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Multipole effects in atom-surface interactions:
A theoretical study with an application to He–α-quartz

Grzegorz Łach,1,* Maarten DeKieviet,1,† and Ulrich D. Jentschura2,‡
1Physikalisches Institut der Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany

2Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409-0640, USA
(Received 14 January 2010; published 18 May 2010)

We address some practically important and experimentally relevant questions concerning atom-surface
interactions. For example, the quadrupole interaction of an atom with a dielectric macroscopic surface is
obtained with full allowance for retardation and in closed form, valid for an arbitrary atom-surface distance.
We also explore the relevance of higher-order multipole effects in atom-surface interactions, and we find that
details in the dielectric response function of the surface material have to be resolved in order to accurately calculate
the atom-surface potential. They lead to important effects at an intermediate range which cannot be explained by
either short-range or long-range asymptotics. A numerical example (helium interacting with α-quartz) is included
in order to illustrate this aspect.
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I. INTRODUCTION

The purpose of this article is to report on some advances
in our theoretical understanding of interactions of neutral
atoms with surfaces mediated by virtual excitations of the
quantized electromagnetic field. These are commonly referred
to as Casimir-Polder interactions. Casimir-Polder (long-range)
interactions of atoms and surfaces have been studied theo-
retically for a number of decades. It is well known that for
an atom in contact with a perfect conductor, the result of
Casimir and Polder [1] states that the z−3 near-field interaction
mediated by the quantum fluctuations of the electromagnetic
field asymptotically changes to a z−4 interaction for long
distances. (Throughout this article, the atom-wall distance is
denoted as z.)

Lifshitz [2] generalized the result of Casimir and Polder
to the case of a nonperfect conductor, within the electric-
dipole approximation for the electronic currents. However,
the generalization of the result of Lifshitz to the quadrupole
interaction had yet to be determined in closed form. In the
current article we examine the interaction of an atom with
a dielectric, valid for an arbitrary range of the atom-surface
distance and with retardation effects included.

Another aspect whose importance is sometimes underes-
timated concerns the accurate calculation of the dielectric
response function of the surface in contact with the atom.
Indeed, it turns out that an accurate numerical representation
of both the atomic properties and the surface are crucial
for obtaining reliable results for the atom-surface interaction
potentials. We study as a numerical example ground-state
helium interacting with the (0001)-crystalline surface of
α-quartz (z cut). This system is found to display an interme-
diate region of distances, in between the short-range and the
long-range asymptotic limits, where its characteristic shape
cannot be explained by either asymptotic form.
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The current theoretical study is inspired by the ongoing
development of a spin-echo apparatus for atom-surface studies
at Heidelberg University [3–5]. During the past decades,
He atom scattering has proven to be a very useful tool for
the investigation of both the structure and the dynamics of
and at surfaces. At thermal energies, this noble-gas particle
interacts nondestructively and is chemically completely inert.
Being so light, its de Broglie wavelength matches the typical
lattice constant of solids, so that atom diffraction has been
used to obtain the most precise information on the shape and
periodicity of the repulsive tail of the potential. In addition,
He atom scattering serves as a very sensitive, in situ probe for
the characterization of the quality, roughness, and cleanliness
of the two-dimensional surface. Detailed information on the
substrate is an ideal starting point and necessary requirement
for any accurate Casimir experiment.

The atomic beam spin-echo method combines the exclusive
surface sensitivity of a cold beam of 3He atoms with the
high resolution of nuclear spin-echo experiments. This atom
interferometry technique has demonstrated high resolving
power in both space (0.01 Å–10 µm) and energy (in the range
of a few meV down to 10 peV) in surface scattering exper-
iments, determining the structure and dynamics of (quasi-)
two-dimensional systems. In a first series of experiments on
Casimir-Polder physics (a detailed account of the experiments
is be given elsewhere), this apparatus was used to fully
characterize each system at this level of precision, using the
repulsive tail of the atom-wall interaction.

The attractive branch of the atom-surface interaction po-
tential is investigated by measuring the quantum reflectivity of
3He atoms. The region within the interaction potential in which
quantum reflection takes place strongly depends on the kinetic
energy of the incident particle. The center of this reflection
region is situated at some distance where the kinetic energy
equals the potential energy. By going to grazing angles of
incidence, this energy can be reduced to very low values,
thus shifting the region of quantum reflection to larger and
larger distances z. Monitoring the 3He quantum reflectivity as
a function of incident perpendicular momentum, one can map
out the potential near and away from the wall. It is described
in detail in Ref. [5] how this method probes the z−3 near-field
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van der Waals region, the z−4 far-field Casimir-Polder re-
gion, and the transition region in between. Experimental
data at the percent level of relative accuracy have been
obtained for a variety of substrates (metals, semiconductors,
and insulators). These results are to be confronted to the
theoretical full interaction potential, which can be calculated
for many of these systems from (optical) data available in the
literature [6].

With this experiment, we have arrived at a level of precision
where this quantitative comparison forms a critical test of
the model underlying these calculations and may for the first
time reveal the need for including higher-order corrections.
In this article, we primarily focus on the theoretical aspects
of the problem; the connection to the spin-echo signal will be
explored in more detail elsewhere. In Sec. II, basic formulas
regarding multipole interactions are recalled. We then proceed
to analyze the atom-wall interaction, starting with the case
of a perfect conductor, in Sec. III. We attempt to describe
the derivations in some detail. The asymptotic limits for
short-range interactions, still with a perfect conductor, are
explored in Sec. IV. The generalization of the results derived
in Sec. III to the case of a dielectric are discussed in Sec. V,
with full allowance for retardation effects. Finally, the general
formulas obtained hitherto are applied to the case of the
He–α-quartz interaction in Sec. VI. We conclude with a
summary in Sec. VII.

The subject of this article is interesting for two commu-
nities: the quantum electrodynamics (QED) community and
the atomic physics community. Atomic units with |e| = h̄ =
m = 1 (where |e| is the positive elementary charge unit and
m is the electron mass) are contrasted with natural units
where h̄ = c = ε0 = 1 and e2 = 4πα. In order to “interpolate”
between the two communities, we use a different system of
units here, namely, the Système International (SI). The length
of the formulas is not drastically altered by the use of the SI, as
intermediate expressions do not display excessive complexity,
and the use of the SI, apart from being recommended by
CODATA [7], also enables the direct evaluation of formulas
for experimental purposes.

II. MULTIPOLE INTERACTIONS

The authors of Ref. [8] provide for very consistent defini-
tions of multipole polarizabilities of atoms, and since these
are important for the current study, we briefly recall their
conventions. From Eq. (6) of Ref. [8], we learn that the
2L-pole dynamic polarizability αL of the ground state |ψ0〉 of
an atom, the oscillator strength f

(l)
n0 , and the energy differences

En0 = En − E0 of a virtual excited state |�n〉 are related by

αL(ω) =
∑

n

f
(L)
n0

E2
n0 − (h̄ω)2

, (1)

where the sum over n also includes the continuous spectrum
and the oscillator strength is

f
(L)
n0 = 8πe2

2L + 1
En0

∣∣∣∣∣〈�0|
∑

i

(ri)
LYLm(r̂i)|�n〉

∣∣∣∣∣
2

, (2)

and it is independent of m provided one sums over the
magnetic projections of the excited state n. Here, �ri is the radial
coordinate of the ith electron, and YLm(r̂i) is the spherical
harmonic. The sum is over all electrons i at position �ri of the
system. In view of the identity

2En0

E2
n0 − (h̄ω)2

= 1

En0 − h̄ω
+ 1

En0 + h̄ω
, (3)

we can write αL(ω) as

αL(ω)

= 4πe2

2L + 1

∑
n

〈�0|
∑

i

(ri)
LYLm(r̂i)|�n〉

×〈�n|
∑

j

(rj )LY ∗
Lm(r̂j )|�0〉

(
1

En0 − h̄ω
+ 1

En0 + h̄ω

)

= 〈�0|QLm

(
1

H − E0 − h̄ω
+ 1

H − E0 + h̄ω

)
Q∗

Lm|�0〉,
(4)

where

QLm = e

√
4π

2L + 1

∑
i

(ri)
LYLm(r̂i), (5a)

Q∗
Lm = (−1)me

√
4π

2L + 1

∑
i

(ri)
LYL−m(r̂i). (5b)

Here, the sum over n extends over the complete spectrum, and
it includes, in particular, all magnetic projections of the virtual
states |�n〉.

We now turn our attention to the question how the
multipole polarizabilities affect the energy of the atom in the
presence of an electric field. For the atom-wall interaction,
which is mediated primarily by electromagnetic waves with
a wavelength that is long compared to the dimensions of the
atoms, we can use the effective long-wavelength Hamiltonian
governing the interaction [9]. For the electric field, we can thus
use the expansion

HI = −eriEi − e

2
rirj∇jEi − e

6
rirj rk∇j∇kEi

− e

4!
rirj rkrl∇j∇k∇ lEi . (6)

For the dipole contribution to the atom-wall interaction, we
have

E1 = −1

2

∑
�kλ

α1(ω)| �E�kλ(�r)|2, (7)

where �E�kλ(�r) is the electric field corresponding to the field
mode with wave vector �k and polarization λ. Based on the
definition of the multipole polarizability in Eq. (4), we have
for the quadrupole term

E2 = − 1

12

∑
�kλ

∑
ij

α2(ω)
∣∣∇jEi

�kλ
(�r)

∣∣2
, (8)

052507-2



MULTIPOLE EFFECTS IN ATOM-SURFACE . . . PHYSICAL REVIEW A 81, 052507 (2010)

where we reserve the index i for the component of the electric
field. The octupole energy shift, by contrast, is

E3 = − 1

180

∑
�kλ

∑
ijk

α3(ω)
∣∣∇j∇kEi

�kλ
(�r)

∣∣2
, (9)

and for the hexadecupole energy shift, we obtain

E4 = − 1

5040

∑
�kλ

∑
ijkl

α4(ω)
∣∣∇j∇k∇ lEi

�kλ
(�r)

∣∣2
. (10)

The generalization to a 2L-pole polarizability is found to be

EL = − 2L−1

(2L)!

∑
�kλ

∑
j1j2···jL

∑
i

αL(ω)
∣∣∇j1∇j2 · · · ∇jLEi

�kλ
(�r)

∣∣2
.

(11)

III. PERFECT CONDUCTOR, ARBITRARY RANGE

For the description of the atom-wall interaction, we have
to assume the atom being immersed in a superposition of
incoming and reflected waves (from the surface). The surface
is assumed to lie in the xy plane (i.e., at z = 0), and we initially
assume boundary conditions for a waveguide extending from
x = 0 to x = L and y = 0 to y = L, and we assume the atom
to be at a distance z from the surface. The procedure then
is to evaluate the interaction energy according to formulas
(7)–(10) with the aforementioned waveguide modes in place,
for an atom at point �r = ( 1

2L, 1
2L,z), and then, to average over

x and y. In the next step of the calculation, a z-independent
constant is identified as a renormalization term (“mass counter
term”), which represents an additional renormalization of the
mass (energy) of the bound system in the presence of the
atom-wall interaction mediated by the modes. Alternatively,
one may say that the renormalization ensures that as z → ∞,
the atom experiences a zero energy shift due to the distant wall,
which is physically reasonable. This procedure implies both a
subtraction of the constant term and also a regularization of the
remaining integral, which is oscillating in the z direction, by a
convergent factor exp(−εz). We can alternatively implement
the convergent factor as a Wick rotation of the photon energy
integration. Finally, we obtain a finite interaction energy.

We follow pages 261–263 of Ref. [10] and discuss the mode
structure for finite dielectric constant. In the current section,
we always take the perfect conductor limit

ε(ω) → ∞ (12)

before coming back to the full discussion of the dielectric
in Sec. VII. The wave vectors of the modes (perpendicular
component �k⊥ and reflected component �kR) are denoted as

�k = (k1,k2,k3), �k⊥ = (k1,k2,0), (13a)
�kR = (k1,k2,−k3) = 2�k⊥ − �k. (13b)

In describing the reflection from the boundary, we notice
that the index of refraction n(ω) is usually connected with
the change in the speed of light in the medium according
to c → c/n(ω), where we have n(ω) = √

ε(ω). We always
assume a material whose magnetic permeability is equal to
that of the vacuum. In the absence of absorptive effects, the

frequency of the light does not change in the transition toward
the medium; the wavelength in general becomes shorter, so
that the k wave vector becomes k′ > k,

c

n(ω)
= ω

k′ , n(ω) =
√

ε(ω), (14)

k′ =
√

ε(ω)k =
√

ε(ω)
ω

c
. (15)

In the case of a perfect conductor,

ε(ω) → ∞, k′ → ∞, (16)

which means that no electromagnetic wave can enter into a
perfect conductor. To summarize, the z components of the
wave vectors of the incoming and reflected waves can be
written as follows:

k3 =
√

ω2

c2
− k2

1 − k2
2, k′

3 =
√

ε(ω)
ω2

c2
− k2

1 − k2
2 .

(17)

Under the aforementioned boundary conditions for a waveg-
uide, the transverse electric (TE) and transverse magnetic (TM)
modes correspond to those for a waveguide directed along the
z axis, with boundary conditions in the x and y directions.
These modes have been illustrated in the literature on various
occasions (e.g., in Refs. [11,12]). The incoming (index I) TE-
and TM-mode electromagnetic waves are given as

�AI,TE
�kλ

≡
√

h̄c2

2ε0ωkV
�ε�kλe

i�k·�r , (18a)

�AI,TM
�kλ

≡
√

h̄c2

2ε0ωkV

(
�ε�kλ ×

�k
k

)
ei�k·�r . (18b)

The reflected waves (index R) are given by

�AR,TE
�kλ

=
√

h̄c2

2ε0ωkV
�ε�kλ

k3 − k′
3

k3 + k′
3

ei�kR·�r , (19a)

�AR,TM
�kλ

=
√

h̄c2

2ε0ωkV

(
�ε�kλ ×

�kR

k

)
ε(ω)k3 − k′

3

ε(ω)k3 + k′
3

ei�kR·�r . (19b)

For a perfect conductor, we have

�AR,TE
�kλ

= −
√

h̄c2

2ε0ωkV
�ελ�ke

i�kR·�r , (20a)

�AR,TM
�kλ

=
√

h̄c2

2ε0ωkV

(
�ελ�k ×

�kR

k

)
ei�kR·�r . (20b)

We here use the conventions of Ref. [10], but we convert the
expressions to SI units (in Ref. [10], the Gaussian system is
used).

The total vector potentials from superimposed incoming
and reflected waves are thus given by

�ATE
�kλ

=
√

h̄c2

2ε0ωkV
�ελ�k

(
ei�k·�r − ei�kR·�r)

=
√

h̄c2

2ε0ωkV
�ελ�k2i sin(k3z)ei�k⊥·�r , (21a)
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�ATM
�kλ

=
√

h̄c2

2ε0ωkV

[(
�ελ�k ×

�k
k

)
(eik3z − e−ik3z)

+ 2

(
�ε�kλ ×

�k⊥
k

)
e−ik3z

]
ei�k⊥·�r . (21b)

For both the TE and the TM modes, the x and y components
of these vector potentials vanish on the perfectly conducting
plate, that is, at z = 0. This is immediately clear for the term
sin(k3z) that is relevant to the TE modes. For the term with
the TM modes, this is also clear for the term proportional
to eik3z − e−ik3z. It is less clear for the term proportional to
�ελ�k × �k⊥. However, since �k⊥ lies in the plane of the perfect
conductor, it is immediately clear that �ελ�k × �k⊥ points out of
the xy plane.

The (z-dependent part of the) energy of a dipole polarizable
particle reads (see Eq. (7) and Ref. [10])

E1(z) = −1

2

∑
�kλ

α1(ωk)| �E�kλ(z)|2

= −1

2

∑
�kλ

α1(ωk)
ω2

k

c2
| �A�kλ(z)|2, (22)

with �A�kλ being a sum of potentials from TE and TM modes,

�A�kλ = �ATE
�kλ

+ �ATM
�kλ

. (23)

We here suppress the dependence of �A�kλ on the x and
y coordinates and imply an averaging over x and y. The
remaining z dependence is indicated in Eq. (22). The preceding
formula can be conveniently simplified by the use of the
following identity for polarizations sums,

∑
λ

(�ελ�k × �a) · (�ελ�k × �b) =
(

δij + kikj

k2

)
aibj . (24)

The interference term between TE and TM waves vanish, and
after averaging over x and y, one obtains

∑
λ

∣∣ �ATE
�kλ

(z)
∣∣2 = 2h̄c2

ε0ωkV
sin2(k3z) = − h̄c2

ε0ωkV
cos(2k3z) +C,

(25a)∑
λ

∣∣ �ATM
�kλ

(z)
∣∣2 = − h̄c2

ε0ωkV

(
1 − 2

k2
⊥

k2

)
cos(2k3z) + C ′,

(25b)

where C and C ′ are z-independent constants. We make a
corresponding substitution in Eq. (22) and take into account
the fact that we should only have two polarization vectors per
propagation vector. Then, the dipole energy E1(z) evaluates to

E1(z) = − 1

4ε0

∑
�kλ

α1(ωk)
ω2

k

c2

[∣∣ �ATE
�kλ

(z)
∣∣2 + ∣∣ �ATM

�kλ
(z)

∣∣2]

= 1

2ε0V

∑
�kλ

α1(ωk)(h̄ωk)

(
1 − k2

⊥
k2

)
cos(2k3z), (26)

which in the continuum limit is equal to

E1(z) = 1

2ε0V

V

(2π )3

∫ ∞

0
dk3

∫
d2�k⊥

×α1(ωk)(h̄ωk)

(
1 − k2

⊥
k2

)
cos(2k3z)

= h̄c

8π2ε0

∫ ∞

0
dkk3α1(ck)

×
∫ π

0
dθ sin θ cos2 θ cos(2zk cos θ ).

We now introduce a convergent factor, which amounts to
a Wick rotation of the integration contour, and change the
interaction from k to ω. Finally, we arrive at the formula

E1(z) = − h̄

(4π )2ε0z3

∫ ∞

0
dω α1(iω)

×
[

1 + 2ωz

c
+ 2

(ωz

c

)2
]

e−2ωz/c. (27)

This formula is in agreement with the literature (see
Refs. [1,13,14]). It interpolates between the short-range z−3

asymptotics and the large-distance z−4 asymptotics. The short-
range limit is

E1(z)
z→0= − h̄

(4π )2ε0z3

∫ ∞

0
dω α1(iω), (28)

and the large-distance limit is found as

E1(z)
z→∞= − 3h̄cα1(0)

32π2ε0z4
= − 3

8z4

α

π

(h̄c)2

e2
α1(0). (29)

The second form on the right-hand side very clearly displays
the physics: We are talking about a second-order energy
perturbation which is proportional to the QED coupling
parameter α/π , where α is the fine-structure constant. The
dimension of h̄c is that of energy times length, and together
with the dipole operators in the scaled polarizability α1(0)/e2

we obtain the square of the energy and the fourth power of
length. The four powers of length are compensated by the
1/z4 factor, and one power of the energy is compensated by
the propagator denominator in the polarizability. The result is
an interaction energy, namely, E1(z).

For the following formulas which are related to multipole
and generalized polarizabilities, we have to take into account
the fact that the higher-order multipoles generate additional
factors of the coordinate in the numerator, which are in turn
compensated by additional factors of z in the denominator.
The quadrupole contribution to the atom-surface interaction
has been investigated in Refs. [15–17]. According to Eq. (8),
the energy of a quadrupole polarizable particle in a nonuniform
electric field is equal to

E2(z) = − 1

12

∑
�kλ,ij

α2(ωk)
ω2

k

c2

∣∣∇jAi
�kλ

(z)
∣∣2

. (30)

The electric field gradients for the TE modes are equal to

∇jA
i,TE
�kλ

= c

√
h̄

2ε0ωkV
2iεi

λ�k[kj cos(k3z) − k
j

⊥e−ik3z]ei�k⊥·�r .

(31)
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After an analogous calculation for the TM modes, substitution
to Eq. (30), and some simplification, we find

E2(z) = − h̄

(4π )2ε0z5

∫ ∞

0
dω α2(iω)e−2ωz/c

×
[

1 + 2
ωz

c
+ 11

6

(ωz

c

)2
+

(ωz

c

)3
+ 1

3

(ωz

c

)4
]

.

(32)

In the short-range limit, we recover the result from Ref. [17],

E2(z)
z→0= − h̄

(4π )2ε0z5

∫ ∞

0
dω α2(iω). (33)

In large-distance limit,

E2(z)
z→∞= = − 25h̄cα2(0)

192π2ε0z6
= − 25

48z6

α

π

(h̄c)2

e2
α2(0). (34)

With the help of computer algebra [18], these results can be
generalized to the octupole and hexadecupole interactions as
follows. We start with the octupole,

E3(z) = − h̄

(4π )2ε0z7

∫ ∞

0
dω α3(iω)e−2ωz/c

×
[

1 + 2
ωz

c
+ 28

15

(ωz

c

)2
+ 16

15

(ωz

c

)3

+ 37

90

(ωz

c

)4
+ 1

9

(ωz

c

)5
+ 1

45

(ωz

c

)6
]

. (35)

The short-range limit is

E3(z)
z→0= − h̄

(4π )2ε0z7

∫ ∞

0
dω α3(iω), (36)

and we find the large-distance asymptotics

E3(z)
z→∞= − 301h̄cα3(0)

1920π2ε0z8
= − 301

480z8

α

π

(h̄c)2

e2
α3(0). (37)

The hexadecupole results are as follows,

E4(z) = − h̄

(4π )2ε0z9

∫ ∞

0
dω α3(iω)e−2ωz/c

×
[

1 + 2
ωz

c
+ 53

28

(ωz

c

)2
+ 47

42

(ωz

c

)3

+ 193

420

(ωz

c

)4
+ 29

210

(ωz

c

)5
+ 79

2520

(ωz

c

)6

+ 1

180

(ωz

c

)7
+ 1

1260

(ωz

c

)8
]

. (38)

In the short-range limit, we recover a meanwhile familiar
prefactor,

E4(z)
z→0= − h̄

(4π )2ε0z9

∫ ∞

0
dω α4(iω), (39)

whereas the large-distance limit is

E4(z)
z→∞= −1593 h̄c α4(0)

8960π2ε0z10
= − 1593

2240 z10

α

π

(h̄c)2

e2
α4(0). (40)

We note that the numerical, rational prefactors in Eqs. (29),
(34), and (37) are numerically close to 3/8, 4/8, and 5/8,
respectively, whereas the rational prefactor in Eq. (40) departs
from the “prediction” 6/8. The physical process under study

is too complicated in order for the linear extrapolation to be
reliable. We have verified the prefactor 1593/2240 in Eq. (40)
by an independent calculation based on Chapter 3 of Ref. [10],
where an approach is described which is valid only for the
large-distance asymptotics in the dipole approximation. An
obvious generalization of the latter approach to the case of the
hexadecupole polarizability then confirms the aforementioned
prefactor.

IV. PERFECT CONDUCTOR, SHORT RANGE

A. General asymptotic considerations

It is useful, for later considerations, to consider the
asymptotic limits of large and small separation of the atom
from the wall. In order to fix ideas, we should remember that
the subject of this article concerns interactions of an atom and a
flat surface at low temperature (we do not consider corrugated
surfaces, and temperature-induced effects are also excluded
from the discussion). Under these conditions, there are two
scales in the problem, the Bohr radius,

a0 = h̄

αmc
, (41)

and the wavelength of a typical atomic transition,

λ̄0 = h̄

α2mc
= α−1a0. (42)

The latter is the scale at which the retardation of electromag-
netic interactions become important and separates the short-
and long-range regimes.

A priori, the short-range regime for the atom-wall interac-
tion is given by the condition

a0 � z � λ̄0, (43)

where the atom-wall distance z is much larger than the Bohr
radius, in order to prevent any overlap of the atomic wave
function with the substrate. However, the condition z  a0

should be taken cum grano salis (“with a grain of salt”) and,
indeed, stricter conditions must sometimes be used. These have
their origin in phenomenological considerations [19–23]. First
of all, in the case of any appreciable overlap of the atomic wave
function with the substrate (even if exponentially suppressed),
one should use so-called damping functions (see Ref. [21]
and references therein) in order to describe the deviations
from the van der Waals law. Indeed, the damping functions,
which can be parameterized in terms of Fermi distribution type
functions, model the deviation from the near-field asymptotics
of the van der Waals interaction. For atoms and molecules, this
interaction is of the form 1/R6 in the interatomic separation
R, and it is of the form 1/z3 in the atom-wall distance z.
Deviations from this form for close approach are modeled by
the “damping functions.”

The limit for close approach when the van der Waals
interaction breaks down should be investigated very carefully
also for a second reason. We have made the assumption
that only two interactions with the quantized electromagnetic
field take place, and our expressions are of first order in
the multipole polarizabilities. In Refs. [19,20,22,23], it is
pointed out that for close approach, higher-order (in the dipole
polarizability α1) energy shifts may become important. The
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parameter governing this expansion, in SI units, reads (see
Eq. (2.28) of Ref. [22])

γ = α
h̄cα1(ω)

z3
, (44)

and our approximation of taking only the first term in the
expansion in γ requires that γ � 1. The full correction is
obtained after an integral involving γ = γ (ω) (see Eq. (6.1)
of Ref. [23]). Generally, atomic wavelengths λ̄0 are larger
than the Bohr radius by a factor α−1 [see Eq. (42)], and
they are also larger than the closest approach of atom and
wall in many typical experiments. When even the parameter
γ ′ = αh̄cα1(ω)/λ̄3

0 fails to fulfill γ ′ � 1, then it becomes
indispensable to consider the higher-order effects in the
polarizability at a general atom-wall distance. Finally, we
should point out that all statements and order-of-magnitude
estimates are subject to adjustment for a particular atom. For
example, for atoms in their ground state, α1(0) typically is
of order one (in atomic units). In some cases, however, for
example, for Rydberg states, it can be orders of magnitude
greater. This concludes our discussion on possible additional
restrictions clarifying the condition z  a0, which limits the
short-distance regime from below.

The large-distance regime on the other hand, is given by

z  λ̄0 
(

α1(0)

4πε0

)1/3

>∼ a0. (45)

The multipole expansion generates higher powers of the
atomic coordinate r in view of the structure of Eq. (2),
which are compensated by more and more powers of the
atom-wall distance z in the denominator of the energy shifts.
The expansion into multipoles, therefore, is an expansion in
powers of the parameter

ξ = a0

z
= h̄

αmzc
� 1, (46)

which is less than unity for both ranges (43) and (45) indicated
above, but not necessarily very small if the atom is close to
the wall. Therefore, a consideration of multipole corrections
becomes important for close approach.

In the short-range limit, a second expansion is possible.
Namely, the polynomials in ωz/c which are present in
Eqs. (27), (32), (35), and (38), generate an expansion in
ascending powers of

ζ = α2mzc

h̄
= α

ξ
, (47)

which is a small parameter (�1) for the short-range regime
(43).

For the large-distance limit, the situation is completely
different. Here, we may expand the polarizability for small
argument, αL(iω) = αL(0) + ω2βL(0) + · · ·. In view of the
exponential factor exp(−ωz/c), this is an expansion in powers
of

1

ζ
= c

z

h̄

α2mc2
= h̄

α2mzc
. (48)

This parameter is small only in the large-distance regime (45).
The applicability of the latter expansion has already been
mentioned in Ref. [24].

Furthermore, because the large-distance limit of all mul-
tipole interactions entails one more inverse power of z than
the short-range limit, it is natural to sum the ascending
powers of ζ which multiply the short-range asymptotics by
a Padé approximant in z with a denominator degree exceeding
the numerator degree by one. However, before we use this
observation in Sec. VI, we first discuss an anomaly which
plagues the expansion in ascending powers of ζ for the
short-range regime.

B. Dipole and quadrupole with correction term

The short-range asymptotics for the dipole, quadrupole, and
octupole polarizabilities have been recorded in Eqs. (28), (33),
(36), and (39). The general form, for a 2L-pole polarizability,
is

EL(z) = − h̄

(4π )2ε0z2L+1

∫ ∞

0
dω αL(iω). (49)

This is the leading term in the expansion for small z of the
atom-surface interaction. However, there are correction terms
corresponding to an expansion in ascending powers of the
parameter ζ = α2mzc/h̄ as defined in Eq. (47). The next-
to-leading order in this expansion would lead to a divergent
integral of the form

∫ ∞
0 dωω2αL(iω). We here observe that

the linear term in the expansion in ωz/c cancels between
the polynomial and exponential terms in the integrand on the
right-hand side of Eq. (27). The quadratic term, for a perfect
conductor, then gives rise to the aforementioned integral which
diverges for large frequencies. We see in Sec. V that the
divergence can be avoided for a realistic conductor, because
of general properties of the dielectric response function in the
ultraviolet, but it is still interesting and necessary to clarify
the treatment of the divergence within the approximation of a
perfect conductor.

To this end, we observe that the dynamic polarizability can
be written in the form [see Eq. (1)]

h̄2αL(iω) =
∑

n

f
(L)
n0

ω2
n0 + ω2

, (50)

where the fn0 are the oscillator strengths given in Eq. (2). In
order to solve the problem, one has to perform the integral
over ω without any approximations,

In(µ) =
∫ ∞

0
dω

e−ωµ

ω2
n0 + ω2

= 1

ωn0
[sin(µωn0)Ci(µωn0) − cos(µωn0)si(µωn0)],

(51)

where the Ci(x) and si(x) are the cosine and sine integrals,

Ci(x) = −
∫ ∞

x

cos t

t
dt, si(x) = −

∫ ∞

x

sin t

t
dt. (52)

We here use the standard definitions (see Eqs. (5.2.1), (5.2.2),
(5.2.5), (5.2.26), and (5.2.27) in Ref. [25]) for the cosine
integral Ci and the sine integral si. The exact results for the

052507-6



MULTIPOLE EFFECTS IN ATOM-SURFACE . . . PHYSICAL REVIEW A 81, 052507 (2010)

dipole and quadrupole energies can then be written in terms of
parametric differentiations of the integral In(µ),

h̄2E1(z) = − h̄

(4π )2ε0z3

∑
n

∣∣f (1)
n0

∣∣2
[

1 + 2(−µ)
∂

∂µ

+ 2(−µ)2 ∂2

∂µ2

]
In(µ)

∣∣∣∣
µ=2z/c

. (53)

For the quadrupole shift, we obtain

h̄2E2(z) = − h̄

(4π )2ε0z5

∑
n

∣∣f (2)
n0

∣∣2
[

1 − 2µ
∂

∂µ
+ 11

6
µ2 ∂2

∂µ2

− µ3 ∂3

∂µ3
+ 1

3
µ4 ∂4

∂µ4

]
In(µ)

∣∣∣∣
µ=2z/c

. (54)

The preceding expressions can be evaluated and expanded in
ascending powers of z, which is effectively an expansion in
ascending powers of ζ . The first two correction terms for the
short-range expansion of the dipole shift therefore read

h̄2E1(z) = − h̄

32πε0z3

∑
n

∣∣f (1)
n0

∣∣2

ωn0
+ 3h̄

(4π )2ε0z2c

∑
n

∣∣f (1)
n0

∣∣2

− h̄

8πε0zc2

∑
n

∣∣f (1)
n0

∣∣2
ωn0 + O(z0). (55)

Each of the correction terms involves a sum over oscillator
strengths. The quadrupole shift gives rise to the following
correction terms:

h̄2E2(z) = − h̄

32πε0z5

∑
n

∣∣f (2)
n0

∣∣2

ωn0
+ 3h̄

(4π )2ε0z4c

∑
n

∣∣f (2)
n0

∣∣2

− h̄

192πε0z3c2

∑
n

∣∣f (2)
n0

∣∣2
ωn0 + O(z−2). (56)

For the leading term in each of the preceding expansions, we
have, in view of Eq. (50),

∑
n

f
(L)
n0

h̄ωn0
= 2h̄

π

∫ ∞

0
dω αL(ω), (57)

so the leading order terms in Eqs. (55) and (56) agree with the
general result (49). For the first correction term, we can use
the representation∑

n

f
(L)
n0 = lim

ω→∞(h̄ω)2αk(ω). (58)

For the dipole case (L = 1), this can be further simplified to

∑
n

f
(1)
n0 = 2e2

3
〈Ri(H − E0)Ri〉 = h̄2e2

m
N, (59)

where N is the number of electrons in the atom, and Ri =∑N
k=1 ri

k is obtained after summing over all electrons in the
atom. For the correction term to the quadrupole interaction,
we have

∑
n

f
(2)
n0 = 3e2

5
〈rij (H − E0)rij 〉 = 2

(h̄e)2

m

N∑
k=1

〈
r2
k

〉
, (60)

where Rij = ∑N
k=1(ri

kr
j

k − 1
3δij r2

k ). Specifically, we find the
following correction terms, respectively, for the dipole and
quadrupole shifts:

E1(z) = − h̄

(4π )2ε0z3

∫ ∞

0
dω α1(iω)

+ 3α

4π
Nα2mc2

(
a0

z

)2

+ O(z−1), (61a)

E2(z) = − h̄

(4π )2ε0z5

∫ ∞

0
dω α2(iω)

+ 3α

2π
α2mc2

(
a0

z

)4 N∑
k=1

〈
r2
k

〉
a2

0

+ O(z−3), (61b)

where a0 is the Bohr radius. These formulas are generally
applicable. Note that the energy scale α3mc2, which appears
in the correction terms in Eq. (61), is smaller than the energy
corresponding to the Rydberg constant by a factor of α (we
have α3mc2 = 4πh̄αR∞c = 2hαR∞c). The correction term
for both the dipole term and the quadrupole term is suppressed
with respect to the leading term by a relative factor αz/a0 � 1
(because we assume that z � a0/α).

V. DIELECTRIC WALL, ARBITRARY RANGE

Let us start the discussion of the case of a dielectric wall with
a minireview of available results. The original derivation of
Ref. [2] has been reconsidered and cast into a more manageable
form by Tikochinsky and Spruch [26], and the result has
also been recorded in a particularly clear form in Eq. (15)
of Ref. [14]. If we let the dielectric constant ε(ω) → ∞ in the
cited Eq. (15) of Ref. [14], then we reach the result recorded
here in Eq. (27). Other treatments of the problem have been
given by in Refs. [27,28]. Some more material is also contained
in Vol. 8 of the textbook course [13]. The generalization
of Eq. (27) to an arbitrary dielectric constant ε requires the
introduction of a function H (ε,p) and can be written only as
a double integral.

In principle, the interaction energy of an atom with a
dielectric wall can be computed in the same way as for the
case of perfectly conducting one [without the simplifying
assumptions in Eqs. (12), (16), and (20)]. The TE- and
TM-wave vector potentials are obtained as the sum of the
potentials listed in Eqs. (18) and (19), without any further
simplifications,

�ATE
�kλ

=
√

h̄c2

2ε0V
�ε�kλ

(
eik3z − k3 − k′

3

k3 + k′
3

e−ik3z

)
ei�k⊥·�r , (62a)

�ATM
�kλ

=
√

h̄c2

2ε0V

[(
�ε�kλ ×

�k
k

)(
e2ik3z − ε(ω)k3 − k′

3

ε(ω)k3 + k′
3

)

× e−ik3z + 2

(
�ελ�k ×

�k⊥
k

)
ε(ω)k3 − k′

3

ε(ω)k3 + k′
3

e−ik3z

]
ei�k⊥·�r ,

(62b)

which can be inserted into the formula for the energy of an
atom in an external field [Eq. (22)]. The result [2] for the dipole
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polarizability has been derived in this manner,

E1(z) = − h̄

2πc3

1

4πε0

∫ ∞

0
dω ω3α1(iω)

×
∫ ∞

1
dξe−2ξωz/cH(ξ,ε(iω)), (63a)

where

H(ξ,ε) = (1 − 2ξ 2)

√
ξ 2 + ε − 1 − εξ√
ξ 2 + ε − 1 + εξ

+
√

ξ 2 + ε − 1 − ξ√
ξ 2 + ε − 1 + ξ

.

(63b)

This result can be approximated, for z → 0, with the help of
the following integral:∫ ∞

1
dξe−2ξωz/cH(ξ,ε)

= 1

2

(
c

zω

)3
ε − 1

ε + 1
+ 1

2

(
c

zω

)
(ε − 1)(3ε + 1)

(ε + 1)2
+ O(z0).

(64)

Inserting (64) into (63), we have

E1(z)
z→0= − h̄

(4π )2ε0z3

∫ ∞

0
dω α1(iω)

ε(iω) − 1

ε(iω) + 1
, (65)

in full agreement with (28) for the limit of a perfect conductor,
ε(iω) → ∞.

In order to derive an analogous expression for the case
of quadrupole polarizability, gradients of electromagnetic
potentials need to be computed. Using the expression (30) for
the energy of a quadrupole polarizable particle and using the
same procedure as for the case of atom-conductor interaction
we obtain

E2(z) = − h̄

12πc5

1

4πε0

∫ ∞

0
dω ω5α2(iω)

×
∫ ∞

1
dξe−2ξωz/c(2ξ 2 − 1)H(ξ,ε(iω)). (66)

In the perfect conductor limit (ε → ∞), the preceding
formula reduces to the previously derived result in Eq. (32).
Moreover, in the limit of small distances (or in the limit of
c → ∞) the preceding formula reproduces the short-range
asymptotic result of Ref. [17], which was derived for an
arbitrary dielectric constant and which reads

E2(z)
z→0= − h̄

(4π )2ε0z5

∫ ∞

0
dω α2(iω)

ε(iω) − 1

ε(iω) + 1
. (67)

Using computer algebra [18], it is a lengthy but manageable
exercise to calculate the octupole and hexadecupole energy
shifts,

E3(z) = − h̄

180πc7

1

4πε0

∫ ∞

0
dω ω7α3(iω)

∫ ∞

1
dξe−2ξωz/c

× (4ξ 4 − 4ξ 2 + 1)H(ξ,ε(iω)), (68)

and

E4(z) = − h̄

5040πc9

1

4πε0

∫ ∞

0
dω ω9α4(iω)

∫ ∞

1
dξe−2ξωz/c

× (8ξ 6 − 12ξ 4 + 6ξ 2 − 1)H(ξ,ε(iω)). (69)

TABLE I. Coefficients for the first few resonances for α-quartz
according to the fitting formula (70) (ordinary optical axis). The ωk

and γk are measured in atomic units, that is, in units of α2mc2 =
4πh̄R∞c, where R∞ is the Rydberg constant.

k αk ωk γk

Vibrational excitations
1 1.042 74 × 10−2 1.826 71 × 10−3 1.290 01 × 10−5

2 8.527 62 × 10−2 2.218 25 × 10−3 1.832 57 × 10−5

3 0.156 98 × 10−2 3.181 00 × 10−3 3.159 99 × 10−5

4 1.064 16 × 10−2 3.668 24 × 10−3 3.195 71 × 10−5

5 5.516 23 × 10−2 5.234 01 × 10−3 3.606 49 × 10−5

6 4.553 89 × 10−2 5.342 06 × 10−3 3.890 10 × 10−5

Interband excitations
7 1.053 01 × 10−2 3.890 05 × 10−1 1.117 67 × 10−2

8 4.712 12 × 10−2 4.451 02 × 10−1 5.283 24 × 10−2

9 4.978 63 × 10−2 5.373 78 × 10−1 7.324 83 × 10−2

10 1.057 75 × 10−1 6.580 90 × 10−1 1.300 09 × 10−1

11 1.115 86 × 10−1 8.259 62 × 10−1 2.401 49 × 10−1

VI. He–α-QUARTZ INTERACTION

In order to analyze the interaction of a helium atom with
a dielectric wall, we have to model the surface properties
accurately. We have thus scanned the extensive tabulated
data from the reference volume [29] via an optical character-
recognition software. A fit to these experimental data for
the real and imaginary part of the dielectric constant ε(ω) =
n(ω) + ik(ω) with an analytic function of the frequency then
leads to a satisfactory representation of the dielectric constant
for all frequencies. The following functional form was found
to lead to a satisfactory fit of the available data (see Tables I
and II):

ρ(ω) = ε(ω) − 1

ε(ω) + 2
= [n(ω) + ik(ω)]2 − 1

[n(ω) + ik(ω)]2 + 2

�
n∑

k=1

αk

ω2
k − iγkω − ω2

. (70)

TABLE II. Same as Table I for the extraordinary axis.

k αk ωk γk

Vibrational excitations
1 3.633 44 × 10−2 1.736 67 × 10−3 2.319 16 × 10−5

2 0.084 45 × 10−2 2.313 39 × 10−3 1.517 16 × 10−5

3 7.540 27 × 10−2 2.420 18 × 10−3 2.999 94 × 10−5

4 1.080 98 × 10−2 3.578 86 × 10−3 3.494 81 × 10−5

5 1.028 81 × 10−1 5.309 09 × 10−3 4.464 37 × 10−5

Interband excitations
6 1.053 01 × 10−2 3.890 05 × 10−1 1.117 67 × 10−2

7 4.712 12 × 10−2 4.451 02 × 10−1 5.283 24 × 10−2

8 4.978 63 × 10−2 5.373 78 × 10−1 7.324 83 × 10−2

9 1.057 75 × 10−1 6.580 90 × 10−1 1.300 09 × 10−2

10 1.115 86 × 10−1 8.259 62 × 10−1 2.401 49 × 10−2
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The original dielectric response function [ε(ω) − 1]/[ε(ω) +
1] can be reproduced as follows:

ε(ω) − 1

ε(ω) + 1
= 3ρ(ω)

ρ(ω) + 2
. (71)

This fitting procedure leads to a very good representation of the
data for both infrared and ultraviolet absorption bands. We then
employ the Kramers-Kronig relation for the dielectric constant
ε as a function of the frequency, in order to obtain ε(iω) along
the imaginary axis. Note that this quantity is needed as input
for the double integrals in Eqs. (63), (66), (68), and (69).

We then calculate accurately the dipole, quadrupole, and
octupole dynamic polarizabilities of helium. An evaluation of
the double integrals in the aforementioned formulas then gives
the potential at a given distance from the wall. Inspired by the
considerations in Sec. IV A, we then fit the obtained data for
the distance-dependent interaction potential of 2L multipole
order with the functional form

EL(z) = −C2L+1

z2L+1
f2L+1

(
α2mcz

h̄

)
= −C2L+1

z2L+1
f2L+1(ζ ),

(72)

where ζ is defined in Eq. (47). In atomic units, the function
f would be given in terms of the variable f = f (αz). A
convenient model is

f2L+1(ζ ) = 1 + a1ζ + a2ζ
2 + a3ζ

3

1 + a1ζ + b2ζ 2 + b3ζ 3 + b4ζ 4
. (73)

We choose the linear term a1ζ in the denominator to be equal to
the linear term in the numerator, so that the modification of f

for small ζ is of relative order ζ 2. The [3/4] Padé approximant
(73) is conceptually simple but sufficiently adjustable to
capture details of the potential. The ultraviolet divergence,
which otherwise leads to a correction term of relative order ζ ,
remains suppressed for a realistic dielectric, and this aspect
provides additional justification for the chosen functional
form. The rational function constitutes a generalization of the
concept of the z0 parameter put forth in Ref. [24].

A numerical evaluation of the formulas (63), (66), and
(67) for the ground-state of hydrogen and helium atoms then
proceeds using polarizabilities at purely imaginary frequen-
cies (obtained using a variational method). The results for
the asymptotic constants thus obtained are summarized in
Table III. The C2L+1 constants in the first column are in full

TABLE III. Asymptotic constants in dipole, quadrupole, and
octupole components of the energy of helium and hydrogen atoms
interacting with a perfect conductor and with α-quartz. The results
are given in atomic units. In SI units, the asymptotic energy shift for
hydrogen is obtained as EL(z) = −C2L+1α

2mc2(a0/z)2L+1, where a0

is the Bohr radius and C2L+1 is the dimensionless numerical constant
given in the table.

H (11S1/2) He (11S0)

ε = ∞ α-Quartz ε = ∞ α-Quartz

C3 0.250 0.060 0.188 0.033
C5 1.125 0.172 0.396 0.062
C7 11.250 2.505 1.877 0.282

TABLE IV. Sample values of the functions f3(z), defined as ratios
between the dipole part of the atom-surface interaction and its short-
distance asymptotics [see Eq. (72)]. The distance z is measured in
atomic units (a.u.), that is, in units of the Bohr radius a0.

H (11S1/2) He (11S0)

z (units in a0) ε = ∞ α-Quartz ε = ∞ α-Quartz

0 1.000 1.000 1.000 1.000
10 0.977 0.997 0.941 0.992
20 0.955 0.989 0.887 0.976
50 0.892 0.955 0.756 0.914
100 0.802 0.889 0.604 0.808
200 0.663 0.763 0.425 0.640
500 0.426 0.515 0.217 0.377
1000 0.259 0.322 0.117 0.217
2000 0.141 0.180 0.060 0.116
5000 0.058 0.078 0.024 0.377
10 000 0.029 0.042 0.012 0.026

agreement with known analytic formulas for a hydrogen atom
interacting with a perfect conductor. Note that these constants
only determine the leading coefficients in the small-distance
asymptotics for the specific multipole components of order 2L

and that they do not say anything about arbitrary distances. To
this end, we also present sample values of the dimensionless
van der Waals retardation functions f2L+1 in Tables IV and
V and the coefficients used for the construction of the Padé
approximants in Table VI. From the graphical representations
in Figs. 1 and 2, it is clear that a simple f3(ζ ) = a

a+z
, which

would correspond to a [0/1] Padé approximant, cannot lead to a
satisfactory representation of the numerical data for the van der
Waals retardation function, as evident from the double-hump
structure plotted in Fig. 2. A more complex form like Eq. (73)
is definitely required. The two separate humps in Figs. 1 and 2
are due to the vibrational and interband excitations of α-quartz,
which are clearly distinguished by their frequency ranges
(see Tables I and II). The interband transitions contribute
significantly to the interaction potential for small distances,
whereas the low-frequency vibrational excitations contribute
to the large-distance behavior.

TABLE V. Sample values of the van der Waals retardation
functions fn(z) for the He-SiO2 interaction.

z (units in a0) f3 (αz) f5 (αz) f7 (αz)

0 1.000 1.000 1.000
10 0.992 0.997 0.998
20 0.976 0.989 0.993
50 0.914 0.952 0.966
100 0.808 0.875 0.906
200 0.640 0.732 0.781
500 0.377 0.465 0.522
1000 0.217 0.278 0.322
2000 0.116 0.151 0.178
5000 0.377 0.064 0.076
10 000 0.026 0.034 0.040
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TABLE VI. Coefficients for the construction of the Padé approx-
imation to the retardation functions f3(ζ ), f5(ζ ), and f7(ζ ). Because
the coefficients have inverse powers of distance as their physical
dimension, we again stress that ζ = αz where z is measured in atomic
units.

f3 (ζ ) f5 (ζ ) f7 (ζ )

a1 4.551 × 100 2.333 × 100 1.677 × 100

a2 8.302 × 10−1 3.382 × 10−1 2.053 × 10−1

a3 6.223 × 10−3 1.818 × 10−3 8.999 × 10−4

b2 2.606 × 100 1.003 × 100 6.044 × 10−1

b3 4.956 × 10−1 1.519 × 10−1 7.717 × 10−2

b4 2.393 × 10−3 5.252 × 10−4 2.177 × 10−4

In order to validate our analytic model for the dielectric
constant of SiO2 we have computed the C3 coefficient for the
interaction of positronium with the α-quartz surface for which
independent theoretical values have been published [30,31].
Our result of 8.22 eV a3

0 is in satisfactory agreement with
the result of 8.43 eV a3

0 reported in Refs. [30,31], with a
difference of less than 3% in the numerical results. We take
the opportunity to discuss the theoretical uncertainty of the
numerical values reported in Tables I–VI of this article.

In Tables I and II, the fit parameters entering Eq. (70) are
given with an accuracy of six decimal digits. We estimate the
accuracy of the fitting function given in Eq. (70) to be on the
order of 5%, uniformly over the entire range of frequencies
ω required for the current study. However, we give the fitting
parameters in Tables I and II with higher accuracy, because the
actual value of the fitting function ρ(ω), which has pronounced
peaks, depends very sensitively on the parameters used in the
fit. In Tables III–V, numerical values for coefficients C3, C5,
and C7, and for the van der Waals retardation functions f3, f5,

FIG. 1. (Color online) Double-logarithmic plot of the van
der Waals retardation functions f3(αz) = −z3E1(z)/C3 (solid
line), f5(αz) = −z5E2(z)/C5 (long-dashed line), and f7(αz) =
−z7E3(z)/C7 (short dashed) in the range z ∈ (10,105) for the He–
α-quartz interaction. These are related to the dipole, quadrupole and
octupole interactions, respectively. The linear asymptotics for large z

implies that the leading power for large z of f2L+1(z) is proportional
to z−1, as it should be. Note that z is given in atomic units, that is, in
units of the Bohr radius a0. One sees that as z → 0, f (z) approaches
unity.

FIG. 2. (Color online) Plot of the function zf3(αz) (solid line),
zf5(αz) (long-dashed line), and zf7(αz) (short dashes) in the range
z ∈ (10,105) for the He–α-quartz interaction. These are related to the
dipole, quadrupole, and octupole effects, respectively. A logarithmic
scale is used for the z coordinate. For z → ∞, all plotted graphs
approach a constant. There are two humps for small (103a0) and large
distances (105a0, i.e., few microns). These result from two absorption
regions: interband transitions in the ultraviolet region and isolated
absorption peaks in the infrared. These are relevant to small and large
distances from the wall, respectively.

and f7 are provided. With the exception of the values given for
H in the first column of Table III, which are exact, we estimate
the numerical uncertainty of these values not to exceed 5%.
In Table VI, fit parameters are given for the (smooth) van
der Waals retardation functions f3, f5, and f7. Here, too, we
estimate the accuracy of the fitted function given in Eq. (73) to
be on the order of 5%. Because the fitting functions given by
(73) are smooth, it is not necessary to give the fit parameters
with higher accuracy in this particular case.

VII. CONCLUSIONS

The purpose of this article has been to advance our under-
standing of long-range interactions of atoms with conductors,
and with dielectric walls, via a combination of analytic
considerations and numerical calculations. As clarified in
Sec. IV A, the multipole expansion is an expansion of the
atom-wall interaction in powers of (a0/z), where a0 is the Bohr
radius and z is the atom-wall distance. This expansion thus is
always valid for any reasonable application of the long-range
theory. However, the importance of the multipole effects grows
as we approach the wall and z becomes smaller. The higher-
order corrections are well represented by a rational function
of the variable αz/a0 = z/λ̄0, where α is the fine-structure
constant and λ̄0 is the wavelength (divided by 2π ) of a typical
atomic transition, λ̄0 = h̄/(α2mc). This second scale is larger
than the Bohr radius by a factor α−1 ≈ 137.036. We find that
each term in the multipole expansion, in turn, is multiplied
by a rational function of the latter parameter z/λ̄0, which can
be larger or smaller than unity depending on the atom-wall
distance [see Eqs. (43), (45), and (73)].

There have been certain gaps in the literature concerning
the treatment of multipole corrections, even for perfectly
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conducting walls. We have attempted to clarify how the
multipole interactions of atoms with surfaces (atom-wall
interactions) should be treated for an arbitrary distance z of the
atom and the macroscopic structure (see Sec. III). Interpolating
formulas are found which clarify how the transition from
the 1/z2L+2 long-range interaction to the 1/z2L+1 short-range
interaction proceeds for the multipole of order 2L.

We have also attempted to clarify how the asymptotic
expansions of the atom-wall potentials have to be interpreted
physically (see Sec. IV). A certain “anomaly” in the asymptotic
expansion for small distances, which occurs only in the case
of a perfect conductor, has been uncovered (Sec. IV B). This
“anomaly” leads to the appearance of a linear (rather than
quadratic) correction term for the dipole and quadrupole
interaction energies in terms of the parameter z/λ̄0. Rather
general formulas are found for the linear correction term.

We have also generalized the results to the interaction of
an arbitrary ground-state atom interacting with a dielectric
wall for all multipoles up to the hexadecupole interaction
(Sec. V), with full allowance for retardation and with full
account of the dielectric response function of the medium.
We then demonstrate the utility of the results for practical
purposes, by addressing the interaction of helium with
α-quartz (Sec. VI). Our analysis relies heavily on an accurate
and appropriate representation of all data available today for
the dielectric response function of realistic materials [29],
and on an analytic continuation thereof to imaginary probe
frequencies. For the interaction with perfect conductors, a few
results for asymptotic coefficients are reproduced using our
formalism (see Table III), and more results are obtained for
the interaction with α-quartz. We find that, surprisingly, the
vibrational and interband excitations play very distinctive roles
at different ranges of the atom-wall interaction (see Figs. 1
and 2).

As an incentive for future work, we can say that we do
not consider here mixing terms between different multipole
components as, for example, the dipole-octupole mixing terms
which have already been mentioned in Ref. [32], in a different
context, namely, for the long-range atom-atom interaction. In
that sense, our results for the expansions in powers of a0/z

even have to be considered as incomplete. However, they give
a good quantitative estimate for the corrections that have to
be expected if higher multipoles are taken into account, and
they pave the way for a future systematic investigation of
the higher-order effects. Moreover, relativistic corrections to
the atom-wall interaction of relative order α2 have also been
neglected in the current analysis. These provide further room
for an improvement of our understanding of the interactions
that are mediated by virtual excitations of the quantum fields.
However, as shown in Sec. VII, the quantitative predictions
of theory also depend crucially on an accurate representation
of available data for the dielectric response function, which
needs to be cast into a manageable analytic form. Even with
the simplifications described in Sec. VII, the determination
of enough points for the reliable calculation of the rational
coefficients in Table VI took several days in a massively
parallel computing environment, because for each distance, a
double integral involving both the dielectric response function
of the medium and the polarizability of the atom needs to be
evaluated.
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