ,1 (red, dotted), β̃1 (blue,
solid), and γ̃1 (green, solid) obey a limit cycle attached to the three-body sector with the same period.

the periodic structure of the flow remains unchanged as one
goes to smaller values of k. Due to this tight bond between
the three- and four-body sector, there remains no room for an
additional four-body parameter.

We also find that the magnitude of the shift beyond the
first resonance neither is dependent on the initial values of the
four-body sector couplings in the UV nor is it influenced by
finite range corrections which we are able to check by choosing
different values for the Yukawa coupling h. Arbitrary choices
lead to the same behavior. Having done this calculation directly
at the unitarity point, our conclusion is that within our simple
approximation, the four-body sector behaves truly universal
and independent of any four-body parameter, thus confirming
the conjecture made by Platter et al. and von Stecher et al.
We expect that universality will also hold for an improved
truncation.

Naively one expects that each resonance in the flow of
the vertex functions is connected to the presence of a bound
state. As one observes, there are also additional resonances
in the four-body sector being degenerate with the three-body
sector resonances. However, we arrive at the conclusion
that these resonances are artifacts of our approximation.
The mathematical structure of the flow equations is of a
kind that divergencies in the three-body sector directly lead
to a divergent four-body sector. We are confident that the
resonances at these positions will disappear as one includes
further momentum dependencies in the field theoretical model.
Therefore we can already infer from the calculation at unitarity
that within our approximation we are only able to resolve a
single tetramer state attached to each trimer state also away
from unitarity. In contrast, the “exact” quantum mechanical
calculations in [17–20] predict the existence of two tetramer
states which have recently been observed by Ferlaino et al.
[21]. As one includes further momentum dependencies, it is
very possible that not only the degenerate resonance disappears
but also new, genuine resonances associated with the “missing”
tetramer state will appear at the same time. This effect
indeed occurs in the three-body problem. There, it is essential
to include the momentum-dependent two-atom vertex. Only
under this condition does one arrive at the quadratic equation
as in (8) which gives rise to the Efimov effect. This can easily
be seen by taking a look at the flow equation of λAD depicted
as Feynman diagrams in Fig. 2(b). The assumption of a
momentum-independent two-atom interaction corresponds to

a momentum (and frequency) independent dimer propagator.
In this approximation, the first term on the right-hand side
of Fig. 2(b) vanishes, because all poles of the loop frequency
integration lie on the same complex frequency half-plane. This
directly leads to the loss of the Efimov effect in this crude level
of approximation.

We can also use our model to investigate the full bound-state
energy spectrum by solving the flow equations for arbitrary
values of the scattering length a. The energy levels of the
various bound states are then determined by varying the
energy of the fundamental atoms Eψ such that one finds
a resonant four-body coupling in the IR. The result of this
calculation, using the static trimer approximation presented in
the Appendix A, is shown in Fig. 1, where we plot the energy
levels of the various bound states versus the inverse scattering
length. We find one tetramer state attached to each of the
Efimov trimer states. These tetramer states become degenerate
with the four-atom threshold for negative scattering length
and merge into the dimer-dimer threshold for positive a. In
the experiment, this leads to the measured resonance peaks in
the four-body loss coefficient. In order to not overload the
plot, we show only the first three sets of levels, although
the FRG method allows us to calculate an arbitrary number
of them. One also observes that the shape of the tetramer
levels follows the shape of the trimer levels. In analogy to
the three-body sector, one can calculate a universal formula
relating a tetramer binding energy E∗

tet = −2κ∗2
T at a → ∞

with the corresponding scattering length at which the tetramer
becomes degenerate with the four-atom threshold a∗

T − and the
dimer-dimer threshold a∗

T +, respectively. We find

a∗
T −κ∗

T ≈ −1.75, a∗
T +κ∗

T ≈ 0.20. (21)

In their recent quantum-mechanical calculations, von Stecher
et al. were able to calculate the lowest few sets of bound-state
energy levels [19]. From their behavior, it was inferred that
the ratio between the tetramer and trimer binding energies
approaches a universal number within these first few sets of
levels. Figuratively speaking, it is therefore expected that the
universal regime in the energy plot in Fig. 1 is reached very
fast as one goes to smaller a−1 and Eψ .

To investigate this observation, we calculate the behavior
of two ratios as a function of the set of levels for which they
are determined. The first ratio relates the negative scattering
lengths a

(n)
tet and a

(n)
tri for which the nth tetramer and trimer
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FIG. 4. (Color online) Calculation of the universal ratios for the
lowest five sets of levels. The calculation is done for different values
of the Yukawa coupling h2/� which determines the effective range
in our model. The dotted lines are only to guide the eye. (a) Ratios
between the values of scattering lengths a

(n)
tet and a

(n)
tri for which the

tetramer and corresponding trimer become degenerate with the four-
atom threshold. (b) Ratios between the values of binding energies
E

(n)
tet and E

(n)
tri at resonance a → ∞.

become degenerate with the four-atom threshold. The second
is the ratio between the binding energies of the nth tetramer
E

(n)
tet and the nth trimer E

(n)
tri at resonance, a → ∞. The

resulting plots are shown in Fig. 4. We calculate the ratios
for different values of the microscopic couplings in order to
test the degree of universality of the various sets of energy
levels. In the plots, we show in particular the dependence on
the choice of the Yukawa coupling h determining the effective
range reff of the model. As one sees, only the first of the
ratios depend on the microscopic details. Already from the
second set of levels on, the microscopic details are washed
out and the ratios become independent of the choice of initial
conditions: The regime of universality is reached extremely
fast; and as a−1 and Eψ are lowered, one will ultimately find
the four-body limit cycle described above.

For the asymptotic ratios, we find

a
(n)
tet ≈ 0.518 a

(n)
tri , (22)

E
(n)
tet ≈ 4.017 E

(n)
tri . (23)

Von Stecher et al. find a
(n)
tet /a

(n)
tri ≈ 0.43 (0.9) for the deeper

(shallower) bound tetramer and E
(n)
tet /E

(n)
tri ≈ 4.58 (1.01),

respectively. Considering the simplicity of our model, the
agreement is quite good.

With an ultracold bosonic Cs gas, Ferlaino et al. found
a

(n)
tet /a

(n)
tri ≈ 0.47 (0.84). In this remarkable experiment, only

the lowest set of tetramer states in the energy spectrum
had been accessible due to the particular scattering length
profile. Considering our observation that the deepest set
of levels is still strongly dependent on the microscopical
details, it cannot be expected to find the universal numbers
in this particular setting. Therefore more experiments for
bosons interacting via at larger scattering lengths would be
desirable.

VI. CONCLUSIONS

In this paper, we investigated the four-body problem with
the help of the functional renormalization group. Employing a
simple two-channel model with pointlike three- and four-body
interactions, we were able to investigate universal properties
at the unitarity point a → ∞, Eψ = 0 as well as to perform
computations away from it.

In the RG language, the Efimov physics of the three-
body problem manifests itself as an infinite RG limit cycle
behavior of the three-body coupling constant at unitarity. We
found that also the four-body sector is governed by such a
limit cycle which is solely induced by the RG running of
the three-body sector, signaling the absence of a four-body
parameter.

We also computed the energy spectrum away from unitarity
and were able to obtain the universal relations between
four- and three-body observables in our approximation. Our
calculation provides an explanation for the findings of von
Stecher et al. [19], who found that these ratios approach
universal constants very quickly as they are computed for
higher and higher excited states. We also found a dependence
of the ratios for the lowest level on microscopic details such
as the effective range. This in turn is of relevance for the
experimental observations by Ferlaino et al. [21]. In this
experiment, the lowest states have been measured, and one
can therefore not expect to find the exact universal relations
between them.

Considering the simplicity of our model, the agreement
with the previous studies in [17–19] is quite good. There had
been some disagreement in the literature about universality
and the absence or existence of a four-body parameter; see,
e.g., [36–38]. Our RG results support the conclusion that the
four-body system is universal and independent of any four-
body parameter.

An important shortcoming of the pointlike approximation
is the absence of the shallower of the two tetramer states.
Obviously the pointlike approximation of the three- and four-
body sectors is not sufficient, and in future work one should
include momentum-dependent interactions. From the energy
spectrum in Fig. 1, it becomes also evident that the excited
tetramer states can decay into an energetically lower lying
trimer plus atom. The higher excited states in the four-body
system are therefore expected to have an intrinsic finite decay
width [18]. Whether this width has a universal character still
remains an open question as does the way in which the
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corresponding imaginary coupling constants will change the
RG analysis.

The inclusion of the full momentum dependencies in the
three- and four-body sector seems to be a rather complicated
task. In the effective-field-theory study of the three-boson
system, the introduction of a dynamical dimer field, often
called the di-atom trick [4], has been a decisive step toward
the exact solution of the three-body problem. From this
perspective, we suggest that the inclusion of a dynamical
trimer field in the effective action might help simplify the
momentum-dependent calculation.

The four-boson system remains a subject with many open
questions. With our RG analysis in the pointlike approxima-
tion, we took a step toward a renormalization-group descrip-
tion of the four-body problem supplementing the previous
quantum-mechanical approaches. From this perspective, this
work provides a starting point for a deeper understanding of
universality in the four-body problem.
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APPENDIX: TRIMER APPROXIMATION
AND REBOSONIZATION

In this Appendix, we will apply the rebosonization method
developed in [39] to our model (2). We introduce an additional
trimer field χ , representing the bound state of three bosons,
which then mediates the atom-dimer interaction. A similar
procedure had already been used a long time ago by Fonseca
and Shanley [14] in the context of nuclear physics and was
recently employed by us in [28,29] for the treatment of the
three-component Fermi gas. There are several reasons for
employing this procedure. First, it is useful to reduce the
number of resonances one has to integrate through in the
RG flow. Instead of calculating the divergent coupling λAD ,
one only has to calculate zero crossings of the trimer energy
gap which is numerically much easier to handle. Second,
by the introduction of a dynamical trimer field, one may be
able to mimic some of the complicated momentum structure
of the atom-dimer interaction in a simple way which could
probably be sufficient to find the missing tetramer state in our
calculation. The third point is of a more technical nature and
concerns the method of rebosonization, which we will employ
here in a quite extensive manner.

In the three-body sector, the real atom-dimer coupling λAD

exhibits divergencies when the energy gap of the fundamental
atoms Eψ is tuned such that one hits the trimer bound state
in the IR. In the static trimer approximation, the coupling
λAD is mediated by the exchange of a trimer field χ with

the nondynamical, inverse propagator Pχ = m2
χ , which can be

depicted as

The trimer field χ ∼ ψ3 is introduced on the microscopic scale
by a Hubbard-Stratonovich transformation, and our ansatz
for the effective average action, motivated by the resulting
classical action, reads

�k =
∫

x

{
ψ∗(∂τ − � + Eψ )ψ

+φ∗
[
Aφ

(
∂τ − �

2

)
+ m2

φ

]
φ + χ∗m2

χχ

+ h

2
(φ∗ψψ + φψ∗ψ∗) + λADφ∗ψ∗φψ

+ g(χ∗φψ + χφ∗ψ∗) + λφ(φ∗φ)2

+β(φ∗φ∗φψψ + φφφ∗ψ∗ψ∗) + γφ∗ψ∗ψ∗φψψ

+ δ1χ
∗ψ∗χψ + δ2(χ∗ψ∗φφ + χψφ∗φ∗)

+ δ3(χ∗ψ∗φψψ + χψφ∗ψ∗ψ∗)

}
. (A1)

The Yukawa interaction g couples the trimer field to the dimer
and atom field. The δi are the additional U(1) symmetric four-
body couplings which are generated by quantum fluctuations.
All other possible couplings can be shown to stay zero during
the RG evolution provided they are zero at the UV scale. Also
the coupling λAD is regenerated through a box diagram in the
RG flow. However, it is possible to absorb all these emerging
couplings by the use of the rebosonization procedure.

For this matter, we promote the trimer field χ to be explic-
itly scale dependent, χ → χk, χ

∗ → χ∗
k and the Wetterich

equation generalizes to

∂k�k[�k] = 1

2
Tr

(
�

(2)
k [�k] + Rk

)−1
∂kRk

+
(

δ

δ�k

�k[�k]

)
∂k�k, (A2)

where �k now includes all fields including the trimer fields
(χ,χ∗). The additional term in the generalized flow equation
(A2) allows for the absorption of the reemerging couplings,
since one has the freedom to choose the scale dependence of
the trimer fields as a function of fields. In order to continuously
eliminate the couplings λAD and δi , we choose

∂kχk = φψζa,k + ψ∗χkψζb,k

+ψ∗φφζc,k + ψ∗φψψζd,k,

∂kχ
∗
k = φ∗ψ∗ζa,k + ψχ∗

k ψ∗ζb,k

+ψφ∗φ∗ζc,k + ψφ∗ψ∗ψ∗ζd,k. (A3)
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Upon inserting Eq. (A3) into the generalized Wetterich
equation (A2), the condition that the flows of λAD and δi

vanish leads to

ζa = −∂kλAD

2g
, ζb = − ∂kδ1

2m2
χ

,

(A4)

ζc = −∂kδ2

m2
χ

, ζd = −∂kδ3 + gζb

m2
χ

.

When one calculates now the flow equations of the remaining
flowing couplings by projecting Eq. (A2) onto them, one
obtains new contributions due to the presence of additional
terms arising from Eq. (A3).

In our static trimer approximation, the trimer field has no
dynamical propagator and the model given by Eq. (A1) is
completely equivalent to the two-channel model in Eq. (2).
Furthermore, no regulator has to be specified for the trimer
field, since in our approximation the original atom-dimer
coupling λAD is solely replaced by g2/m2

χ . At this point, it
already becomes clear why the modified flow equations will be
easier to handle numerically: instead of calculating a divergent

λAD in the three-body sector, one has only to deal with zero
crossings of m2

χ at the values of k where originally λAD had
divergencies. The modified flow equations are given by

∂tg = ∂tg|�k
+ m2

χζa,

∂tβ = ∂tβ|�k
+ gζc, (A5)

∂tγ = ∂tγ |�k
+ 2gζd,

where the first terms in the flows are the original flow equations
with the trimer field taken to be scale independent. In fact, by
expressing all flow equations in terms of the coupling G ≡ g2

one can also get rid off the problematic g in the denominator of
ζa in Eq. (A4). We point out that the static trimer approximation
allows us to calculate easily the three-body sector. In the
four-body sector, the original divergencies of λAD still appear,
since trimers χ appear in the corresponding flow diagrams and
therefore one has to deal with terms ∼1/m2

χ . For this reason, it
had been essential to perform the complex extension described
in Sec. V. Finally, the bound-state spectrum of the trimers can
be computed by calculating the poles of the trimer propagator,
m2

χ (k = 0,Eψ ) = 0, in a straightforward manner.
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