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Collisional decoherence of internal-state superpositions in a trapped ultracold gas
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We analyze collisional decoherence of atoms or molecules prepared in a coherent superposition of
nondegenerate internal states at ultralow temperatures and placed in an ultracold buffer gas. Our analysis is
applicable for an arbitrary bath-particle to tracer-particle mass ratio. Both elastic and inelastic collisions contribute
to decoherence. We obtain an expression relating the observable decoherence rate to pairwise scattering properties,
specifically the scattering lengths and low-temperature scattering amplitudes. We consider the dependence on
the bath-particle to tracer-particle mass ratio for the case of light bath and heavy tracer particles. The expressions
obtained may be useful in low-temperature applications where accurate estimates of decoherence rates are needed.
The results suggest a method for determining the scattering lengths of atoms and molecules in different internal
states by measuring decoherence-induced damping of coherent oscillations.
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I. INTRODUCTION

Atomic and molecular interferometry experiments [1,2],
precision measurements of fundamental constants [3–6], and
coherent control of molecular dynamics [7] are based on
gaseous ensembles of atoms or molecules prepared in coherent
superpositions of internal (electronic, rovibrational, hyperfine,
Stark, or Zeeman) energy states. Atoms and molecules in
coherent superpositions of internal states have also been
proposed as building blocks for quantum computation and
quantum information processing [8,9]. Coherent superposi-
tions may be destroyed by external-field fluctuations and
collisions of gas particles. Collision-induced decoherence
is a major limiting factor in the experimental realization
of quantum computation and coherent control of molecular
dynamics. Recent progress in the development of experimental
techniques for cooling atoms and molecules to extremely
low temperatures suggests new possibilities for precision
spectroscopy measurements, coherent control of molecular
processes, and quantum computation [10]. For example, the
cooling of molecules to ultralow temperatures allows for
high-resolution spectroscopy with long interrogation times and
a high degree of control over intra- and intermolecular inter-
actions [11]. The translational energy of ultracold molecules
is insignificant and can be disentangled from internal states,
which can be exploited to develop new schemes for coherent
control [12]. However, elastic and inelastic collisions of atoms
and molecules at ultralow temperatures may be very efficient,
leading to significant decoherence rates [13]. In order to assess
the feasibility of quantum information processing, quantum
interferometry measurements, and coherent control schemes
based on ultracold atom and molecules, it is necessary to
develop a microsopic theory of collisional decoherence of
internal-state superpositions at ultralow temperatures.

A master equation describing decoherence of translational
and internal states for a tracer molecule in an inert gas has
been derived heuristically by Vacchini [14], and the Brownian
motion limit of an infinitely massive tracer particle was
considered by Hornberger [15]. The latter result was applied
to decoherence of enantiomeric states of optically active
molecules to explain Hund’s paradox, that is, the well-known
observation that chiral molecules are not naturally found in

their achiral ground state [16]. Although coherence in the tracer
molecule’s state in general may involve both translational and
internal degrees of freedom, in many experiments a substantial
simplification arises because the translational degrees of
freedom are fully decohered. Internal-state decoherence in
this simplified case was studied by Vacchini [14]. Whether
or not the translational degrees of freedom are fully deco-
hered, coherences between internal states typically depend
on the translational degrees of freedom. For an experiment
in which only the internal state is probed, the appropriate
statistical operator is a reduced density matrix acting on
the internal-state space, which is obtained by tracing over
the translational degrees of freedom. As a consequence, the
evolution of the internal state is typically non-Markovian
and the time dependence of the internal-state coherence is
generally nonexponential [14].

The theory of collisional decoherence for a tracer particle
with internal states is an extension of the analysis of positional
decoherence for a tracer particle without internal states. This
problem has been studied in detail [17–23], particularly in
the Brownian motion limit of an infinitely massive tracer
particle. Hornberger and Sipe presented a solution for the
Brownian motion limit, using a convex decomposition of
the bath gas density matrix into localized wave packets to
avoid mathematical problems arising because momentum
eigenvectors are not normalizable [21]. This rigorous method
can be used to develop formal replacement rules for consistent
handling of the singular quantities in the momentum basis. The
replacement rule method was extended to the case of a tracer
particle with finite mass [22]. Adler connected the replacement
rules to the method used to resolve the squared Dirac δ function
appearing in the golden rule derivation [24].

Other work on collisional decoherence of internal-state
superpositions has included investigation of decoherence
suppression using optical pulses [25] and approaches based
on Monte Carlo simulations [26,27]. An analysis by Reinhold
and co-workers predicted that measurements of decoherence-
induced damping of quantum beats could be used as a
sensitive probe of collision cross sections [27]. Ramakrishna
and Seideman investigated decoherence of rotational wave
packets using an approach applicable for dense media [28].
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This method treats the translational degrees of freedom
phenomenologically. They also found that damping of co-
herent oscillations and relaxation in the molecular alignment
may provide information about elastic and inelastic collision
properties.

In this paper, we consider decoherence of internal-state
superpositions for a tracer molecule in the presence of an
ultracold buffer gas in a trap. This process can be studied in
buffer-gas cooling experiments—an important class of exper-
iments for the creation of ultracold molecules and precision
spectroscopy [29–31]—by creating molecular wave packets,
or in sympathetic cooling experiments using magneto-optical
traps [32,33]. The separation between internal energy levels
of molecules is typically large compared to ultracold trap
depths [34]. As a consequence, inelastic collisions, in which
the internal state of the molecule is changed, release enough
energy from internal states into translational motion that both
the tracer molecule and the buffer-gas atoms involved in the
collision are ejected from the trap. The experiments begin
with the translational degrees of freedom of the buffer gas and
tracer molecule fully decohered and in thermal equilibrium
at the buffer-gas temperature.1 It will be shown that the
translational degrees of freedom remain fully decohered
throughout the experiment. At t = 0 the tracer molecules are
prepared in a coherent superposition of internal states. We
obtain expressions for the coherence present between internal
states over time during the experiment in the limit of ultracold
temperatures and in the limit of a small but finite buffer-
gas to tracer-molecule mass ratio. These expressions give
the temperature dependence of the decoherence rate at ultra-
cold temperatures in terms of the s-wave scattering parameters
for collisions between the buffer-gas particles and the tracer
molecules in the different internal states.

The number of trapped molecules in experiments with
ultracold gases is continually decreasing because of inelastic
trap loss. There are different measures of coherence between
internal states that may be of interest, depending on the
experiment. In quantum computation, for example, the total
strength of the coherent signal relative to the size of the initial
ensemble may be important. In contrast, for an experiment that
is observing coherent oscillations arising from interference
between internal states, the quantity of interest may be
coherence within the trapped collection of molecules, and the
decreasing size of the trapped population may be irrelevant.
We derive two different measures of internal-state coherence
appropriate to each of these experimental scenarios and find the
temperature dependence of the decoherence rate at ultracold
temperatures. Our analysis is based on the replacement rule
approach of Hornberger and Sipe [21] and Adler [24]. It is
related to the work of Vacchini in Ref. [14], which provides
a general theory of collisional decoherence of internal states
with translational degrees of freedom fully decohered. Our
analysis differs from that in Ref. [14] in that we incorporate
the presence of inelastic trap loss to model experiments in
ultracold traps, and we consider a particular limit of low

1This is a common experimental situation; quantum condensates
are a noteworthy exception, and our analysis in this paper is not
applicable to such systems.

temperatures. Our results suggest a method for determining
scattering lengths of molecules in different states based on low-
temperature measurements of the temperature dependence of
decoherence-induced damping of coherent oscillations.

II. COLLISIONAL DECOHERENCE IN THE MOMENTUM
AND INTERNAL-STATE REPRESENTATION

We consider an ensemble of atoms or molecules of mass
M prepared at time t = 0 in an internal state characterized by
a reduced density matrix with elements ρνν ′ (0) and placed
in a bath of ultracold atoms of mass m. The quantum
number ν denotes an internal energy eigenstate with energy
εν . The initial internal state may be pure or mixed. If
there is initially coherence present between internal energy
eigenstates, decoherence occurs as a result of collisions with
buffer-gas atoms. The goal of this work is to calculate the time
evolution of the coherence between internal states ν and ν ′
using the measures of coherence defined in Sec. II C.

We make the following assumptions to model the conditions
of experiments with ultracold gases:

1. At t = 0 the bath particles and the tracer-particle
translational degrees of freedom are in thermal equilibrium
at the ultracold temperature T .

2. The tracer particle internal states |ν〉 are nondegenerate.
3. The buffer gas is sufficiently dilute that the time between

collisions is long compared to the duration of a collision. This
implies that we can neglect collisions involving three or more
particles.

4. The energy difference between the internal energy levels
of the tracer particle is large compared to the trap depth. As
a consequence, inelastic collisions transfer enough internal
energy to translational motion to eject both the tracer particle
and the buffer-gas particle involved in the collision from the
trap.

5. The collisions between buffer-gas particles keep them in
thermal equilibrium. Although three-body collisions may be
neglected, two-body collisions are sufficient to thermalize the
buffer gas. In addition, assumption (4) implies that there is no
heating of the trapped buffer gas by inelastic conditions. As a
result, we may treat the buffer-gas particle in every collision
as being drawn from the thermal equilibrium ensemble at
temperature T , which does not change in time.

6. The trapping potential is ignored: The trapped gas
is treated as a uniform gas in free space. This is a good
approximation, since trap dimensions are large compared to
relevant length scales for collisions and gas properties typically
vary slowly in space.

The tracer-particle state at time t � 0 is represented by
the reduced density operator ρ̂(t) with matrix elements
ρνν ′ (P,P′; t) = 〈Pν|ρ̂(t)|P′ν ′〉 in the momentum and internal-
state basis. The bath ensemble is described by the thermal
equilibrium density matrix corresponding to the bath temper-
ature T ,

ρ̂gas = (2πh̄)3

�

∫
d3p|p〉µ(p)〈p|, (1)

where

µ(p) = e−p2/2mkBT

(2πmkBT )3/2
, (2)
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and � is the system box volume. � is not to be confused with
the trap volume. It is imagined that the free-space system is
placed in a box of finite volume �, and the continuum limit is
obtained as � → ∞. � appears as a necessary normalization
factor.

At t = 0, the tracer particle density operator is

ρ̂(0) =
∑
νν ′

ρνν ′(0)|ν〉〈ν ′| ⊗ (2πh̄)3

�

×
∫

d3P
e−P 2/2MkBT

(2πMkBT )3/2
|P〉〈P|, (3)

where ρνν ′ (0) are the elements of the reduced density operator
that describes the initial internal state; hence ρνν ′ (0) = ρ∗

ν ′ν(0)
and 0 � ρνν ′ (0)ρν ′ν(0)/

√
ρνν(0)ρν ′ν ′ (0) � 1.

The internal state space of the tracer particle isHν . The state
spaces for the relative translational motion of the colliding pair
and the motion of the center of mass are respectively Hrel and
Hc.m..

A. Collisions without trap loss

The Hamiltonian for the two-particle system consisting of
a tracer particle and a buffer-gas particle is

H = H0 + V, (4)

where
H0 = H m

0 + H
gas
0 (5)

is the sum of the Hamiltonians of the free particles. H m
0 is the

Hamiltonian of the tracer molecule, H gas
0 is the Hamiltonian of

the buffer-gas atom, and V represents the interaction between
them.

At times long before and long after the collision, the
particles are well separated and the system’s evolution is
governed by the Hamiltonian H0. If the colliding particles
are in a pure quantum state, the two-particle state |�(t)〉 →
e−iH0t/h̄|�in〉 as t → −∞ for some |�in〉, and as t → ∞,
|�(t)〉 → e−iH0t/h̄|�out〉. The incoming and outgoing asymp-
totic trajectories are related by the two-particle scattering
operator S according to [35]

|�out〉 = S|�in〉. (6)

The duration of a collision is short compared to the time scales
of the experiments. We may thus regard a collision occurring
at time t as an effectively instantaneous transition between
the asymptotic trajectories e−iH0t/h̄|�in〉 → e−iH0t/h̄|�out〉 =
e−iH0t/h̄S|�in〉 = Se−iH0t/h̄|�in〉. The second equality is valid
because the S operator commutes with H0 [35].

If the incoming two-particle state is a mixed state described
by a density operator ρ̂pair, then the state after the collision is
given by the density operator

ρ̂pair′ = Sρ̂pairS†. (7)

The reduced one-particle density operator for the tracer-
particle state after the collision is obtained by tracing over
the degrees of freedom of the bath particle,

ρ̂ ′ = trgas{Sρ̂pairS†}. (8)

A collision will entangle the states of the tracer particle
with the buffer-gas particle. However, we are interested in

describing the ensemble of tracer particles only. This is
sufficient for the description of most experiments that do
not probe entanglement between the tracer particles and the
bath. It is possible that the tracer particle may encounter the
same bath particle more than once, but the bath particle will
have undergone further collisions, entangling its state with
those of other bath particles. There is no mechanism that can
systematically maintain coherence between the tracer-particle
and the gas-particle states between successive encounters of
the same particles. Thus, for each collision we may treat the
two-particle state of the colliding pair as the separable state
ρ̂pair = ρ̂ ⊗ ρ̂gas, and the tracer-particle state after the collision
is given in terms of the incoming state ρ̂ by

ρ̂ ′ = trgas[S(ρ̂ ⊗ ρ̂gas)S†], (9)

where S is the two-particle scattering operator that acts on the
space Hν ⊗ Hrel ⊗ Hc.m., and trgas indicates the trace over the
buffer-gas particle degrees of freedom. Collisions are classified
as either elastic, in which the internal state does not change,
or inelastic, in which it does. In the absence of trap loss, the
total number of molecules is conserved. Hence, probability is
conserved and the S operator is unitary.

The one-particle scattering operator S0 acts on the space
Hν ⊗ Hrel and [35]

S = 1c.m. ⊗ S0. (10)

The two-particle operator T is related to S by

S = 1 + iT . (11)

Similarly,

S0 = 1 + iT0, (12)

where T = 1c.m. ⊗ T0 and T0 is a one-particle operator with
matrix elements

〈p′ν ′|T0|pν〉 = m∗
2πh̄

δ(E′ − E)fν ′ν(p′,p). (13)

Here fν ′ν(p′,p) is the scattering amplitude for the transi-
tion (p′,ν ′) ← (p,ν) and m∗ = mM/(m + M) is the reduced
mass of the colliding pair. E′ = p′2/(2m∗) + εν ′ and E =
p2/(2m∗) + εν are the total energies for the states (p′,ν ′) and
(p,ν), respectively.

The time evolution of ρ̂ for tracer particles in free space
undergoing collisional decoherence with buffer-gas atoms is

d

dt
ρ̂ = − i

h̄

[
H m

0 ,ρ̂
] +

(
dρ̂

dt

)
coll

= − i

h̄

[
H m

0 + Hn,ρ̂
] + Lρ̂,

(14)

where (dρ̂/dt)coll arises from collisions and L is a dissipative
Lindblad operator [14,17,22,23]. For a tracer particle with
internal states, Vacchini presents a heuristic derivation of
Eq. (14), finding [14,23]

Hn = −2πh̄2 ngas

m∗

∑
νν′

εν=ε
ν′

×
∫

d3pµ(p)Re[fνν ′((rel(p,P̂),rel(p,P̂))] ⊗ |ν〉〈ν ′|
(15)
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and

Lρ̂ =
∑
�ε

∫
d3Q

∫
Q⊥

d2k[eiQ·R̂/h̄L(k,P̂; Q,�ε)ρ̂L†(k,P̂; Q,�ε)e−iQ·R̂/h̄]

− 1

2
[ρ̂L†(k,P̂; Q,�ε)L(k,P̂; Q,�ε) + L†(k,P̂; Q,�ε)L†(k,P̂; Q,�ε)ρ̂], (16)

where

L(p, P; Q,�ε) =
∑

νν′
�ε=εν−ε

ν′

fνν ′

(
rel(p⊥Q, P⊥Q) − Q

2
+ �ε

Q2/m∗
Q, rel(p⊥Q, P⊥Q) + Q

2
+ �ε

Q2/m∗
Q
)

×
[
ngasm

m2∗Q
µ

(
p⊥Q + m

m∗

Q
2

+ m

M
P‖Q + �ε

Q2/m∗
Q
)]1/2

⊗ |ν〉〈ν ′|. (17)

In Eqs. (15)–(17), P̂ and R̂ are, respectively, the momentum
and position operators for the tracer molecule,

rel(p,P) = m∗
m

p − m∗
M

P (18)

is the relative momentum between a buffer-gas atom and a
tracer molecule with respective momenta p and P, and P‖Q
and P⊥Q represent the components of P respectively parallel
to and perpendicular to Q (with similar notation for p⊥Q).
The integration with respect to k in Eq. (16) is over the two-
dimensional space perpendicular to Q.

B. Trap loss in inelastic collisions

We now include trap loss caused by inelastic collisions.
The S operator can be decomposed into parts corresponding
to elastic and inelastic collisions, as can ρ̂ ′ as given in Eq. (9).
We define the elastic part of the S operator,

Sel =
∑

ν

Sνν, (19)

where Sνν ′ = 〈ν|S|ν ′〉 is an operator on Hrel ⊗ Hc.m.. The
inelastic part is

S in = S − Sel =
∑
ν �=ν ′

Sνν ′ . (20)

Unlike S, the operator Sel is not unitary.
The νν ′ element of ρ̂(t) is ρ̂νν ′(t) = 〈ν|ρ̂(t)|ν ′〉, which is

an operator on the tracer-particle translational state space. The
elastic term in ρ̂ ′ is

ρ̂ ′el = trgas[S
el(ρ̂ ⊗ ρ̂gas)Sel†], (21)

and the νν ′ matrix element is

ρ̂ ′el
νν ′ = trgas[Sνν(ρ̂νν ′ ⊗ ρ̂gas)S†

ν ′ν ′] (22)

since Sel
νν = Sνν . The inelastic term is

ρ̂ ′in = ρ̂ ′ − ρ̂ ′el. (23)

ρ̂ ′el corresponds to the portion of the ensemble that remains
in the trap after the collision, while ρ̂ ′in describes particles
ejected from the trap.

The change of ρ̂ in a single collision is

�ρ̂ = ρ̂ ′ − ρ̂, (24)

and we may perform a similar decomposition of �ρ̂ into terms
caused by elastic collisions,

(�ρ̂)el = ρ̂ ′el − ρ̂, (25)

and those caused by inelastic collisions,

(�ρ̂)in = �ρ̂ − (�ρ̂)el. (26)

If we now consider the continuous-time evolution of the
ensemble of trapped tracer molecules, the number of molecules
in the trap will be continually decreasing owing to trap loss.
Experimental measurements can probe only the molecules
in the trap; hence we are interested in modeling only the
portion of the original ensemble that remains in the trap. The
unnormalized density operator ρ̂el(t) describes the collection
of molecules in the trap at time t . Since all of the sample
is trapped at t = 0, ρ̂el(0) = ρ̂(0). The fraction of the initial
sample still trapped at t is trρ̂el(t), where the trace is over the
internal and translational degrees of freedom. The molecules
ejected from the trap cannot be realistically modeled, nor
would it be of interest to do so since those molecules cannot
be probed by experiment. The ejected molecules vanish from
the continually depleting trapped ensemble described by ρ̂el,
but beyond this their state is not defined. The density operator
ρ̂(t), which would ordinarily describe the state at t of the
entire ensemble of molecules, is therefore not well defined
and is not a quantity of physical interest, since the outcome
of all measurements on molecules in the trap is described by
ρ̂el(t).

The reduced density matrix describing the internal state of
the trapped ensemble is Hermitian and has matrix elements
ρel

νν ′ (t) = ∫
d3Pρel

νν ′ (P,P; t). These are complex numbers and
should not be confused with the operators ρ̂el

νν ′ (t). With this
definition, ρel

νν ′ (0) = ρνν ′ (0) [cf. Eq. (3)].

C. Measures of coherence

There are two quantities of interest for characterizing the
degree of coherence between the internal states ν and ν ′ in the
trapped ensemble. The first is |ρel

νν ′ | [36] and the second is

ηνν ′ =
(

ρel
νν ′ρ

el
ν ′ν

ρel
ννρ

el
ν ′ν ′

)1/2

. (27)
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These are both nonnegative real numbers, and 0 � ηνν ′ � 1.
For trapped molecules in a pure state, |ρel

νν ′ | =
√
ρel

ννρ
el
ν ′ν ′ and

ηνν ′ = 1. When there is a complete absence of coherence
between the states ν and ν ′, both |ρel

νν ′ | and ηνν ′ are 0. Consider
an experiment performed on the molecules in the trap which
measures an observable Â = {Aνν ′ } that involves only the
internal but not the translational degrees of freedom. The terms
in the expectation value 〈Â〉 that depend on the coherence
between the states ν and ν ′ are (ρel

νν ′Aν ′ν + ρel
ν ′νAνν ′ )/trρ̂el =

2|ρel
νν ′ ||Aνν ′ | cos φ/trρ̂el for some phase angle φ. Coherence

in an experiment is often observed as temporal or spatial
oscillations (i.e., interference fringes) in the value of some
observable. Hence, ηνν ′ represents the ratio of the amplitude
of observed interference fringes between ν and ν ′ to their
maximum possible amplitude, which occurs when there is
perfect coherence. |ρel

νν ′ | is relevant for applications such
as quantum computation, where the size of the ensemble
is an important aspect of the coherent signal. Our goal is
to determine |ρel

νν ′ (t)| and ηνν ′(t), and we proceed by first
considering the time evolution of the density operator ρ̂el

νν ′ (t),
which describes translational as well as internal degrees of
freedom.

D. Master equation

In a collision with incoming density matrix ρ̂el, the change
�ρ̂el

νν ′ = ρ̂ ′el
νν ′ − ρ̂el

νν ′ is

�ρ̂el
νν ′ = trgas

[
i

2

[
(Tνν + T †

νν)
(
ρ̂el

νν ′ ⊗ ρ̂gas
)

− (
ρ̂el

νν ′ ⊗ ρ̂gas
)
(Tν ′ν ′ + T

†
ν ′ν ′ )

]
−1

2

(∑
ν ′′

T
†
νν ′′Tν ′′ν

(
ρ̂el

νν ′ ⊗ ρ̂gas
)

+ (
ρ̂el

νν ′ ⊗ ρ̂gas
)
T

†
ν ′ν ′′Tν ′′ν ′

)
+ Tνν

(
ρ̂el

νν ′ ⊗ ρ̂gas
)
T

†
ν ′ν ′

]
,

(28)

where we have used the relation

i(Tνν − T †
νν) = −

∑
ν ′′

T
†
ν ′′νTν ′′ν, (29)

which follows from the unitarity of the S matrix.
In the momentum representation, Eq. (28) takes the form

�ρel
νν ′(P,P′) = (2πh̄)3

�

{
ρel

νν ′ (P,P′)
∫

d3pµ(p)

[
i

2
[〈rel(p,P)ν|T0 + T

†
0 |rel(p,P)ν〉− 〈rel(p,P′)ν ′|T0 + T

†
0 |rel(p,P′)ν ′〉]

− 1

2

∫
d3Q

∑
ν ′′

[|〈rel(p − Q,P + Q)ν ′′|T0|rel(p,P)ν〉|2 +|〈rel(p − Q,P′ + Q)ν ′′|T0|rel(p,P′)ν ′〉|2]

]

+
∫

d3pµ(p)
∫

d3Qρel
νν ′ (P − Q,P′ − Q)〈rel(p − Q,P)ν|T0|rel(p,P − Q)ν〉

×〈rel(p,P′ − Q)ν ′|T †
0 |rel(p − Q,P′)ν ′〉

}
. (30)

Equation (30) contains terms of the form

〈pν|T0 + T
†

0 |pν〉 = m∗
2πh̄

δ(0)fνν(p,p) (31)

and

|〈p′ν ′′|T0|pν〉|2 = m2
∗

(2πh̄)2
δ2(E′ − E)|fν ′′ν(p′,p)|2, (32)

which contain the undefined quantities δ(0) and δ2(E′ − E).
Hornberger and Sipe [21] present a normalization rule appli-
cable to the single-collision expression Eq. (30). However,
we use an ultimately equivalent technique proposed by Adler
[24], in which the normalization is carried out simultaneously
with the passage from the single-collision expression to a
continuous-time equation for ∂

∂t
ρel(P,P′; t).

According to Adler’s method, on the left-hand side
of Eq. (30) we replace �ρel

νν ′ (P,P′) with �ρel
νν ′(P,P′) =

ρel
νν ′ (P,P′; t + �t) − ρel

νν ′ (P,P′; t), which is the change in the
density matrix due to collisions during a finite time interval �t

with a bath ensemble of one particle. The coarse-graining time
�t must be longer than the duration of a collision but short
compared to decoherence time scales [21,24]. The right-hand

side is multiplied by N , the number of bath particles in the
system volume �.

Adler shows that the square of the δ function can
be written as δ2(E′ − E) = δ(E′ − E)δ(0) and that the
appropriate choice for δ(0) is δ(0) = �t/(2πh̄). Hence,
δ2(E′ − E) = δ(p′ − p)�t/(4π2h̄2p). After dividing by
�t one equates [ρel

νν ′(P,P′; t + �t) − ρel
νν ′ (P,P′; t)]/�t =

[ ∂
∂t

ρel
νν ′ (P,P′; t)]coll, the collisional contribution to

∂

∂t
ρel

νν(P,P′; t) = − i

h̄

(
P 2

2M
+ εν − P ′2

2M
− εν ′

)
ρel

νν(P,P′; t)

+
[

∂

∂t
ρel

νν(P,P′; t)
]

coll

, (33)

with the other term arising from free Hamiltonian evolution.
Application of these manipulations to Eq. (30)

thus converts, on the left-hand side, �ρel
νν ′ (P,P′) −→

[ ∂
∂t

ρel
νν ′ (P,P′; t)]coll. On the the right-hand side the effected

conversions are

N
(2πh̄)3

�
〈pν|T0 + T

†
0 |pν〉 → 4πh̄

ngas

m∗
Refνν(p,p), (34)
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N
(2πh̄)3

�
|〈p′ν ′′|T0|pν〉|2

→ ngas

m∗p′ δ(p′ −
√

p2 + 2m∗(εν − εν ′′ ))|fν ′′ν(p′,p)|2,
(35)

where ngas = N/�.
This leaves the final term on the right-hand side of Eq. (30),

which contains the expression 〈rel(p − Q,P)ν|T0|rel(p,P −
Q)ν〉〈rel(p,P′ − Q)ν ′|T †

0 |rel(p − Q,P′)ν ′〉, in which the initial
momenta are different for the two matrix elements. For the
decoherence of internal-state superpositions we are interested
in the reduced density matrix for internal states having
matrix elements ρel

νν ′ (t) = ∫
d3Pgνν ′ (P,t), where gνν ′ (P,t) =

ρel
νν ′ (P,P; t). Equation (30) established that evolution of the

elements of the main diagonal gνν ′(P; t) is independent of
the off-diagonal elements ρel

νν ′ (P,P′; t), P �= P′. It is therefore
sufficient to consider the restriction of Eq. (30) to the P =
P′ case, thereby avoiding concerns about the extension of
Eq. (35) to off-diagonal terms. With straightforward changes
of variable, the resulting equation for full evolution is

∂

∂t
gνν ′(P,t) = i

h̄
(εν ′ − εν)gνν ′(P,t) + ngas

m∗
(1 + r)3

[
gνν ′(P,t)

×
∫

d3pµ [(1 + r)p + rP]
(

2πh̄iRe[fνν(p,p)

− fν ′ν ′ (p,p)] − p

2

[
σ tot

ν (p) + σ tot
ν ′ (p)

])
+

∫
d3pd2n̂µ [r (P + pn̂) + p] gνν ′(P − p

+ pn̂,t)pfνν(pn̂,p)f ∗
ν ′ν ′(pn̂,p)

]
, (36)

where we have defined r = m/M . The total cross section for
scattering in state ν with pairwise relative momentum p,

σ tot
ν (p) =

∫
d2n̂

∑
ν ′′

√
p2 + 2m∗(εν − εν ′′ )

p

× |fν ′′ν(
√

p2 + 2m∗(εν − εν ′′ )n̂,p)|2, (37)

is related to the scattering amplitude in the forward direction
by the optical theorem σ tot

ν (p) = (4πh̄/p)Imfνν(p,p), which
has been used in Eq. (36).

The evolution of ρ̂el is not trace preserving because of
trap loss in inelastic collisions. Hence there is no equation in
Lindblad form for ρ̂el such that Eq. (36) can be obtained as its
(Pν,Pν ′) matrix element.

With s-wave scattering only, fνν(p′,p) = fνν(p). At low
momenta the s-wave scattering amplitude may be expanded as

fνν(p) = −aν + bνp + cνp
2 + · · ·

= −(αν − iβν) + (
br

ν + ibi
ν

)
p + · · · , (38)

where the coefficients are in general complex and aν is the
complex s-wave scattering length for particles in state ν [37].
The sign of aν and the notation αν and −βν for the real and
imaginary parts of the scattering length are conventional.

The elastic cross section is σ el
ν (p) = ∫

d2n̂|fνν(pn̂,p)|2
and the inelastic cross section σ in

ν (p) = σ tot
ν (p) − σ el

ν (p). At
leading orders in p, with the assumption of s-wave scattering
only,

σ tot
ν (p) = 4πh̄

p

(
βν + bi

νp + ci
νp

2 + · · · ), (39)

σ el
ν (p) = 4π [|aν |2 + (−aνb

∗
ν − a∗

ν bν)p + · · ·], (40)

σ in
ν (p) = 4π

(
h̄

βν

p
+ h̄bi

ν − |aν |2 + · · ·
)

. (41)

Because a cross section cannot be negative, βν � 0.
We will also use the expansion

|fνν(p) − fν ′ν ′ (p)|2
= |aν − aν ′ |2 − 2Re[(aν − aν ′ )(b∗

ν − b∗
ν ′ )]p

+ {|bν − bν ′ |2 − 2Re[(aν − aν ′ )(c∗
ν − c∗

ν ′ )]}p2 + · · · .
(42)

III. TEMPERATURE DEPENDENCE OF DECOHERENCE

At this point it is convenient to introduce dimensionless
variables. We introduce a characteristic length l, which
we leave unspecified, that will drop out before the
final results. We define a dimensionless temperature
θ = 2mkBT l2/h̄2, Q = Pl/(h̄

√
θ ), τ = th̄ngasl/m, and

γνν ′ (Q,τ ) = (h̄
√

θ/ l)3gνν ′(Ph̄
√

θ/ l,τ [h̄ngasl/m]−1). These
scalings have been chosen so that the independent variables
describing the particle masses are m and r = m/M , a property
that will be used in Sec. IV.

In the scaled variables Eq. (36) is

d

dτ
γνν ′ (τ ) = G[γνν ′(τ )], (43)

where we have suppressed the Q argument, thereby indicating
that we are considering the function γ (τ ) = γ (·,τ ) as an
object that may be distinguished from its value evaluated at Q,
γ (Q,τ ). The linear operator G acts on a function h(Q) as

G[h](Q) = i
(εν ′ − εν)m

h̄2ngasl
h(Q) + (1 + r)4

⎡
⎣h(Q)

∫
d3q2πi

⎛
⎝fνν

(
h̄θ1/2

l
q, h̄θ1/2

l
q
)

− f ∗
ν ′ν ′

(
h̄θ1/2

l
q, h̄θ1/2

l
q
)

l

⎞
⎠ e−[rQ+(1+r)q]2

π3/2

+ θ1/2
∫

d3qd2n̂
fνν

(
h̄θ1/2

l
qn̂, h̄θ1/2

l
q
)

f ∗
ν ′ν ′

(
h̄θ1/2

l
qn̂, h̄θ1/2

l
q
)

l2
h(Q − q + qn̂)q

e−(rQ+rqn̂+q)2

π3/2

⎤
⎦ . (44)
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G depends on ν and ν ′ but we suppress this in the notation for
clarity. The initial conditions implied by Eq. (3) are

γ (Q,0) = ρνν ′ (0)
( r

π

)3/2
e−rQ2

. (45)

Applying the assumption that there is only s-wave scatter-
ing, we substitute Eq. (38) into Eq. (44). Since p = h̄

√
θq/l,

we obtain an expansion in powers of θ1/2:

G = G0 + θ1/2G1 + θG2 + · · · , (46)

where

G0[h](Q) = κνν ′
0 h(Q) (47)

with

κνν ′
0 = i

(εν ′ − εν)m

h̄2ngasl
− 2πi(aν − a∗

ν ′ )(1 + r)

l
(48)

and

G1[h](Q)

= (1 + r)4

(
2π

ih̄(bν − b∗
ν ′)

l2
h(Q)

∫
d3qq

e−[rQ+(1+r)q]2

π3/2

+ aνa
∗
ν ′

l2

∫
d3qd2n̂ qh(Q − q + qn̂)

e−(rQ+rqn̂+q)2

π3/2

)
,

(49)

and

G2[h](Q)

= (1 + r)4

(
h(Q)2πi

h̄2(cν − c∗
ν ′ )

l3

∫
d3qq2 e−[rQ+(1+r)q]2

π3/2

+ h̄(−aνb
∗
ν ′ − bνa

∗
ν ′ )

l3

∫
d3qd2n̂ h(Q − q + qn̂)

× q2 e−(rQ+rqn̂+q)2

π3/2

)
. (50)

For notational brevity, we define
∫

h ≡ ∫
d3Qh(Q) for

any function h(Q). The zeroth-order truncation of Eq. (43)
has solution γνν ′(τ ) = γνν ′(0)eκνν′

0 τ and yields ρνν ′ (τ ) =
ρνν ′ (0)eκνν′

0 τ . Observe that

Re κνν ′
0 = −2π (βν + βν ′)/l � 0; (51)

hence eκνν′
0 τ is a decaying term except when equality holds,

which occurs when the leading order of inelastic scattering
vanishes for both internal states. The solution of Eq. (43) has
the form γνν ′(τ ) = eκνν′

0 τFνν ′(τ ), where

d

dτ
Fνν ′(τ ) = θ1/2G1[Fνν ′] + θG2[Fνν ′] + · · · . (52)

Fνν ′(τ ) in general does not describe simple exponential decay.
Even if we truncate the right-hand side at order θ1/2, Eq. (52)
is difficult to solve because of the complicated form of G1.
Instead, we adopt a perturbation approach to the analysis of
Eq. (43), expanding

γνν ′ = γ νν ′
0 + θ1/2γ νν ′

1 + θγ νν ′
2 + · · · . (53)

Substituting this and Eq. (46) into Eq. (43), we obtain

d

dτ
γ νν ′

0 + θ1/2 d

dτ
γ νν ′

1 + · · ·

= G0[γ νν ′
0 ] + θ1/2(G0[γ νν ′

1 ] + G1[γ νν ′
0 ]) + · · · . (54)

The initial conditions are γ νν ′
0 (0) = γνν ′(0) and γ νν ′

k (0) = 0 for
k � 1. Equating coefficients of like powers of θ1/2 and solving
at the lowest three orders, we obtain

γ νν ′
0 (τ ) = eκνν′

0 τ γνν ′(0), (55)

γ νν ′
1 (τ ) = τeκνν′

0 τG1[γνν ′(0)], (56)

γ νν ′
2 (τ ) = eκνν′

0 τ
(
τG2[γνν ′(0)] + 1

2τ 2G1[G1[γνν ′(0)]]
)
.

(57)

These are the leading terms in the expansion of eGτ [γνν ′(0)],
which is the formal solution to Eq. (43).

We substitute Eqs. (55) and (56) into Eq. (53), and integrate
over Q. The integrals in the resulting expression are∫

G1
[
γ νν ′

0 (0)
]

= 2(1 + r)1/2

π1/2

(
2πih̄(bν − b∗

ν ′) + 4πaνa
∗
ν ′

l2

)
ρνν ′ (0),

(58)∫
G2

[
γ νν ′

0 (0)
]

= 3[2πih̄2(cν − c∗
ν ′ ) − 4πh̄(aνb

∗
ν ′ + bνa

∗
ν ′ )]

2l3
ρνν ′ (0),

(59)∫
G1

[
G1

[
γ νν ′

0 (0)
]]

= 1

π

(
2πih̄(bν − b∗

ν ′ ) + 4πaνa
∗
ν ′

l2

)2

×
(

3(2r + 1)1/2 + 1 + 2r + 3r2

r
sin−1 r

r + 1

)
ρνν ′ (0).

(60)

The evaluation of Eq. (60) is discussed in the Appendix.
Converting back to unscaled variables and using

Eqs. (58)–(60), we obtain

ρel
νν ′ (t) = ezνν′

0 t ρνν ′ (0)
[
1 + T 1/2zνν ′

1 t

+ T

(
zνν ′

2,1t + zνν ′
2,2

t2

2

)
+ · · ·

]
, (61)

where

zνν ′
0 = i(εν ′ − εν)

h̄
− 2πi(aν − a∗

ν ′ )h̄ngas

m∗
, (62)

zνν ′
1 = 25/2π1/2k

1/2
B ngas

m
1/2
∗

[ih̄(bν − b∗
ν ′ ) + 2aνa

∗
ν ′ ], (63)

zνν ′
2,1 = 6πngaskBr3/2[ih̄(cν − c∗

ν ′ ) − 2(aνb
∗
ν ′ + bνa

∗
ν ′ )],

(64)
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and

zνν ′
2,2 = 8πkBn2

gas

m

(
3(2r + 1)1/2 + 1 + 2r + 3r2

r
sin−1 r

r + 1

)
× [ih̄(bν − b∗

ν ′) + 2aνa
∗
ν ′ ]2. (65)

Note that

Re zνν ′
0 = −2πh̄ngas

m∗
(βν + βν ′ ) � 0. (66)

Referring to Eq. (41), we observe that equality occurs when
the coefficient of the p−1 term vanishes in both σ in

ν (p) and
σ in

ν ′ (p). As well,

Re zνν ′
1 = 25/2π1/2k

1/2
B ngas

m
1/2
∗

× (−h̄bi
ν + |aν |2 − h̄bi

ν ′ + |aν ′ |2 − |aν − aν ′ |2).
(67)

Note from Eq. (41) that h̄bi
ν − |aν |2 is the coefficient of the

p-independent term of σ in
ν (p). If these coefficients are noneg-

ative for σ in
ν and σ in

ν ′ , then Re zνν ′
1 � 0. The nonnegativity

of σ in is not sufficient to establish the nonnegativity of the
p-independent coefficient. On physical grounds the inequality
is expected to hold.

A. Total coherent signal

The first of the two measures of coherence between the
states |ν〉 and |ν ′〉 that we calculate is

∣∣ρel
νν ′ (t)

∣∣ =
√

ρel
νν ′ (t)ρel

ν ′ν(t). (68)

From Eq. (61) and the small-|x| expansion (1 + x)1/2 = 1 +
x/2 − x2/8 + · · ·, we find∣∣ρel

νν ′ (t)
∣∣ = |ρνν ′ (0)|e−ζ νν′

0 t

[
1 + ζ νν ′

1 T 1/2t

+ T

(
ζ νν ′

2,1 t + ζ νν ′
2,2

t2

2

)
+ · · ·

]
(69)

with

ζ0 = −Re zνν ′
0 , (70)

ζ1 = Re zνν ′
1 , (71)

ζ2,1 = Re zνν ′
2,1, (72)

and

ζ2,2 = Re zνν ′
2,2 + (

Im zνν ′
1

)2
. (73)

Differentiation of Eq. (69) gives

d

dt

∣∣ρel
νν ′ (t)

∣∣ = |ρνν ′(0)|e−ζ0t

{
−ζ0 + ζ1(1 − ζ0t)T

1/2

+ T

[
ζ2,1(1 − ζ0t) + ζ2,2

(
t − ζ0t

2

2

)]
+ · · ·

}
.

(74)

The T -independent leading term is the result of trap loss from
inelastic collisions.

 0

 0.25

 0.5

 0  1  2  3

T
1/

2
|ζ

1|
ζ 0-1

ζ0 t

FIG. 1. The curves are |ζ1||1 − ζ0t |T 1/2 = 0.1ζ0 (solid), T 1/2 =
0.1ζ0/|ζ1| (dashed), and t = 0.1(|ζ1|T 1/2)−1 (dotted).

It is interesting to determine when the T 1/2-dependent term
may be neglected in comparison with the T -independent term.
This occurs when

|ζ1(1 − ζ0t)|T 1/2 � ζ0. (75)

This condition is met for a time interval beginning at t = 0
when

T 1/2 � ζ0

|ζ1| (76)

and remains valid while

t � 1

|ζ1|T 1/2
. (77)

The regions of the (t,T 1/2) space satisfying Eqs. (75)–(77) are
shown in Fig. 1.

It is noteworthy that the T 1/2 term becomes significant
given sufficiently long time rather than remaining negli-
gible indefinitely. Equation (43) does not describe simple
exponential decay. In the perturbation formulation, we may
attribute the increasing θ1/2 term to the cumulative effect
of the θ1/2 component G1 of the time evolution operator
G. The θ -independent component G0 of the operator G of
Eq. (43) causes the pseudodistribution γνν ′(Q) to be scaled by
a Q-independent factor, but there is no change in its shape.
G1 contains two terms [see Eq. (49)], the first of which
corresponds to Q-dependent decay. The second term describes
Q-dependent decay and also the “redistribution” of γνν ′(Q) be-
tween different Q values because of thermalization, indicated
by the Q-dependent convolution appearing in the term. These
effects change the shape of γνν ′(Q) as opposed to scaling it by
a constant. Their cumulative contribution will be negligible at
short times but significant at sufficiently long times.

B. Relative coherence in a trapped sample

The time-dependent relative coherence between the states
|ν〉 and |ν ′〉 in the trapped sample is found by substitut-
ing Eq. (61) into Eq. (27). We use the small-|x| expan-
sions of (1 + x)1/2 and (1 + x)−1/2 = 1 − x/2 + 3x2/8 + · · ·,
and observe that (zνν ′

0 + zν ′ν
0 − zνν

0 − zν ′ν ′
0 )/2 = 0 and

ρ
1/2
νν ′ (0)ρ1/2

ν ′ν (0)ρ−1/2
νν (0)ρ−1/2

ν ′ν ′ (0) = ηνν ′(0). We obtain

ηνν ′ (t) = ηνν ′(0)

[
1 + T 1/2tξ1 + T

(
ξ2,1t + t2

2
ξ2,2

)
+ · · ·

]
,

(78)
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where the real-valued coefficients

ξ1 = zνν ′
1 + zν ′ν

1 − zνν
1 − zν ′ν ′

1

2
= −25/2π1/2ngask

1/2
B

m
1/2
∗

|aν − aν ′ |2, (79)

ξ2,1 = zνν ′
2,1 + zν ′ν

2,1 − zνν
2,1 − zν ′ν ′

2,1

2
= 12πngaskBr3/2Re[(aν − aν ′ )(b∗

ν − b∗
ν ′ )], (80)

ξ2,2 = zνν ′
2,2 + zν ′ν

2,2 − zνν
2,2 − zν ′ν ′

2,2

2
+ 2

[(
zνν

1

)2 + (
zν ′ν ′

1

)2 − (
zνν ′

1

)2 − (
zν ′ν

1

)2] + [
zνν ′

1 + zν ′ν
1 − (

zνν
1 + zν ′ν ′

1

)]2

4

= −8πkBn2
gas

m

[
3(2r + 1)1/2 + 1 + 2r + 3r2

r
sin−1

(
r

r + 1

)
− 4(1 + r)

]
{|h̄(bν − bν ′)|2 − 4 Im[h̄(bνaν − bν ′aν ′ )(a∗

ν − a∗
ν ′ )]

+ 2|aν − aν ′ |2|aν + aν ′ |2} + 32π3n2
gaskB

m∗
|aν − aν ′ |4. (81)

ξ1 � 0, while the signs of ξ2,1 and ξ2,2 are unconstrained.
Observe the appearance of coefficients from Eq. (42) in
Eqs. (79) and (80).

The decoherence rate is
d

dt
ηνν ′(t) = ηνν ′(0)

[
T 1/2ξ1 + T (ξ2,1 + tξ2,2) + · · ·] . (82)

We wish to determine when the T -dependent contribution
to decoherence as measured by ηνν ′(t) may be neglected
by comparison with the T 1/2-dependent contribution. The
condition that must be satisfied is

T 1/2|ξ2,1 + tξ2,2| � |ξ1|, (83)

from which it follows that it is sufficient that both

T 1/2 � |ξ1|
|ξ2,1| = 21/2|aν − aν ′ |2

3π1/2k
1/2
B m

1/2
∗ r3/2|Re[(aν − aν ′ )(b∗

ν − b∗
ν ′ )]|

(84)

and

t � |ξ1|
|ξ2,2|T 1/2

. (85)

Figure 2 illustrates the regions corresponding to Eqs. (83)–(85)
for the case where ξ2,1 and ξ2,1 have the same sign. In

obtaining Eq. (85), unity has been neglected in compari-
son with T 1/2|ξ2,2|/|ξ2,1|, which results in a less restrictive
condition, indicated in Fig. 2 by the solid curve lying
above the dotted curve. This is permissible because these
conditions are order of magnitude estimates rather than strict
inequalities.

IV. LIGHT BUFFER-GAS PARTICLE

Helium is a likely choice for the buffer gas in experiments,
so the low-r regime, corresponding to a light buffer-gas parti-
cle, is of particular interest. Since there are two independent
mass variables, the r → 0+ limit may be approached along
different paths in the two-dimensional space. The behavior as
r → 0+ with M held constant is highly singular. We consider
the limit as r → 0+ with m constant, which will allow us to
obtain low-r approximations and conditions for their validity.
The reduced variables introduced in Sec. III were chosen to
make r and m independent variables.

Beginning from Eq. (43), we make the low-r expansion

G = i
(εν ′ − εν)m

h̄2ngasl
+ G̃0 + rG̃1 + r2G̃2 + · · · , (86)

where for a function h(Q)

G̃k[h](Q) = h(Q)
∫

d3q
2πi

[
fνν

(
h̄θ1/2

l
q, h̄θ1/2

l
q
)

− f ∗
ν ′ν ′

(
h̄θ1/2

l
q, h̄θ1/2

l
q
)]

l

e−q2

π3/2
Gk(Q,q,q̂)

+ θ1/2
∫

d3qd2n̂
fνν

(
h̄θ1/2

l
qn̂, h̄θ1/2

l
q
)

f ∗
ν ′ν ′

(
h̄θ1/2

l
qn̂, h̄θ1/2

l
q
)

l2
q

e−q2

π3/2
Gk(Q,q,n̂)h(Q − q + qn̂) (87)

and

G0(Q,q,n̂) = 1, (88)
G1(Q,q,n̂) = 4 − 2q · (Q + qn̂), (89)

G2(Q,q,n̂) = 6 + 2[q · (Q + qn̂)]2 − (Q + qn̂)2

− 8q · (Q + qn̂). (90)

052701-9



C. J. HEMMING AND R. V. KREMS PHYSICAL REVIEW A 81, 052701 (2010)

Owing to the complicated structure of the operators G̃k , a per-
turbation expansion in small r does not lead to anything useful.

Inserting Eq. (86) into Eq. (43) and integrating over Q, we
obtain

d

dτ
ρel

νν ′ (τ ) = i
(εν ′ − εν)m

h̄2ngasl
ρel

νν ′ (τ ) +
∫

d3Qγνν ′(Q,τ )
∫

d3q
e−q2

π3/2
[G0(Q,q,q̂) + rG1(Q,q,q̂) + r2G2(Q,q,q̂) + · · ·]

×
⎧⎨
⎩

2πi
[
fνν

(
h̄θ1/2

l
q, h̄θ1/2

l
q
)

− f ∗
ν ′ν ′

(
h̄θ1/2

l
q, h̄θ1/2

l
q
)]

l
+ qθ1/2

∫
d2n̂

fνν

(
h̄θ1/2

l
qn̂, h̄θ1/2

l
q
)

f ∗
ν ′ν ′

(
h̄θ1/2

l
qn̂, h̄θ1/2

l
q
)

l2

⎫⎬
⎭ .

(91)

If the quantity in braces is independent of q̂, then q̂ · Q̂ averages to zero over one of the angular integrations, and the integrals
of the terms containing Q in Gk(Q,q,q̂) vanish for k = 0 and 1. Hence the q integral will be independent of Q. This spherical
symmetry condition is satisfied at ultracold temperatures. In this case,

d

dτ
ρel

νν ′ (τ ) =
(

i
(εν ′ − εν)m

h̄2ngasl
+ wνν ′

0

)
ρel

νν ′ (τ ) + rwνν ′
1 ρel

νν ′(τ ) + r2
∫

G̃2[γνν ′(τ )] + · · · , (92)

where

wk =
∫

d3q
e−q2

π3/2
(4 − 2q2)k

⎧⎨
⎩

2πi
[
fνν

(
h̄θ1/2

l
q, h̄θ1/2

l
q
)

− f ∗
ν ′ν ′

(
h̄θ1/2

l
q, h̄θ1/2

l
q
)]

l

+ qθ1/2
∫

d2n̂
fνν

(
h̄θ1/2

l
qn̂, h̄θ1/2

l
q
)

f ∗
ν ′ν ′

(
h̄θ1/2

l
qn̂, h̄θ1/2

l
q
)

l2

⎫⎬
⎭ . (93)

The evolution of ρel
νν ′ (τ ) is exponential up to the first order

in r .
At ultracold temperatures we may use Eq. (38). We obtain

the expansions

wνν ′
0 = −2π

i(aν − a∗
ν ′ )

l
+ θ1/24π1/2 [ih̄(bν − b∗

ν ′) + 2aνa
∗
ν ′ ]

l2

+ θ3π
[ih̄2(cν − c∗

ν ′ ) − 2h̄(aνb
∗
ν ′ + bνa

∗
ν ′ )]

l3
+ · · · ,

(94)

 0
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 0  1  2  3

T
1/

2 |ξ
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FIG. 2. The curves are T 1/2|ξ2,1 + tξ2,2| = 0.1|ξ1| (solid), T 1/2 =
0.1|ξ1|/|ξ2,1| (dashed), and t = 0.1|ξ1|/(|ξ2,2|T 1/2) (dotted). The case
depicted is that in which ξ2,1 and ξ2,2 have the same sign.

wνν ′
1 = −2π

i(aν − a∗
ν ′ )

l
− θ3π

× [ih̄2(cν − c∗
ν ′ ) − 2h̄(aνb

∗
ν ′ + bνa

∗
ν ′ )]

l3
+ · · · . (95)

A. Total coherent signal

Using the relationship

d

dτ

∣∣ρel
νν ′ (τ )

∣∣
= 1

2
∣∣ρel

νν ′ (τ )
∣∣
(

ρel
ν ′ν(τ )

d

dt
ρel

νν ′ (τ ) + ρel
νν ′ (τ )

d

dt
ρel

ν ′ν(τ )

)
(96)

and Eq. (92), we obtain

d

dτ

∣∣ρel
νν ′ (τ )

∣∣ = Re wνν ′
0

∣∣ρel
νν ′

∣∣ + rRe wνν ′
1

∣∣ρel
νν ′

∣∣ + r2∣∣ρel
νν ′

∣∣
× Re

(
ρel

ν ′ν

∫
G̃2[γνν ′(τ )]

)
+ · · · . (97)

The complicated form of the operators G̃k prevents us
from finding conditions for the validity of the first-order
approximation. We will establish conditions for the validity
of the zeroth-order approximation.
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The r-dependent term is negligible relative to the
r-independent term when

r �
∣∣∣∣∣Re wνν ′

0

Re wνν ′
1

∣∣∣∣∣
=

∣∣∣∣∣1 + (kBT )1/2 23/2m1/2
[
h̄
(
bi

ν + bi
ν ′
)− 2(αναν ′ + βνβν ′)

]
π1/2h̄(βν + βν ′ )

+ kBT
6m

[
h̄2

(
ci
ν + ci

ν ′
)+ 2h̄Re(aνb

∗
ν ′ + bνa

∗
ν ′)

]
h̄2(βν + βν ′ )

+ · · ·
∣∣∣∣∣ .

(98)

The coefficient of the T 1/2-dependent term in Eq. (98) is
positive (except in the special case when both the numerator
and denominator vanish, which we do not consider further);
thus at low temperatures the mass ratio r at which the
zeroth-order approximation is valid increases with increasing
temperature. The T 1/2-dependent term is insignificant with
respect to the T -independent term when

(kBT )1/2 � π1/2h̄(βν + βν ′ )

23/2m1/2
[
h̄
(
bi

ν + bi
ν ′
) − 2(αναν ′ + βνβν ′)

] .
(99)

When Eq. (99) holds, then the condition for validity of the
zeroth-order approximation, Eq. (98), becomes

r � 1. (100)

The exponential decay constant for the zeroth-order approxi-
mation for the unscaled time variable t is then

λ1 = −h̄ngasl

m
Re wνν ′

0 � ngas
2πh̄(βν + βν ′ )

m
, (101)

where the validity of Eq. (99) has enabled us to drop the
T 1/2-dependent and higher terms in the small-T expansion of
λ1. The factor h̄ngasl/m comes from the conversion from the
τ time scale to t . At zeroth order in r , the decrease in |ρel

νν ′ | is
determined entirely by the leading-order terms of the inelastic
scattering cross sections.

It is possible that, as in Sec. III, there is a cutoff time
for the validity of the zeroth-order approximation because of
the nonexponential forms of Eqs. (92) and (97). However,
because the complicated forms of the G̃k preclude solving for
γνν ′(t), we cannot estimate the length of time for which the
approximation is valid.

B. Relative coherence in a trapped sample

Differentiating Eq. (27) and using Eq. (92), we obtain
d

dτ
ηνν ′(τ ) = ω0ηνν ′(τ ) + rω1ηνν ′(τ ) + r2

(∫
G̃2[γνν ′(τ )]

ρνν ′ (τ )

+
∫

G̃2[γν ′ν(τ )]

ρν ′ν(τ )
−

∫
G̃2[γνν](τ )

ρνν(τ )

−
∫

G̃2[γν ′ν ′](τ )

ρν ′ν ′(τ )

)
ηνν ′(τ ) + · · · , (102)

where

ωk = wνν ′
k + wν ′ν

k − wνν
k − wν ′ν ′

k

2

= − θ1/2

2π3/2l2

∫
d3qq(4 − 2q2)ke−q2

×
∫

d2n̂

∣∣∣∣fνν

(
h̄θ1/2

l
qn̂,

h̄θ1/2

l
q
)

− fν ′ν ′

(
h̄θ1/2

l
qn̂,

h̄θ1/2

l
q
)∣∣∣∣

2

� 0 (103)

for k = 0 and 1. As before, the decay of coherence is
exponential up to first order in r regardless of the temperature,
and we cannot determine conditions for the validity of the
first-order approximation. We find

ω0 = −4π1/2θ1/2

l2
|aν − aν ′ |2

+ 6πh̄θ

l3
Re[(aν − aν ′)(b∗

ν − b∗
ν ′ )] + · · · , (104)

ω1 = −6πh̄θ

l3
Re[(aν − aν ′ )(b∗

ν − b∗
ν ′ )]

+ 16π1/2θ3/2h̄2

l4
{|bν − bν ′ |2

− 2Re[(aν − aν ′)(c∗
ν − c∗

ν ′ )]} + · · · . (105)

The r-dependent term is negligible compared to the
r-independent term when

r �
∣∣∣∣ω0

ω1

∣∣∣∣ =
∣∣∣∣ −2|aν − aν ′ |2
3π1/2(2mkBT )1/2Re[(aν − aν ′ )(b∗

ν − b∗
ν ′ )]

+ 1

− 16|aν − aν ′ |2{|bν − bν ′ |2 − 2Re[(aν − aν ′ )(c∗
ν − c∗

ν ′ )]}
9π{Re[(aν − aν ′ )(b∗

ν − b∗
ν ′ )]}2

+ · · ·
∣∣∣∣. (106)

The last expression is an expansion at small T 1/2 using
Eq. (38), which has been obtained with the ultracold tem-
perature assumption that there is only s-wave scattering. The
terms after the first may be ignored when

(2mkBT )1/2 �
2|aν−aν′ |2

3π1/2|Re[(aν−aν′ )(b∗
ν−b∗

ν′ )]|∣∣∣∣1 − 16|aν−aν′ |2{|bν−bν′ |2−2Re[(aν−aν′ )(c∗
ν−c∗

ν′ )]}
9π{Re

[
(aν−aν′ )(b∗

ν−b∗
ν′ )

]}2

∣∣∣∣
,

(107)

in which case the condition Eq. (106) for the validity of the
approximation at zeroth order in r becomes

m3/2 � 2|aν − aν ′ |2M
3π1/2(2kBT )1/2|Re[(aν − aν ′ )(b∗

ν − b∗
ν ′ )]| .

(108)

The exponential decay constant for ηνν ′ in the zeroth-order
approximation for the unscaled time variable t is

λ2 = −h̄ngasl

m
ω0

= ngas

m
((2mkBT )1/2 4π1/2|aν − aν ′ |2

− (2mkBT )6πRe[(aν − aν ′ )(b∗
ν − b∗

ν ′ )]

+ (2mkBT )3/28π1/2{|bν − bν ′ |2

− 2Re[(aν − aν ′ )(c∗
ν − c∗

ν ′ )]} + · · ·). (109)
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Satisfying Eq. (107) is not sufficient to determine the order of
(2mkBT )1/2 at which this expansion may be terminated. If the
denominator on the right-hand side of Eq. (107) is comparable
to or greater than unity, then all terms after the first may be
ignored.

The remarks at the end of Sec. IV A regarding possible
cutoff times for the validity of the zeroth-order approximation
also apply to the approximation in this section.

V. CONCLUSION

The decoherence of trapped particles prepared in a coherent
superposition of internal states as a result of collisions with
buffer gas atoms at very low temperatures is described by
Eqs. (74) and (82). The time evolution of the coherence
between the internal states ν and ν ′ is parametrized by the
complex scattering lengths of the particles in these two states
and the other coefficients in the expansions of the s-wave
scattering amplitudes fνν(p) and fν ′ν ′(p) given in Eq. (38).
Given these scattering parameters, Eqs. (74) and (82) can be
used to calculate the decoherence rates, taking into account
elastic collisions as well as inelastic contributions. These
equations and their time-integrated forms, Eqs. (69) and (78),
show that coherence between the internal states of the trapped
tracer molecules, and its time evolution, can be represented
in the limit of low temperatures as an expansion in powers of
T 1/2. Regardless of the temperature, in both Eqs. (74) and (82),
terms with higher-order T 1/2 dependence become significant
given sufficient time.

Equation (74) describes the time evolution of the magnitude
of the off-diagonal reduced matrix element |ρel

νν ′ | that charac-
terizes the total coherent signal between the internal states ν

and ν ′. This quantity depends on the size of the remaining
trapped population relative to the original number of trapped
molecules at t = 0. Equation (74) is a low-T expansion of
d
dt

|ρel
νν ′ | in powers of T 1/2. The leading term in the expansion

of d
dt

|ρel
νν ′ | in powers of T 1/2 is a temperature-independent

term arising from trap loss caused by inelastic collisions. It is
determined by the complex parts of the scattering lengths of
the states ν and ν ′, which are measures of the low-temperature
inelastic scattering cross section [cf. Eq. (41)]. If βν = βν ′ = 0,
then the inelastic cross sections vanish at the leading order
in the collision momentum p, and the lowest-order term in
d
dt

|ρel
νν ′ | varies as T 1/2. The T -independent term varies as

m−1
∗ and the T 1/2-independent term varies as m

1/2
∗ ; hence

loss of coherent signal is slower for heavier tracer molecules
or buffer-gas atoms. This is because the mean velocity of a
heavier particle is slower for a given temperature and hence
the collision rate is lower.

Equations (76) and (77) give conditions on temperature
and time for which the decay of |ρel

νν ′ | may be approximated
by the temperature-independent term of Eq. (74). The regions
of (t,T 1/2) space satisfying these conditions are indicated in
Fig. 1.

Equation (82) gives the time dependence of ηνν ′(t), which
is the fraction of coherence between states ν and ν ′ in the
trapped ensemble relative to that of a pure state. The quantity
ηνν ′ depends only on the state of the trapped ensemble and
not on the size of the trapped sample relative to the original

population. As a consequence, the expansion of d
dt

ηνν ′ in
powers of T 1/2 has no T -independent term. The leading-order
term has T 1/2 dependence. It is determined by the square
magnitude of the difference in complex scattering lengths
between the states ν and ν ′, |aν − aν ′ |2 = (αν − αν ′ )2 + (βν −
βν ′ )2, and therefore depends on both elastic and inelastic
scattering properties.

If both of the scattering lengths are equal in their real and
imaginary parts, Eq. (82) shows that the T 1/2-dependent term
of d

dt
ηνν ′ vanishes. In this case the leading term will depend

on a higher power of T 1/2. These higher-order terms will in
general be nonzero since they are governed by the coefficients
of terms of order p and higher (e.g., bν and bν ′ ) in the expansion
given by Eq. (38) [see Eq. (40)]. The decay of ηνν ′ may be
approximated by the leading-order, T 1/2-dependent term of
Eq. (82) when Eqs. (84) and (85) hold. These conditions are
illustrated in Fig. 2. The T 1/2-dependent term varies as m

1/2
∗ .

For low bath-particle to tracer-particle mass ratios m/M ,
the decay of coherence measured by either |ρel

νν ′ | or ηνν ′ is
found to be exponential up to first order in m/M , regardless
of temperature. When Eqs. (99) and (100) are satisfied, the
zeroth-order approximation for the evolution of |ρel

νν ′ | may
be applied. In this approximation, decay is exponential with
decay constant λ1 given by Eq. (101). The zeroth-order
approximation, with exponential decay with decay constant
λ2 given by Eq. (109), may be applied to ηνν ′ when Eqs. (107)
and (106) hold.

The scattering lengths αν for ultracold atoms are usually
found from thermalization measurements [38–40], which yield
results with significant error bars. Decoherence rates can
be measured sensitively by observing the damping rate of
coherent oscillations [27,28,41]. The imaginary parts of the
scattering lengths βν are relatively easy to find precisely by
trap loss measurements. Since ξ1 and λ2 (at low temperatures)
are proportional to (αν − αν ′ )2 + (βν − βν ′ )2, Eq. (82) or
Eqs. (102) and (109) could therefore provide the basis for
a method of precise determination of the real part of the
scattering length αν ′ when the other scattering length αν is
known. Precise measurements of scattering lengths in ultracold
gases may be used as a probe of fundamental constants and
symmetries in nature [42].
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APPENDIX

Here we evaluate the integral in Eq. (60). From Eqs. (45)
and (49), and using γ νν ′

0 (0) = γνν ′ (0), we obtain∫
G1

[
G1

[
γ νν ′

0 (0)
]]

=
(

2πih̄(bν − b∗
ν ′) + 4πaνa

∗
ν ′

l2

)2
A(r)

r3/2π9/2
ρνν ′(0), (A1)

where
A(r) =

∫
d3Qe−Q2/r

(∫
d3qqe−(Q+q)2

)2

. (A2)
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Integration with respect to Q yields

A(r) = r3/2π3/2(2r + 1)5/2

(r + 1)4
A1

(
r

r + 1

)
, (A3)

where

A1(s) =
∫

d3xd3yxy exp[−(x2 + y2 − 2sx · y)]

= π2

s

d2

ds2
A2(s) (A4)

with

A2(s) =
∫ ∞

0
dx

∫ ∞

0
dye−(x2+y2)(e2sxy − e−2sxy). (A5)

We convert to polar coordinates (R,θ ) and integrate with
respect to R. We then make the change of variables u =
s(1 − s2)−1/2 cos 2θ and integrate with respect to u, obtaining
A2(s) = (1 − s2)−1/2 sin−1 s. Performing the differentiations
of Eq. (A4), we substitute the result into Eq. (A3), followed
by substitution into Eq. (A1) to obtain Eq. (60).
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