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We propose a method that employs functionals of the one-electron reduced density matrix (density matrix) to
capture long-range effects of electron correlation. The complementary short-range regime is treated with density
functionals. In an effort to find approximations for the long-range density-matrix functional, a modified power
functional is applied to the homogeneous electron gas with Coulomb interactions replaced by their corresponding
long-range counterparts. For the power β = 1/2 and the range-separation parameter ω = 1/rs , the functional
reproduces the correlation and the kinetic correlation energies with a remarkable accuracy for intermediate and
large values of rs . Analysis of the Euler equation corresponding to this functional reveals correct rs expansion of
the correlation energy in the limit of large rs . The first expansion coefficient is in very good agreement with that
obtained from the modified Wigner-Seitz model.
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I. INTRODUCTION

Recently a plethora of hybrid schemes based on splitting
of interelectronic interaction into short- and long-range parts
have been formulated and tested. The main idea, originally
proposed by Savin and Stoll [1,2], consists in describing
the short-range component of the electron interaction by
density functionals (DF) and combining them with ab initio
methods that employ Hamiltonians with the long-range part
of the electronic interaction. Almost any wave-function-based
method can be coupled with short-range functionals after the
Hamiltonian is properly modified. Thus, the hybrid schemes
employ both Hartree-Fock (HF) wave functions [3–5] as well
as multideterminantal functions like configuration interaction
(CI) [6], multiconfiguration self-consistent field (MCSCF) [7],
or coupled-cluster singles doubles with perturbative triples
CCSD(T) [8,9] calculations. The hybrid scheme has a number
of advantages over the standard (full-range) DF theory (DFT)
or ab initio methods used separately. On one hand, density
functionals are usually not capable of capturing long-range
correlation effects. Consequently, they fail to accurately
describe van der Waals interactions or bond breaking. Sup-
plementing short-range density functionals (SRDFs) with the
long-range wave-function functionals allows one to treat such
phenomena with much greater accuracy [8–11]. On the other
hand, ab initio methods need large basis sets to describe
the electronic cusp. Treatment of this short-range effect
with SRDFs allows smaller basis sets for the one-electron
functions. Despite this reduction of computational cost, hybrid
schemes employing multideterminantal wave functions inherit
the unfavorable scaling from their ab initio counterparts.
Consequently, they are limited to relatively small systems.
A number of procedures propose coupling SRDFs with a
single-determinantal long-range (LR) wave function. Such
methods are as efficient as commonly used DFT schemes
that include a contribution from the exact (Hartree-Fock)
exchange. However, they are less successful in curing the flaws
of standard DFT [12].

It is evident that a different long-range functional is
needed, that combines computational efficiency with accu-
racy. Density-matrix-functional theory (DMFT) is a suitable
candidate for this purpose. DMFT has been enjoying a rapid

development in recent years. A number of functionals have
been proposed [13–23] and their properties thoroughly ana-
lyzed [24–35]. Apart from obtaining ground-state energies, the
recent formulation of the time-dependent variant of DMFT al-
lows for computing excited-state energies [36–38]. A density-
matrix functional (DMF) employs the one-electron reduced
density matrix (density matrix) as its main variable. For a given
N -electron wave function, the density matrix is defined as

�(x,x′) = N

∫
· · ·

∫
�∗(x′, . . . ,xN )�(x, . . . ,xN )dx2 · · · dxN,

(1)

where x stands for the combined spatial and spin coordinates,
x = (r,s). The immediate advantage of density-matrix
functionals over their density counterparts is that the explicit
kinetic energy functional of � is known. The only component
of the energy functional that needs to be approximated is the
electron-electron repulsion term. Density-matrix functionals
are often defined in terms of natural occupation numbers {np}
and natural spin orbitals {ϕp(x)} that are, respectively, the
eigenvalues and eigenfunctions of the corresponding �,

�(x,x′) =
∑

p

npϕ∗
p(x′)ϕp(x). (2)

Natural occupation numbers are allowed to be fractional,
that is, they are not restricted to 0 and 1. Hence static
correlation effects (requiring multideterminantal wave
functions and thus fractional occupancies of orbitals) can
be taken into account by DMFT more easily than by DFT.
Recently proposed density-matrix functionals successfully
describe the dissociation of simple molecules [19,20] and the
properties of strongly correlated extended systems [21]. Since
almost all available density-matrix functionals are simple
extensions of the Hartree-Fock energy functional, they can
be straightforwardly adopted for the range-separated hybrid
method (see next sections of the paper).

Similarly to the correlated-wave-function methods, DMFT-
based approaches suffer from strong dependency on the size
of the basis sets employed in calculations. Therefore, they
would benefit from a shifting of the burden of describing
short-range effects to density functionals that are more capable
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in this respect. The computational efficiency of the density
matrix methods still lags behind that of the Kohn-Sham
implementation of DFT; however, an important step forward
has been made recently. An optimization procedure for
density-matrix functionals based on the projected-gradient
algorithm has been formulated [39]. It is very efficient for
some classes of functionals with the scaling being only M4,
where M is the number of basis set functions.

We propose a range-separated method, SRDF-LRDMF, in
which the short- and the long-range parts of the interelectronic
Coulomb interaction are taken into account by, respectively,
short-range density functionals and long-range density-matrix
functionals (LRDMFs). Such an approach is potentially supe-
rior to both standard DFT (in treating static correlation effects)
and DMFT (by describing accurately and more efficiently
dynamic correlation) methods. Its development requires the
design and testing of long-range density-matrix functionals.
As a first step of this task, we investigate the performance
of some LRDMFs for the homogeneous electron gas with
long-range Coulomb interactions.

The organization of the paper is as follows. In Sec. II a
general formalism leading to the formulation of the range-
separation scheme is provided. The modification of the simple
power density-matrix functional and its application to the
electron gas system is presented in Sec. III. Section IV contains
an analysis of the β = 1/2 power functional with the range-
separation parameter being the inverse of the Wigner-Seitz
radius of the electron gas that accurately reproduces the
correlation energy. The paper ends with conclusions.

II. GENERAL FORMALISM

Assume a spin-independent Hamiltonian Ĥ for an N -
electron system described by the external potential υext(r),

Ĥ = T̂ +
N∑

i<j

r−1
ij +

N∑
i=1

υext(ri) (3)

(note that atomic units are used throughout the text). If we
employ the concept of a universal density functional F [ρ], the
ground-state energy corresponding to Ĥ reads

E = min
ρ

{
F [ρ] +

∫
ρ(r)υext(r) dr

}
, (4)

where the universal functional is defined as

F [ρ] = min
�→ρ

〈�| T̂ +
N∑

i<j

r−1
ij |�〉 . (5)

In an effort to describe the long-range part of the electronic
interaction with a density-matrix functional, one splits the
Coulomb operator 1/r into the long- and short-range parts
υLR

ee (r) and υSR
ee (r), respectively,

1

r
= υSR

ee (r) + υLR
ee (r). (6)

Consequently, F [ρ] can be divided into the long-range

F LR[ρ] = min
�→ρ

〈�| T̂ +
N∑

i<j

υLR
ee (rij ) |�〉 (7)

and the short-range

F SR[ρ] = F [ρ] − F LR[ρ] (8)

components [40]. The long-range density functional F LR[ρ]
can be defined as a minimum of a density-matrix functional,
namely,

F LR[ρ] = min
�→ρ

{
T [�] + ELR

ee [�]
}
, (9)

where the symbol � → ρ indicates that the diagonal part of
the density matrix coincides with the electron density ρ, that
is, �(x,x) = ρ(x). The kinetic energy functional present in
Eq. (9) is given explicitly in terms of the density matrix as

T [�] = −1

2

∫ ∫
δ(x − x′) ∇2

r �(x,x′) dx dx′. (10)

The long-range electron-electron interaction functional is
defined via the constrained-search procedure and reads (cf.
Ref. [41])

ELR
ee [�] = min

�→�
〈�|

N∑
i<j

υLR
ee (rij ) |�〉 , (11)

where � → � stands for wave functions related to a given
density matrix by Eq. (1). Equations (7), (8) and (9) lead to the
conclusion that the ground-state energy (4) is also a minimum
of the density-matrix functional, namely,

E = min
ρ

{
min
�→ρ

(
T [�] + ELR

ee [�]
)

+F SR[ρ] +
∫

ρ(r)υext(r) dr

}

= min
�

{
T [�] + ELR

ee [�] + F SR[ρ�] +
∫

ρ�(r)υext(r) dr

}

(12)

[ρ�(x) = �(x,x)]. The expression in the curly brackets in
the second equality of Eq. (12) defines the range-separated
density-matrix energy functional

E[�] = T [�] + ELR
ee [�] + F SR[ρ�] +

∫
ρ�(r)υext(r) dr.

(13)

Its minimization, carried out over N-representable density
matrices, yields the ground-state energy. As required, the
long-range part of the electron-electron repulsion is described
by the density-matrix functional (ELR

ee [�]) whereas the density
functional (F SR[ρ�]) treats the short-range complement. The
functionals can be further decomposed into the Hartree and
the exchange-correlation parts, that is,

ELR
ee [�] = 1

2

∫ ∫
ρ�(r1)ρ�(r2) υLR

ee (r12) dr1dr2 + ELR
xc [�]

(14)

and

F SR[ρ�] = 1

2

∫ ∫
ρ�(r1)ρ�(r2) υSR

ee (r12) dr1dr2 + ESR
xc [ρ�],

(15)
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which results in the following form of the density-matrix
functional:

E[�] = T [�] + EH [ρ�] + ELR
xc [�]

+ESR
xc [ρ�] +

∫
ρ�(r)υext(r) dr. (16)

The Hartree functional EH [ρ] includes the full-range Coulomb
electron-electron interaction and reads

EH [ρ] = 1

2

∫ ∫
ρ(r1)ρ(r2) r−1

12 dr1dr2. (17)

Note that the short-range exchange-correlation density func-
tional ESR

xc [ρ�] present in Eq. (16) is defined exactly in the same
way as in the literature, and a number of local or nonlocal
approximations are available [8,9,42–44]. The long-range
exchange-correlation density-matrix functional ELR

xc [�] is an
additional quantity. Even though its formal definition is known
[cf. Eqs. (11) and (14)], it is of no practical value and
approximations must be developed.

Given ELR
xc [�] and ESR

xc [ρ], the ground-state energy is
found by minimizing the functional (16) with respect to
N-representable density matrices. It is important to realize that,
even for the exact functional E[�], its minimizer �LR

min(x,x′) is
not the same as the density matrix �(x,x′) corresponding to the
full Hamiltonian (3) and related by Eq. (1) to the ground-state
wave function. Only the diagonal parts of �LR

min and � coincide,
that is, �LR

min(x,x) = �(x,x), and correspond to the exact density
of a given system.

III. DENSITY-MATRIX FUNCTIONAL FOR A
HOMOGENEOUS ELECTRON GAS WITH

LONG-RANGE COULOMB INTERACTIONS

Since most short-range density functionals have been
proposed based on conventional local or nonlocal functionals,
one may wonder if the currently available density-matrix
functionals are a good starting point for the development of the
long-range density-matrix functional Eq. (14). We will inves-
tigate this issue in the context of the homogeneous electron gas
(HEG). To this end, consider a modified homogeneous electron
gas of density ρ with full Coulomb interactions replaced
by their long-range counterparts. For simplicity we call this
system a long-range homogeneous electron gas (LRHEG).
As for the standard HEG (with full Coulomb interactions),
a sum of the background-background, background-electron,
and the Hartree part of the electron-electron interactions
vanishes. Consequently, the total energy expression includes
only the kinetic and the long-range exchange-correlation
terms. Employing the spectral representation of the density
matrix, Eq. (2), and using Eq. (16), we obtain the total energy
functional for the LRHEG:

ELR[�] = −1

2

∑
p

n(kp)〈ϕkp
|∇2|ϕkp

〉

+ELR
xc [{n(kp)},{ϕkp

(x)}]. (18)

The momentum distribution function n(k), where k is a
wave vector, present in Eq. (18) is an analog of the natural
occupation numbers for extended systems. Since we consider

a rotationally invariant system, the momentum distribution is
a function of |k| and n(k) = n(k).

The most successful exchange-correlation functionals in
DMFT can be seen as extensions of the Hartree-Fock exchange
functional, which reads EHF

x [�] = − 1
2

∑
pq npnqKpq (the

two-electron integrals {Kpq} are of the exchange type). In
DMFs the product of two occupation numbers, npnq , is
replaced by a two-variable function G(np,nq). It is straight-
forward to modify such density-matrix functionals to account
only for the long-range exchange-correlation effects. One
proceeds in the same manner as in the case of the Hartree-Fock
functional and replaces the exchange integrals with their LR
counterparts. We assume then the following form of the
long-range density matrix exchange-correlation functional:

ELR
xc [�] = −1

2

∑
pq

G(np,nq) KLR
pq , (19)

where {KLR
pq } is the set of long-range exchange integrals

expressed in terms of the natural orbitals,

KLR
pq =

∫ ∫
ϕ∗

p(x1)ϕ∗
q (x2)υLR

ee (r12) ϕq(x1)ϕp(x2)dx1dx2.

(20)

The function G is symmetric, G(x,y) = G(y,x), and satisfies
two other conditions:

G(x,0) = 0,
(21)

G(1,1) = 1.

These result from the requirement that the Hartree-
Fock functional should be recovered by ELR

xc for integer
(0 or 1) occupation numbers. After replacing summations with
integrations in Eqs. (18) and (19),

∑
p → (8π3)−1V

∫
dk (V

is the volume of the system), and using plane waves for the
natural spin orbitals ϕk(x) = V −1/2 exp(ikr)σ (s), one is led to
the following total energy functional for the LRHEG:

ELR[n] = (8π3)−1V

∫
n(k)k2dk − (8π3)−2V 2

×
∫ ∫

G[n(k1),n(k2)]KLR
k1k2

dk1dk2. (22)

Equation (22) is spin-summed for the spin-unpolarized elec-
tron gas assumed in the paper. The momentum distributions
for both spins are identical and equal to n(k). This function is
normalized to half of the density, that is,

(4π3)−1
∫

n(k)dk =ρ. (23)

In practical calculations one has to make a particular
choice for the long-range interaction function υLR

ee (r). The
standard error function (erf) seems to be the most reasonable
choice for two reasons. First of all, most of the available
short-range density functionals ESR

xc [ρ] that are to be combined
with ELR

xc [�] [cf. Eq.(16)] do employ the error function.
Moreover, the error function allows for analytic calculation of
the two-electron integrals for Gaussian-type and plane-wave
basis set functions (the most often used basis set functions for
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molecular and extended system calculations) which is of great
computational advantage. Therefore we assume

υLR
ee (r) = erf(ωr)

r
. (24)

The parameter ω is a nonnegative number governing the range
of decomposition of the Coulomb interaction. Note that for
ω → ∞ standard density-matrix functionals are recovered.
For a LRHEG the integrals (20) can be computed analytically
and read

KLR
k1k2

= 4π

V

exp[−(k12/2ω)2]

k2
12

, (25)

where k12 = |k1 − k2|. Finally, the expression for the energy
per electron, ELR[n]/N , Eq. (22), takes the form

ε[n] = (8π3ρ)−1
∫

n(k)k2dk − (16π5ρ)−1

×
∫ ∫

G[n(k1),n(k2)]k−2
12 exp[−(k12/2ω)2]dk1dk2.

(26)

Note that, since the following considerations refer to the
LRHEG, from now on the upper index LR is skipped in all
pertinent quantities.

The energy of the electron gas and the corresponding
momentum distribution result from minimizing the energy
functional (26) with respect to n(k) under the condition that
the density is constant and corresponds to a given value ρ,
Eq. (23). This leads to the Euler-Lagrange equation

δ{ε[n] − µ[(4π3)−1
∫

n(k)dk−ρ]}
δn(k)

= 0, (27)

where µ is a Lagrange multiplier. Note that the momentum
distribution is physically admissible if it complies with the
condition

∀ k, 0 � n(k) � 1. (28)

It is well known that most approximate density-matrix
functionals produce inadmissible momentum distributions
unless the condition (28) is additionally imposed in the
minimization process [29,30,45]. It is usually done by some
form of parametrization of n(k). Consequently, the resulting
momentum distributions achieve the value 1 for a certain
range of k where the Euler-Lagrange equation is not satisfied.
The necessity of parametrizing the momentum distribution in
order to satisfy the condition (28) should be understood as a
deficiency of the approximate functionals. The exact functional
will result in a physically admissible function n(k) without
imposing this condition [24,46,47]. It will be shown in the
next section that the long-range functional adopted in this
paper inherits the deficiency of its full-range counterpart and
may produce momentum distributions that happen to be integer
for a certain range of k.

For the long-range density-matrix functionals, a definition
of the correlation energy is naturally introduced as the
difference between the energies of correlated and uncorrelated
LRHEGs of the same density ρ. For the uncorrelated electron

gas, the momentum distribution is given by a step function,
namely,

n(k) =
{

1, k < kF,

0, k � kF,

(29)

where the Fermi wave vector reads kF = ρ1/331/3π2/3. For
such a function, the first term of Eq. (26), that is, the kinetic
energy per particle, yields

ts[ρ] = 3

10

(
9π

4

)2/3 1

r2
s

. (30)

The Wigner-Seitz radius rs is given as rs = (9π/4)1/3 k−1
F .

Because of the condition (21) the second term of the energy
functional (26), the exchange-correlation energy, reduces to
the exact exchange energy expression [2]

εx[ρ] = −π−1ω

[
(2x − 4x3)e−1/4x2 − 3x

+ 4x3 + π1/2erf

(
1

2x

) ]
, (31)

where x = ω/2kF . The correlation energy per particle is then
defined as

εcorr[n] = ε[n] − εx[ρ] − ts[ρ] (32)

[n(k) is normalized to ρ]. This definition of the correlation
energy coincides with that commonly adopted in the literature
(cf. Ref. [42]).

We restrict the form of the function that enters the exchange-
correlation functional (19) to the power function

G(x,y) = (xy)β, (33)

β being a real, positive number. Originally, the power
functional with β = 1/2 was proposed by Müller [48] and
independently by Buijse and Baerends [13] (in the literature
this functional is also known as the corrected Hartree func-
tional). Numerous studies have shown that this functional
strongly overestimates the correlation energy for both finite
and extended systems with the full-range Coulomb interactions
[19,26,27,45]. Studies of the power functional applied to the
electron gas revealed that it is incapable of reproducing the
correct high-density limit of the correlation energy [25]. For
β = 1/2 it was shown that εcorr is much too low in the
entire range of rs [29,45]. For rs > 5.77 the total energy per
particle predicted by the functional is constant and equal to
−1/8 hartree [35,46]. The optimal value of the power β for
reproducing the correlation energy of a HEG with the smallest
error was found to be β = 0.55 [32]. Recent studies have
shown that for certain values of β it is possible to describe
correctly the energy gaps of semiconductors and strongly
correlated Mott insulators as well as spectra of strongly
correlated transition-metal oxide series [21,49].

To investigate the performance of the power functional
for the LRHEG, we numerically minimized the functional
given by Eqs. (26) and (33) for a number of powers β and
a series of values of densities ρ and parameters ω. To assure
that the momentum distributions are physically admissible,
the condition (28) was imposed by substituting n(k) with
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FIG. 1. Correlation energy (in atomic units) of the long-range
homogeneous electron gas obtained from the density-matrix power
functional with β = 0.50 and 0.55 [cf. Eqs. (26) and (33)]. The results
are compared with the accurate fit to the quantum Monte Carlo (QMC)
data of Paziani et al. [42]. The upper and lower panels correspond to
rs = 2 and 5, respectively.

cos2[p(k)] and searching for the optimal p(k) functions.
The normalization condition Eq. (23) was taken into account
by means of the undetermined Lagrange multiplier method.
The minimization was performed on a Gaussian grid using
the conjugate-gradient algorithm. Because of the integrable
logarithmic singularity present for k1 = k2 in the second
integral of Eq. (26), the quadrature of integrands with a
logarithmic singularity was employed. For all other integrals,
the Gaussian quadrature was used.

The resulting correlation energies, defined in Eq. (32), cor-
responding to rs = 2 and 5, as functions of ωrs are presented
in Fig. 1. The results were obtained for the powers β = 0.5
and 0.55. The reference curves (denoted as QMC) come from
a very accurate fitting function of Paziani et al. [42]. The fitting
function reproduces very closely the results of quantum Monte
Carlo (QMC) simulations. It incorporates known asymptotics
of the correlation energy when ω,rs → 0 (the limit of a

0.5 1 2 4 8 16 32

-0.04

-0.03

-0.02

-0.01

-order)

-order)

=1/2 DMF

QMC

co
rr
(

=
1/

r s) 
[a

.u
.]

r
s
 [a.u.]

FIG. 2. Correlation energy (in atomic units) of the long-range ho-
mogeneous electron gas obtained for the range parameter ω = 1/rs .
The “β = 1/2 DMF” curve was obtained by numerical minimization
of the β = 1/2 density-matrix power functional. The other DMF
curves are the zeroth-order and the first three terms from the first-order
approximations, Eqs. (43) and (45), respectively. The DMF results are
compared with the accurate fit to the quantum Monte Carlo (QMC)
data of Paziani et al. [42].

noninteracting gas) and ω → ∞ (full Coulomb interactions).
It is evident from the figure that neither density-matrix power
functional reproduces the correlation energy with a uniform
accuracy for the whole range of ω. For β = 0.55 the agreement
with the reference curve is better for larger values of ω, which
is in line with findings of Lathiotakis et al. [32], who showed
that for this value of β the overall error of the correlation energy
for the ordinary HEG (ω → ∞) is the lowest. A closer look
at Fig. 1 reveals a striking feature for the β = 1/2 functional.
The curves pertinent to this functional intersect the reference
curves in the vicinity of ωrs = 1. We investigate this behavior
in detail in the next section and show that the correlation
energy is indeed reproduced very accurately by this functional
for ω = 1/rs in the region of intermediate and large values of
rs .

IV. THE CASE OF β = 1/2 AND ω = 1/rs

The long-range density-matrix power functional [Eqs. (26)
and (33)] corresponding to the power β = 1/2 reads

ε[n] = (8π3ρ)−1
∫

n(k)k2dk − (16π5ρ)−1

×
∫ ∫

[n(k1)n(k2)]1/2 k−2
12 exp[−(k12/2ω)2]dk1dk2.

(34)

Figure 2 presents the correlation energy obtained from numer-
ical calculations for the range-separation parameter ω = 1/rs

as a function of rs . The agreement with the reference curve is
excellent, especially in regions of intermediate and large values
of rs . In the region of rs relevant for most atoms and molecules,
the relative error of the correlation energy decreases from 4.5%
for rs = 0.5 to only 0.5% for rs = 10. The increase in the
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FIG. 3. Kinetic correlation energy (in atomic units) of the long-
range homogeneous electron gas obtained for the range parameter
ω = 1/rs . The gray curve (“β = 1/2 DMF”) was obtained by numer-
ical minimization of the β = 1/2 density-matrix power functional. It
is compared with the accurate fit to the quantum Monte Carlo (QMC)
data of Paziani et al. [42] (the black curve).

accuracy for the correlation energy is dramatic comparing
to the performance of the β = 1/2 power functional for
standard HEG [45]. In the latter case the correlation energy
is overestimated by 66% and 350% for rs = 0.5 and 10,
respectively. Another quantity the accuracy of which can be
estimated is the kinetic correlation energy tcorr = t − ts . The
kinetic energy t predicted by the density-matrix functional
is given explicitly as the first term of the expression (34).
Note that tcorr introduced above for the electron gas coincides
with a definition of the kinetic correlation energy in density-
functional theory. Therefore, the reference values of tcorr could
be obtained by applying the virial theorem [50] to the results
from Ref. [42]. Since the exact form of the functional tcorr[n]
is known, the error in reproducing this quantity must originate
solely from the inaccuracy of the momentum distribution
function. The results for tcorr presented in Fig. 3 reveal a very
good agreement between the reference and the DMF data. In
the vicinity of rs = 12, the reference curve exhibits a bump.
We believe that in this case the reference curve is inaccurate
since it was obtained from the virial theorem.

In the reminder of this section we derive the large-rs limit
of the correlation energy for the β = 1/2 power functional
and show that it compares surprisingly well with the reference
results. In an effort to find ε(ω = 1/rs,rs 	 1), consider the
Euler-Lagrange equation (27) which turns into

(1/2)n(k1)1/2k2
1 − (4π2)−1

×
∫

n(k2)1/2k−2
12 exp[−(k12/2ω)2]dk2 = µρn(k1)1/2,

(35)

where µ is a Lagrange multiplier. Multiplying both sides of
Eq. (35) by n(k1)1/2 and integrating the result with respect to

k, we obtain a simple relation between the total energy (34)
and µ:

ε = µρ. (36)

Notice that this relation is unique to the power β = 1/2 and it
holds only when ∀ k, 0 < n(k) < 1 [see the comment below
Eq. (27)].

As shown in Ref. [46], the integral equation of the form
of Eq. (27) can be turned into the Schrödinger equation by
introducing an auxiliary function η(k) such that

n(k) = 4π3ρη2(k) (37)

and taking the Fourier transform. The resulting equation reads

−1

2
∇2η(r) − 1

2

erf(ωr)

r
η(r) = εη(r), (38)

where the relation (36) has been employed and η(r) results
from the inverse Fourier transform of η(k). Equation (38)
cannot be solved analytically for an arbitrary value of ω. Since
small-ω solutions are of interest (for ω = 1/rs , this would
correspond to the large-rs limit), it is justified to assume a
harmonic approximation for the potential −(1/2)erf(ωr)/r

and write it as

−1

2

erf(ωr)

r
≈ − ω

π1/2
+ ω3

3π1/2
r2. (39)

In this approximation, η(r) is simply the wave function of
the isotropic harmonic oscillator corresponding to the lowest
eigenvalue, namely,

η(r) = 23/8ω9/8

33/8π15/16
exp

(
− ω3/2

61/2π1/4
r2

)
, (40)

and the corresponding zeroth-order eigenvalue reads

ε(0) = − ω

π1/2
+ 31/2ω3/2

21/2π1/4
. (41)

The pertinent zeroth-order momentum distribution normalized
to 4π3ρ is given by a Gaussian-type function of the form

n(0)(k) = 37/4π7/8

23/4ω9/4r3
s

exp

(
−31/2π1/4k2

21/2ω3/2

)
. (42)

We now turn to the case when ω is taken as the inverse of rs .
The condition n(k) � 1 for physically admissible momentum
distributions imposes a lower bound on rs . In the zeroth-order
approximation, Eq. (42), one obtains rcrit = 2−137/3π7/6 ≈
25. This means that for rs < rcrit the optimal momentum
distribution corresponding to the β = 1/2 power functional
is exactly equal to 1 for k smaller than a certain value.
Such behavior has already been observed for density-matrix
functionals applied to standard HEGs [29,45]. From Eqs. (32)
and (41) taken for ω = 1/rs , the zeroth-order approximation
to the correlation energy per particle follows immediately as

ε(0)
corr = −0.226

rs

+ 0.920

r
3/2
s

− 1.105

r2
s

. (43)
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The first-order correlation energy may be easily computed
by inserting n(0)(k) into Eq. (34). The resulting large-rs

expansions read

ε(1) = − 1

π1/2rs

+ 31/2

21/2π1/4r
3/2
s

− 9

16r2
s

+ O
(
r−5/2
s

)
(44)

and

ε(1)
corr = −0.226

rs

+ 0.920

r
3/2
s

− 1.668

r2
s

+ O
(
r−5/2
s

)
. (45)

The zeroth-order and the first three terms of the first-order
approximations, Eqs. (43) and (45), respectively, are presented
in Fig. 2. The first-order approximation performs very well, not
only in the large-rs limit but also for the intermediate values.
One should keep in mind, however, that only for rs greater than
the critical value rcrit is the underlying zeroth-order momentum
distribution physically admissible.

The results for the correlation energy of the LRHEG with
the range parameter ω = 1/rs suggests that the β = 1/2 power
functional is capable of reproducing very accurately the energy
of the gas in the low-density limit. Let us take a closer look
at the rs expansion of the correlation energy in this limit.
Analysis of the properly scaled Hamiltonian for the electron
gas with the Coulomb interactions replaced by the function
erf(ωr)/r reveals that for ω = 1/rs the large-rs expansion of
εcorr is analogous to that of the standard HEG in the Wigner
crystal limit and reads [51]

εcorr = A

rs

+ B

r
3/2
s

+ O
(
r−2
s

)
. (46)

From Eq. (45) one immediately concludes that the β = 1/2
power functional exhibits correct rs scaling in the low-density
limit. The first two expansion coefficients, −0.226 and 0.920,
are surprising close to those obtained from the Paziani et al.
exchange-correlation density functional, which read −0.217
and 0.887. Note that, even though the functional includes some
exact limits, the values of the ω = 1/rs,rs → ∞ expansion
coefficients are not analytical but result from the assumed
fitting parameters.

Another estimate of the value of the first expansion
coefficient in Eq. (46) is furnished by the Wigner-Seitz model
proposed for HEGs in the low-density limit [52]. According
to the Wigner-Seitz model, a unit cell of the lattice consists
of a sphere of radius rs with one electron in the center. The
sphere is filled with positive uniform charge so it is overall
neutral, and the electric field outside the sphere is zero (no
interaction among the spheres). As a result the total energy per
electron of the lattice composed of such closely packed spheres
includes only two terms: the electron-background and the
background-background interactions. After replacement of the
Coulomb interaction operator with its long-range counterpart,
erf(ωr)/r , and setting ω = 1/rs , the electron-background
and the background-background potential energies read
−[6π−1/2 + 3e erf(1)]/(4ers) ≈ −0.943/rs and 3[3 + e4(9 +

6π1/2erf2)]/(80e4π1/2rs) ≈ 0.416/rs , respectively (e denotes
the exponential constant). Consequently, the total energy per
particle predicted by the Wigner-Seitz model reads −0.528/rs

and compares very well with −0.564/rs—the first term in the
large-rs expansion predicted by the β = 1/2 power functional
[cf. Eq. (41)]. The correlation energy resulting from the
Wigner-Seitz approach reads −0.190/rs , which agrees within
19% and 12% with the DMF and Paziani et al. values,
respectively.

V. CONCLUSIONS

We propose a method that employs functionals of the
one-electron density matrix to capture long-range effects of
electron correlation. The functionals are to be combined with
short-range density functionals. As the first step in developing
practical functionals, the long-range density-matrix power
functionals have been applied to the long-range homogeneous
electron gas. The main finding of the paper is that the functional
corresponding to the power β = 1/2 and the range-separation
parameter ω = 1/rs excellently reproduces the correlation
energy and the kinetic correlation energy for intermediate
and large values of rs , Figs. 2 and 3, respectively. This is
in contrast to the density-matrix functionals proposed for
the full-range Coulomb interactions, which yield much larger
errors. The agreement of the kinetic correlation energy with the
reference data proves good accuracy of the second moments of
the momentum distribution functions. Unfortunately, the qual-
ity of the momentum distributions obtained from the density-
matrix functional cannot be directly assessed since the exact
functions (or some accurate approximations) corresponding to
ω = 1/rs are not available.

Analysis of the variational equation corresponding to the
β = 1/2 power functional reveals a correct rs expansion of the
correlation energy in the limit of large rs . The first expansion
coefficient is in very good agreement with that obtained from
the modified Wigner-Seitz model. A comparison with this
simple model is justified because it yields the low-density
correlation energy within error of less than 1% for the full
Coulomb interactions [52].

The excellent performance of the investigated functional
for the long-range electron gas makes this method a promising
candidate for strongly correlated extended systems [21,49]. A
balanced treatment of the electron correlation offered by this
method should make it superior also to standard DMFT-based
approaches when applied to molecular systems. Work along
this line is in progress.
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