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Relativistic many-body calculation of energies, lifetimes, hyperfine constants, multipole
polarizabilities, and blackbody radiation shift in 137Ba II
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Excitation energies of the [Xe]ns1/2, [Xe]npj , and [Xe]ndj (n � 12 and [Xe] =
1s22s22p63s23p63d104s24p64d105s25p6) in Ba II are evaluated. First-, second-, third-, and all-order
Coulomb energies and first- and second-order Coulomb-Breit energies are calculated. Electric-dipole (6s1/2-npj ,
n = 6–26), electric-quadrupole (6s1/2-ndj , n = 5–26), and electric-octupole (6s1/2-nfj , n = 4–26) matrix
elements are calculated to obtain the ground-state E1, E2, and E3 static polarizabilities. Scalar polarizabilities of
the ns1/2, npj , and ndj states and tensor polarizabilities of the np3/2 and ndj excited states of Ba+ are evaluated.
All aforementioned matrix elements are determined using the relativistic all-order method. The hyperfine
structure in 137Ba II is also investigated. The hyperfine A and B values are determined for the first low-lying
levels up to n = 9. The quadratic Stark effect on hyperfine structure levels of 137Ba II ground state is investigated.
The calculated shift for the (F = 2, M = 0) ↔ (F = 1, M = 0) transition is −0.2931 Hz/(kV/cm)2, in
agreement with a previous theoretical result, −0.284(3)). These calculations provide a theoretical benchmark
for comparison with experiment and theory.
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I. INTRODUCTION

Recently, the 6s-npj (n = 6–9) electric-dipole matrix
elements and 6s-ndj (n = 5–7) electric-quadrupole matrix
elements in Ba+ were calculated by Iskrenova-Tchoukova
and Safronova [1] using the relativistic all-order linearized
coupled-cluster method. This set of matrix elements was
needed in Ref. [1] for accurate calculation of ground-state
dipole and quadrupole polarizabilities and lifetimes of the
6pj and 5dj levels. Previously, the n1s-n2pj and n3dj ′ -n2pj

(n1 = 6–8, n2 = 6–8, and n3 = 5–7) electric-dipole matrix
elements were evaluated by Dzuba et al. [2] to determine the
parity-nonconserving 6s-5d amplitudes in Ba+. Correlation
corrections to the electron orbitals were calculated using the
correlation potential method. Dzuba et al. [3] carried out
accurate ab initio nonperturbative calculations of the Breit
correction to the parity nonconserving (PNC) amplitudes of
the 6s-5d3/2 transition in Ba+. Electric dipole and quadrupole
transition amplitudes in Ba+ were calculated by Gopakumar
et al. [4] using the RCC method. Numerical values for the
n1s-n2pj and 5dj ′ -n2pj (n1 = 6–8 and n2 = 6–8) electric-
dipole matrix elements were calculated in [4] using relativistic
third-order many-body perturbation theory (MBPT). It was
mentioned in Ref. [4] that a very elaborate description of the
preceding types of corrections with the associated diagrams
were given in the article by Blundell et al. [5].

Sherman et al. [6] compared values of the dipole matrix
elements for the 6s-npj and 5d3/2-npj transitions with n =
6–8 given in Refs. [1,2,4]. Excellent agreement (less than 1%
disagreement) was found only for the 6s-6pj dipole matrix
elements. Results in Refs. [2,4] for the 5d3/2-6pj , 5d3/2-7pj ,
and 5d3/2-8pj dipole matrix elements disagree by 3.6%, 17%,
5.8% (for j = 1/2) and by 3.8%, 12%, 7.1% (for j = 13/2),
respectively. The largest disagreement (by factor of 2–10) was
found between results for the 6s-7pj and 6s-8pj dipole matrix
elements. Sherman et al. [6] presented also recently published
recommended National Institute of Standards and Technology

(NIST) values [7] for the aforementioned transitions. It is
difficult to comment about the accuracy of those recommended
NIST values since they were based on theoretical values
[8] rather than measurements. The nonrelativistic Coulomb
approximation was used by Lindgård and Nielsen in Ref. [8]
to evaluate transition rates for the alkali-metal isoelectronic
sequences.

Recently, the relativistic coupled-cluster (RCC) method
was used by Sahoo et al. [9] to calculate electric dipole
matrix elements in Ba+. Authors underlined that accurate
determination of the electric dipole matrix elements is essential
in achieving sub-1% PNC amplitudes. Tabulated values for the
dipole matrix elements differs by 1–5% from results previously
published in [4], where the RCC method was also used. The
difference in results was explained by the use of a mix of
numerical orbitals from the GRASP code and Gaussian-type
analytical orbitals (GTOs). In contrast, the purely analytical
GTOs were used in Ref. [9]. It should be noted that the largest
difference (factor of 2–5) in the [4] and [9] results happens for
the 6s-7p3/2 and 6s-8pj dipole matrix elements.

In present article, electric-dipole matrix elements are eval-
uated in the all-order SD and SDpT approximations (single-
double all-order method including partial triple excitations
[10]). This approach differs from Ref. [1] by the treatments
of the Breit interaction. In Ref. [1], Breit contributions to
the Dirac-Fock potential was omitted and Breit corrections
were included perturbatively in second-order MBPT. In the
approach used in the present article, I include both Coulomb
and Breit contributions to the Breit-Dirac-Fock potential
and then treat the residual Breit and Coulomb interactions
perturbatively. B splines [11] are used to generate a complete
set of Dirac-Fock (DF) basis orbitals for use in the evaluation
of all atomic properties.

Dipole matrix elements were used to calculate oscillator
strengths, transition rates, and lifetimes in Ba+ ion. More than
40 years ago, Warner [12] reported oscillator strengths for
the ns-n′p, np-n′d, and nd-n′f transitions with ns = 6s-11s,
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np = 6p-8p, nd = 5d-10d, and nf = 4f -7f . The radial
wave functions were taken to be scaled Thomas-Fermi-Dirac
wave functions with including spin-orbit interaction [12]. The
relativistic pseudopotential approach was applied by Hafner
and Schwarz [13] to the calculation of electric-dipole transition
probabilities in Ba+ for the ns-n′p and (n − 1)s-n′p transitions
with n = 6–9 and n′ = 6–8. Relativistic Hartree-Fock oscilla-
tor strengths for the lowest 6s2S1/2–6p2P1/2,3/2 transitions in
Ba II, with allowance for core polarization, were presented by
Migdalek and Baylis [14]. Model potential calculations were
performed by Migdalek and Wyrozumska [15] to investigate
the influence of valence-core electron exchange on Ba II

oscillator strength. Tabulated values of oscillator strengths
were given for the 6s-6p, 6p-5d, 6p-6d, 6p-7d, 5d-4f ,
5d-5f , and 5d-6f transitions [15]. A relativistic Hartree-
Fock method, being a slight modification of the conventional
formulation and closely related to the approach of Cowan
and Griffin [16], was examined by Karwowski and Szulkin
[17] to calculate oscillator strengths for the Cs isoelectronic
series. Numerical results for Ba II were given for the 6s-7p

transition. A quasirelativistic local spin density functional with
correlation energy was used in conjunction with the concept
of a Slater transition state to calculate the (ns-np) dipole
oscillator strength in Ba II (n = 6) and other alkali-metal
atomic systems [18]. Relativistic MBPT was applied by
Guet and Johnson [19] to determine the 6s-6p and 6p-5d

dipole matrix elements and the lifetimes of the 6p1/2 and
6p3/2 states.

Experimental measurements of oscillator strengths, branch-
ing ratios, and lifetimes were performed in Refs. [20–39].
High-precision measurement of the branching ratios from the
6p2P3/2 state of Ba II into all dipole-allowed decay channels,
6s2S1/2, 5d2D3/2, and 5d2D5/2, was presented by Kurz et al.
[39]. Relative strengths normalized to unity were found to be
0.756 ± 0.046, 0.0290 ± 0.0015, and 0.215 ± 0.0064 for the
6s2S1/2, 5d2D3/2, and 5d2D5/2 channels, respectively. Those
results were compared in [39] with other measurements [21,
36] and theoretical calculations [2,4,19]. I mentioned earlier
that critically evaluated transition rates, oscillator strengths,
and line strengths were given by Klose et al. [7]. Energy levels,
wavelengths, and transition probabilities for the second spectra
of barium, Ba II, were compiled by Curry [40]. Wavelengths
of observed transitions and energy levels derived from those
wavelengths were critically evaluated using the available
literature. Measured and calculated transition probabilities for
some of the observed transitions were obtained from the recent
compilation of Klose et al. [7].

The lifetimes of the metastable 5d2D3/2 and 5d2D5/2 levels
in Ba+ is a subject of theoretical and experimental studies
owing to their application in various fields such as optical
frequency standards, quantum information, and astronomy.
Therefore, a separate overview of the recent status of these
values is presented. Recently, precision lifetime measurements
of the 5d2D5/2 level in Ba+ was given by Royen et al. in
Ref. [41]. Precision measurements and calculations of the
5d2DJ lifetimes were presented by Gurell et al. [42]. The
experiment utilized a laser probing technique (LPT) together
with a beam of Ba+ ions stored in the ion storage ring
CRYRING at the Manne Siegbahn Laboratory in Stockholm,
Sweden. Three different theoretical models were considered

within the framework of the pseudorelativistic Hartree-Fock
(HFR) method described by Cowan [43]. In a first calcula-
tion [HFR(A)], only valence correlation was considered in
the physical model including the 5s25p6ns (n = 6–8) and
5s25p6nd (n = 5–8) configurations. In a second calculation
[HFR(B)], some core-valence correlations were included by
means of additional configurations with one hole in the 5s or
5p subshell. In the third calculation [HFR(C)], the [HFR(B)]
model was extended with configurations characterized by two
holes in the 5s or 5p subshell. Recently [1], the calculation
of the 5d2DJ –6s2S1/2 electric-quadrupole matrix elements in
Ba+ was carried out using an ab initio relativistic all-order
method which sums infinite sets of MBPT terms. These
matrix elements were used to evaluate the 5d-level radiative
lifetimes and their ratio [1]. In Ref. [44], the RCC theory
was used to perform accurate calculations of the lifetimes of
the lowest excited 5d2DJ states in singly ionized barium. The
calculations of the 5d2DJ lifetimes in Ref. [2] were performed
with fitted Brueckner orbitals; core polarization, structural
radiation, and normalization contributions were included in
the E2 transition amplitudes. The M1 contribution to lifetime
of the lowest excited (metastable) 5d5/2 state arising from
transitions to 5d3/2 state in Ba II was evaluated by Guet and
Johnson in errata [45]. It was emphasized that this contribution
should be added to transition rates given previously in
Ref. [19] to obtain the correct value of the lifetime of the
5d5/2 state. Early theoretical calculations and measurements
of the 5d2D3/2 and 5d2D5/2 lifetimes in Ba+ were presented
in Refs. [46–51].

One of the first measurements of the dipole (α0) and
quadrupole (α2) polarizabilities in Ba II was performed by
Gallagher et al. in Ref. [52]. The values of α0 and α2 were
found to be equal to 125.5 ± 10 a3

0 and 2050 ± 100 a5
0 .

More than 20 years later, Snow et al. in Ref. [53] reported
determination of dipole and quadrupole polarizabilities of
Ba+ by measuring the fine structure of high-L n = 9 and
10 Rydberg states of barium. Their values of α0 and α2 were
in good agreement with previous results, taking into account
uncertainties in both measurements (α0 = 124.30 ± 0.16 a3

0
and α0 = 2462 ± 361 a5

0). A few years later, Snow and Lundin
in Ref. [54] determined the dipole and quadrupole polariz-
abilities of Ba+ using fine-structure measurements in high-L
n = 17 and 20 Rydberg states of barium. The reported value
of dipole polarizability only slightly changed (123.88 ± 5 a3

0);
however, the value of quadrupole polarizability dramatically
changed (4420 ± 250 a5

0) in comparison with result in [53],
owing to including contributions from higher-excited levels as
described in [55]. This last experimental value of quadrupole
polarizability was in a good agreement with the theoretical
result published by Iskrenova-Tchoukova and Safronova [1].
Patil and Tang [56] gave a 10% larger number for quadrupole
polarizability (4821 a5

0) using simple wave functions based
on the asymptotic behavior and on the binding energies
of the valence electron. Dipole polarizability in Ba II was
evaluated by Lim and Schwerdtfeger in Ref. [57]. Static
dipole polarizabilities were calculated by RCC calculations
using finite field techniques together with carefully optimized
Gaussian-type basis sets [57].

High-precision measurement of the ground-state hyperfine
splitting of 137Ba+ was presented by Blatt and Werth [58].
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The magnetic dipole hyperfine constant was determined to be
A = 4018.870 833 85(18) mHz. Early measurements of the A

constant for the 6s2S1/2 state were presented in Refs. [59,60].
Ground-state magnetic-dipole hyperfine coupling constants
A for different Ba+ isotopes (135Ba+, 133Ba+, and 131Ba+)
measured in a Paul ion trap were presented by Trapp
et al. in Ref. [61]. The magnetic dipole A and electric
quadrupole B hyperfine constants for the 6p2P3/2 state were
measured by collinear fast-beam laser spectroscopy [62]. The
hyperfine structure of the 5d2D5/2 states in 135,137Ba+ was
studied by Silverans et al. [63] using fast-ion-beam laser-rf
spectroscopy.

The RCC method was applied by Sahoo et al. [64] to
calculate the magnetic dipole hyperfine constant A of the 6s1/2,
6p1/2, 6p3/2, and 5d3/2 states of singly ionized barium, 137Ba+.
After the inclusion of two-body correlation effects into the
computation of the hyperfine matrix elements, the accuracy of
the resulting values was significantly increased compared to
earlier computations [65]. The RCC method was used later in
Ref. [66] to determine the hyperfine constants A for the 7s1/2,
7p1/2, 7p3/2, and 5d5/2 states and the hyperfine constants B for
the 6p3/2, 7p3/2, and 5dj states. A slightly different value of
the hyperfine constants A for the ground 6s1/2 state was given
by Sur et al. [67]. The relativistic MBPT method was used by
Dzuba et al. [68] to determine the magnetic dipole hyperfine
constant A of the 6s1/2 state in 137Ba+.

In the present article, relativistic all-order SD and SDpT
approximations (single-double all-order method including
partial triple excitation) methods are used to calculate atomic
properties of singly ionized barium for the ns, npj , ndj , and
nfj (n � 10) states. I evaluate a large number of transition
matrix elements to calculate E1, E2, and E3 ground-state
polarizabilities; scalar polarizabilities of the ns1/2, npj , and
ndj states; and tensor polarizabilities of the np3/2 and ndj

excited states of Ba+. Excitation energies are calculated for
the 37 first excited states. The hyperfine A and B values are
determined for the first low-lying levels up to n = 8. The
quadratic Stark effect on hyperfine structure levels of 137Ba II

ground state is investigated.
In the present work, the relativistic single-double method

is also used; however, the number of the basis-set orbitals
is increased to 70 instead of 50 used in [1] to increase
the number of states considered. B splines [11] are used to
generate a complete set of DF basis orbitals for use in the
evaluation of all atomic properties. The present calculation of
the polarizabilities required accurate representation of rather
highly excited states, such as 6lj -13lj , leading to the use of the
large R = 220 a.u. cavity for the generation of the finite basis
set and higher number of splines to produce high-accuracy
single-particle orbitals.

II. THIRD-ORDER AND ALL-ORDER CALCULATIONS
OF ENERGIES

Energies of nlj states in Ba II are evaluated for n �
12 and l � 2 using both third-order relativistic many-body
perturbation theory (RMBPT) and the single-double (SD)
all-order method discussed in Refs. [69,70], in which single
and double excitations of DF wave functions are iterated to
all orders. Results of my energy calculations are summarized

in Table I. Columns 2–6 of Table I give the lowest-order
DF energies E(0), second-order and third-order Coulomb
correlation energies E(2) and E(3), second-order Breit correc-
tions B(2), and an estimated Lamb shift contribution, E(LS).
The Lamb shift E(LS) is calculated as the sum of the one-
electron self-energy and the first-order vacuum-polarization
energy. The vacuum-polarization contribution is calculated
from the Uehling potential using the results of Fullerton
and Rinker [71]. The self-energy contribution is estimated
for the s, p1/2, and p3/2 orbitals by interpolating among
the values obtained by Mohr [72–74] using Coulomb wave
functions. For this purpose, an effective nuclear charge Zeff

is obtained by finding the value of Zeff required to give
a Coulomb orbital with the same average 〈r〉 as the DF
orbital. It should be noted that the values of E(LS) are very
small.

For states with l > 0, the Lamb-shift is estimated to be
smaller than 0.1 cm−1 using scaled Coulomb values and is
ignored. I list the all-order SD energies in the column labeled
ESD and list that part of the third-order energies missing
from ESD in the column labeled E

(3)
extra. The sum of the

five terms E(0), ESD, E
(3)
extra, B(2), and E(LS) give the final

all-order result ESD
tot , listed in the 10th column of Table I.

Recommended energies from the NIST database [75] are
given in the column labeled ENIST. Differences between
my third-order and all-order calculations and experimental
data, δE(3) = E

(3)
tot − ENIST and δESD = ESD

tot − ENIST, are
given in the two rightmost columns of Table I, respectively.
As mentioned earlier, I include both Coulomb and Breit
contributions to the Breit-Dirac-Fock potential and then treat
the residual Breit and Coulomb interactions perturbatively.
As a result, the first-order Breit correction B(1) was already
included in the lowest-order DF energies E(0) and omitted
from Table I.

As expected, the largest correlation contribution to the
valence energy comes from the second-order term E(2).
Therefore, E(2) is calculated with higher numerical accuracy.
The second-order energy includes partial waves up to lmax = 8
and is extrapolated to account for contributions from higher
partial waves (see, for example, Refs. [76,77] for details of the
extrapolation procedure). As an example of the convergence of
E(2) with the number of partial waves l, consider the 6s1/2 state.
Calculations of E(2) with lmax = 6 and 8 yield E(2)(5d3/2) =
−8911.0 and −9079.3 cm−1, respectively. Extrapolation of
these calculations yields −9148.4 and −9137.3 cm−1, re-
spectively. Thus, in this particular case, we have a numerical
uncertainty in E(2)(5d3/2) of 10.1 cm−1. It should be noted that
the 168.3 cm−1 contribution from partial waves with l > 6
for the 6s state is the largest among all states considered
in Table I. For example, we find E(2)(6s1/2) = −6520.5 and
−6558.6 cm−1 with lmax = 6 and 8; that gives the 38.1 cm−1

contribution from partial waves with l > 6. Extrapolation
of these calculations yields −6577.3 and −6577.2 cm−1,
respectively. That gives a numerical uncertainty in E(2)(6s1/2)
of only 0.1 cm−1.

Owing to the computational complexity, l � lmax = 6 is
restricted in the ESD calculation. As noted previously, the
second-order contribution dominates ESD; therefore, we can
use the extrapolated value of the E(2) described previously
to account for the contributions of the higher partial waves.
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TABLE I. Zeroth-order (DF), second- and third-order Coulomb correlation energies E(n), single-double Coulomb energies ESD, E
(3)
extra,

second-order Coulomb-Breit corrections B (2) to the energies of Ba II. The total energies [E(3)
tot = E(0) + E(2) + E(3) + B (2), ESD

tot = E(0) +
ESD + E

(3)
extra + B (1) + B (2)] for Ba II are compared with experimental energies ENIST [75], δE = Etot − ENIST. Units: cm−1.

nlj E(0) E(2) E(3) B (2) E(LS) E
(3)
tot ESD E

(3)
extra ESD

tot ENIST δE(3) δESD

6s1/2 −75 326 −6577.3 2332.8 −102.4 8.0 −79 665 −5975.7 1012.5 −80 383 −80 686 1022 303
6p1/2 −57 237 −3631.9 1122.1 −48.4 −0.2 −59 795 −3517.4 516.4 −60 287 −60 425 629 138
6p3/2 −55 861 −3281.0 1011.0 −46.7 0.1 −58 177 −3175.2 465.0 −58 618 −58 734 556 116
5d3/2 −68 183 −9148.4 2738.7 −257.4 0.0 −74 850 −8401.4 1220.9 −75 621 −75 812 962 191
5d5/2 −67 727 −8699.5 2548.1 −246.3 0.0 −74 125 −8024.4 1136.0 −74 862 −75 011 886 149
7s1/2 −36 846 −1884.4 687.2 −32.2 0.8 −38 075 −1625.1 294.8 −38 208 −38 331 256 123
7p1/2 −30 229 −1247.5 400.1 −18.9 −0.1 −31 095 −1158.0 181.1 −31 225 −31 296 201 72
7p3/2 −29 694 −1147.4 367.7 −18.4 0.0 −30 492 −1066.5 165.9 −30 613 −30 675 183 62
6d3/2 −33 272 −1758.8 501.6 −49.4 0.0 −34 579 −1542.6 235.1 −34 629 −34 737 158 108
6d5/2 −33 104 −1704.9 479.2 −48.2 0.0 −34 378 −1505.4 224.1 −34 434 −34 531 153 98
7d3/2 −20 254 −753.0 213.0 −21.2 0.0 −20 815 −663.2 100.8 −20 837 −20 886 71 49
7d5/2 −20 172 −734.0 205.3 −20.8 0.0 −20 722 −650.4 96.8 −20 746 −20 791 70 45
8s1/2 −22 021 −823.1 303.6 −14.6 0.0 −22 555 −696.5 129.4 −22 602 −22 661 106 59
8p1/2 −18 842 −593.8 192.8 −9.4 0.0 −19 253 −543.2 86.8 −19 308 −19 347 94 38
8p3/2 −18 577 −550.7 178.8 −9.2 0.0 −18 958 −504.6 80.2 −19 011 −19 044 86 34
8d3/2 −13 673 −402.0 113.3 −11.3 0.0 −13 973 −354.9 53.9 −13 986 −14 013 39 27
8d5/2 −13 628 −393.0 109.7 −11.1 0.0 −13 922 −348.9 52.0 −13 936 −13 961 38 25
9s1/2 −14 665 −436.8 161.9 −7.9 −0.1 −14 948 −366.2 68.8 −14 970 −15 003 55 32
9p1/2 −12 894 −331.7 108.2 −5.3 0.0 −13 123 −301.3 48.6 −13 152 −13 175 52 23
9p3/2 −12 743 −309.1 100.9 −5.3 0.0 −12 957 −281.2 45.2 −12 984 −13 005 48 20
9d3/2 −9862 −241.8 68.0 −6.8 0.0 −10 042 −213.7 32.4 −10 050 −10 066 24 16
9d5/2 −9833 −236.8 66.0 −6.7 0.0 −10 011 −210.4 31.4 −10 019 −10 034 23 15
10s1/2 −10 471 −260.2 96.7 −4.7 −0.1 −10 640 −217.1 41.0 −10 652 −10 672 32 20
10p1/2 −9384 −204.6 66.9 −3.3 0.0 −9525 −185.1 30.1 −9543 −9556 31 14
10p3/2 −9290 −191.3 62.6 −3.3 0.0 −9422 −173.3 28.0 −9439 −9451 29 12
10d3/2 −7451 −157.2 44.1 −4.4 0.0 −7569 −139.0 21.1 −7574 −7585 16 11
10d5/2 −7433 −154.1 42.9 −4.3 0.0 −7548 −136.9 20.4 −7554 −7564 16 10
11s1/2 −7852 −167.8 62.4 −3.1 0.0 −7961 −139.5 26.5 −7968 −7981 20 13
11p1/2 −7137 −135.2 44.3 −2.2 0.0 −7231 −122.0 19.9 −7242 −7250 20 8
11p3/2 −7075 −126.7 41.5 −2.2 0.0 −7162 −114.5 18.6 −7173 −7180 17 7
11d3/2 −5829 −109.0 30.3 −3.0 0.0 −5911 −95.6 14.5 −5913 −5921 10 7
11d5/2 −5816 −107.0 29.5 −3.0 0.0 −5897 −94.2 14.1 −5900 −5906 9 7
12s1/2 −6107 −115.1 42.6 −2.1 0.0 −6181 −95.0 18.1 −6186 −6195 13 9
12p1/2 −5612 −96.0 30.9 −1.6 0.0 −5679 −84.7 13.9 −5684 −5689 10 5
12p3/2 −5568 −90.4 29.0 −1.6 0.0 −5631 −79.7 13.0 −5636
12d3/2 −4685 −77.5 21.7 −2.6 0.0 −4744 −68.6 10.4 −4746
12d5/2 −4676 −76.1 21.2 −2.6 0.0 −4734 −67.7 10.1 −4736 −4740 7 4

Six partial waves are also used in the calculation of E(3).
Since the asymptotic l-dependence of the second- and third-
order energies are similar (both fall off as l−4), the second-
order remainder is used as a guide to estimate the remainder
in the third-order contribution. The term E

(3)
extra in Table I,

which accounts for that part of the third-order MBPT energy
missing from the SD energy, is smaller than E(3) by an order
of magnitude for the states considered here.

The column labeled δESD in Table I gives differences
between my ab initio results and the available experimental
values [75]. The SD results agree better with recommended
values than do the third-order MBPT results (the ratio of
δE(3)/δESD is about three for some of cases), illustrating the
importance of fourth- and higher-order correlation corrections.

It should be noted that the nf states are not included in
Table I. Unfortunately, calculations of the nf states present

convergence problems in the present implementation of the
all-order method.

III. REDUCED MULTIPLE MATRIX ELEMENTS IN BA II

A. Electric-dipole matrix elements

The calculation of the transition matrix elements provides
another test of the quality of atomic-structure calculations and
another measure of the size of correlation corrections. Reduced
electric-dipole matrix elements between low-lying states of Ba
II calculated with the third-order RMBPT and with the all-order
SD approximation are presented in Table II. Only a limited
number of transitions are included in this table to illustrate the
results and compare with other high-precision results given in
Refs. [2,4,9].
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TABLE II. Reduced electric-dipole matrix elements calculated with first-order, second-order, third-order MBPT, SD, and SDpT methods
(SD all-order method including partial triple excitations) in Ba II are compared with theoretical results given by Dzuba et al. [2], Gopakumar
et al. [4], and Sahoo et al. [9].

Transition Z(DF) Z(DF+2) Z(DF+2+3) Z(SD) Z(SDpT) Ref. [2] Ref. [4] Ref. [9]

6p1/2 6s1/2 3.8915 3.5276 3.2754 3.3380 3.3710 3.310 3.3266 3.36
6p1/2 7s1/2 2.5524 2.5981 2.5003 2.4652 2.4770 2.493 2.3220 2.44
6p1/2 8s1/2 0.7021 0.7256 0.7026 0.6973 0.6993 0.705 0.7283 0.66
6p1/2 5d3/2 3.7405 3.4183 2.9023 3.0503 3.0957 3.055 2.9449 3.11
6p1/2 6d3/2 5.1500 5.0117 4.9278 4.8531 4.8793 4.889 4.89
6p1/2 7d3/2 1.5506 1.4524 1.3952 1.3925 1.4008 1.373 1.50
7p1/2 6s1/2 0.0671 −0.0881 −0.0455 −0.0605 −0.0607 −0.099 0.1193 0.10
7p1/2 7s1/2 7.3916 7.2600 6.9128 6.9984 7.0361 7.008 7.3300
7p1/2 8s1/2 5.0940 5.1262 4.9884 4.9411 4.9609 4.964 2.0804
7p1/2 5d3/2 0.3543 0.2148 0.3155 0.2792 0.2775 0.261 0.3050 0.28
7p1/2 6d3/2 9.1821 9.0956 8.5168 8.6411 8.6894 8.646
7p1/2 7d3/2 8.3760 8.3438 8.2169 8.1702 8.2038 8.238
8p1/2 6s1/2 0.0062 0.1043 0.0816 0.0868 0.0866 0.115 0.4896 0.11
8p1/2 7s1/2 0.2018 0.1277 0.1698 0.1368 0.1354 0.113 −0.6021
8p1/2 8s1/2 11.9154 11.8537 11.4129 11.5286 11.5753 11.556 8.2315
8p1/2 5d3/2 0.1971 0.1087 0.1481 0.1346 0.1349 0.119 0.1121 0.13
8p1/2 6d3/2 0.0941 0.0489 0.1483 0.1108 0.1090 0.117
8p1/2 7d3/2 16.1846 16.1466 15.4495 15.5780 15.6387 15.582
6p3/2 6s1/2 5.4785 4.9820 4.6177 4.7097 4.7569 4.6746 4.6982 4.73
6p3/2 7s1/2 3.9583 4.0078 3.9028 3.8451 3.8587 3.8826 3.6482 3.80
6p3/2 8s1/2 1.0297 1.0545 1.0231 1.0172 1.0201 1.0256 1.0518 0.97
6p3/2 5d3/2 1.6335 1.5003 1.2635 1.3324 1.3532 1.3346 1.2836 1.34
6p3/2 5d5/2 4.9927 4.6074 3.9108 4.1032 4.1631 4.1186 3.9876 4.02
6p3/2 6d3/2 2.4482 2.3811 2.3537 2.3182 2.3287 2.3346 2.33
6p3/2 6d5/2 7.2633 7.0679 6.9734 6.8768 6.9095 6.9236 6.91
6p3/2 7d3/2 0.6900 0.6439 0.6136 0.6139 0.6180 0.6046 0.67
6p3/2 7d5/2 2.0869 1.9519 1.8678 1.8667 1.8782 1.8386 2.01
7p3/2 6s1/2 0.2615 0.0414 0.1101 0.0870 0.0858 0.035 0.3610 0.17
7p3/2 7s1/2 10.3131 10.1371 9.6276 9.7571 9.8122 9.773 10.2645
7p3/2 8s1/2 7.8123 7.8495 7.7073 7.6301 7.6527 7.660 3.0172
7p3/2 5d3/2 0.1872 0.1283 0.1703 0.1555 0.1548 0.147 0.1645 0.16
7p3/2 5d5/2 0.5461 0.3764 0.4918 0.4513 0.4500 0.432 0.4788 0.46
7p3/2 6d3/2 4.0174 3.9845 3.7140 3.7736 3.7961 3.775
7p3/2 6d5/2 12.2054 12.1044 11.3195 11.4837 11.5489 11.492
7p3/2 7d3/2 4.0133 3.9949 3.9598 3.9341 3.9468 3.963
7p3/2 7d5/2 11.8661 11.8141 11.6869 11.6228 11.6633 11.707
8p3/2 6s1/2 0.0789 −0.0618 −0.0236 −0.0331 −0.0334 −0.073 −0.5710 0.11
8p3/2 7s1/2 0.5683 0.4664 0.5414 0.4950 0.4912 0.463 −0.5514
8p3/2 8s1/2 16.5521 16.4706 15.8128 15.9899 16.0592 16.032 12.6033
8p3/2 5d3/2 0.1023 0.0647 0.0825 0.0768 0.0769 0.070 0.0650 0.07
8p3/2 5d5/2 0.2993 0.1924 0.2384 0.2232 0.2239 0.206 0.1926 0.21
8p3/2 6d3/2 0.1313 0.1138 0.1599 0.1436 0.1422 0.146
8p3/2 6d5/2 0.3254 0.2725 0.4017 0.3578 0.3548 0.364
8p3/2 7d3/2 7.0929 7.0791 6.7499 6.8117 6.8403 6.814
8p3/2 7d5/2 21.5026 21.4593 20.5055 20.6744 20.7570 20.685

My calculations of reduced matrix elements in the lowest,
second, and third orders are carried out following the method
described in Refs. [10,78]. The lowest-order DF values labeled
Z(DF) are given in the third column of Table II. The values
Z(DF+2) are obtained as the sum of the second-order correlation
correction Z(2) and the DF matrix elements Z(DF). It should be
noted that the second-order Breit correction B(2) is rather small
in comparison with the second-order Coulomb correction Z(2)

[the ratio of B(2) to Z(2) is about 1%–2%].

The third-order matrix elements Z(DF+2+3) include the
DF values, the second-order Z(2) results, and the third-
order Z(3) correlation correction. Z(3) includes random-phase-
approximation (RPA) terms iterated to all orders, Brueckner
orbital (BO) corrections, the structural radiation Z(SR), and
normalization Z(NORM) terms (see [79] for definition of these
terms).

The smallest differences (5–15%) between Z(DF+2+3) and
Z(DF) are for the transitions involving 6pj states (6pj -ns1/2
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TABLE III. Reduced electric-dipole matrix elements in first, second, and third orders of perturbation theory, calculated in length (L) and
velocity (V ) forms for Ba II, are compared with results given by Sahoo et al. [9].

Transitions Z(DF)
vw Z(DF+2)

vw Z(DF+2+3)
vw

v w L V L V L V Ref. [9]

5d3/2 4f5/2 4.2074 4.0258 3.7976 3.7976 3.6216 3.6189 3.75
5d3/2 5f5/2 2.3333 2.1921 1.9677 1.9678 1.8513 1.8490 1.59
5d3/2 6f5/2 1.5159 1.4049 1.2074 1.2074 0.9208 0.9189 0.17
5d5/2 4f5/2 1.1454 1.0922 1.0384 1.0384 0.9951 0.9943 1.08
5d5/2 5f5/2 0.6290 0.5881 0.5344 0.5344 0.5005 0.4998 0.45
5d5/2 6f5/2 0.4064 0.3743 0.3268 0.3268 0.2449 0.2443 0.15
5d5/2 4f7/2 5.1277 4.8978 4.6507 4.6507 4.4504 4.4486 4.84
5d5/2 5f7/2 2.8125 2.6359 2.3930 2.3930 2.2445 2.2429 2.47
5d5/2 6f7/2 1.8155 1.6778 1.4649 1.4649 1.1160 1.1147 1.04

and 6pj -ndj ′ transitions). The largest differences (30–50%)
between Z(DF+2+3) and Z(DF) are for the for transitions with
8pj states (8pj -6s1/2, 8pj -5dj ′ , and 8pj -6dj ′ transitions). The
largest ratio (by a factor of 13) of the Z(DF+2+3) and Z(DF) is
for the 8p1/2-6s1/2 transition. The terms Z(RPA) and Z(BO) give
the largest contributions to Z(3). The ratios of Z(RPA)/Z(DF) are
equal to 2.3, 15.9, and 1.8 for the 7p1/2-6s1/2, 8p1/2-6s1/2, and
8p3/2-6s1/2 transitions, respectively. The values of the Z(BO)

term are smaller than the value of the Z(RPA) term for these
three transitions and have different signs since they partly
cancel each other.

It should be noted that the largest disagreement (by a factor
of 2–5) between the Z(DF+2+3) values and the reduced electric-
dipole matrix elements calculated with the RCC method [4]
was found for aforementioned transitions with 8pj states. One
sees from comparison of the results given in the columns
labeled Z(DF+2+3) and Ref. [4] in Table II that the values
of the 7p1/2-6s1/2, 8p1/2-6s1/2, 8p1/2-7s1/2, 8p3/2-6s1/2, and
8p3/2-7s1/2 transitions disagree by a factor of 2–5. In rightmost
column of Table II, recent results of the reduced electric-dipole
matrix elements calculated by improved the RCC method
are listed [9]. The largest difference (by a factor of 2–10)
in the results of Refs. [4] and [9] happens for the 7p3/2-6s1/2,
7p3/2-8s1/2, 8p1/2-6s1/2, and 8p3/2-6s1/2 electric-dipole matrix
elements. Sahoo et al. [9] explained that a mix of numerical
orbitals from the GRASP code and GTOs was used in [4], while
in [9] the purely analytical GTOs were used.

Electric-dipole matrix elements evaluated in the all-order
SD and SDpT approximations (SD all-order method including
partial triple excitations [10]) are given in the columns labeled
Z(SD) and Z(SDpT) in Table II. The difference between the
Z(SD) and Z(SDpT) values is very small (about 0.1%–1.2%). The
SD and SDpT matrix elements Z(SD) include Z(3) completely,
along with important fourth- and higher-order corrections. The
fourth-order corrections omitted from the SD matrix elements
were discussed recently by Derevianko and Emmons [80].
The Z(SD) values differ from the Z(DF+2+3) values by 1–5% for
most of the cases except cases when the term Z(RPA) gives the
largest contribution in the value of Z(DF+2) that was discussed
previously. It should be noted that the electric-dipole matrix
elements evaluated by Dzuba et al. [2] (column labeled Ref. [2]
in Table II) are in better agreement with the Z(SD) values than
with the Z(DF+2+3) values.

B. Form-independent third-order transition amplitudes

I mentioned earlier that the all-order method did not
converge for nfj states in Ba II. The form-independent third-
order perturbation theory approach developed by Savukov
and Johnson in Ref. [81] was used to evaluate the multipole
reduced matrix elements that include the nfj states. Previously,
good precision of this method has been demonstrated for
alkali-metal atoms. In this method, form-dependent “bare” am-
plitudes are replaced with form-independent RPA (“dressed”)
amplitudes to obtain form-independent third-order amplitudes
to some degree of accuracy. As in the case of the third-order
energy calculation, a limited number of partial waves with
lmax < 7 is included. This restriction is not very important for
Ba+ E1 matrix elements because third-order energy correction
is smaller than the second-order energy correction, but it
gives rise to some loss of gauge invariance. The gauge
independence serves as an additional check that no numerical
problems occurred. Recently, this method was used in Ref. [82]
to evaluate the electric-dipole reduced matrix elements in
Yb II.

Length and velocity-form matrix elements from DF,
second-order (RPA), and third-order calculations are given
in Table III for the 5dj -4fj ′ , 5dj -5fj ′ , and 5dj -6fj ′ transitions
in Ba II. These transitions are chosen to compare with values
calculated by the RCC method in Ref. [9]. The Z(DF) values
in L and V forms differ by 4–8%. The second-order RPA
contribution completely removes this difference in L − V

values, and the L and V columns with the Z(DF+2) headings are
almost identical. There are, however, small L − V differences
(0.04%–0.24%) in the third-order matrix elements. These
remaining small differences can be explained by limitation
in the number of partial waves taken into account in the
evaluations of the third-order matrix elements.

The best agreement (about 3.5%) between my Z(DF+2+3)

values and values from Ref. [9] is for the 5d3/2-4f5/2 transition.
The largest disagreement (by a factor of 5) is for the 5d3/2-6f5/2

transition.

C. Electric-qudrupole and magnetic-dipole matrix elements

Reduced electric-qudrupole and magnetic-dipole ma-
trix elements calculated with first-order, second-order,
third-order MBPT and SD and SDpT all-order method
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TABLE IV. Reduced electric-qudrupole and magnetic-dipole matrix elements calculated with first-order, second-order, third-order,
SD, and SDpT methods (SD all-order method including partial triple excitations) in Ba II are compared with theoretical results given by
Iskrenova-Tchoukova and Safronova [1] and by Gopakumar et al. [4].

Transition Z(DF) Z(DF+2) Z(DF+2+3) Z(SD) Z(SDpT) Z(SD)
sc Z

(SDpT)
sc Z(final) Ref. [1] Ref. [4]

E2 6s1/2 5d3/2 14.753 14.528 11.811 12.489 12.732 12.626 12.589 12.63(11) 12.63(9) 12.6251
E2 6s1/2 5d5/2 18.362 18.119 14.841 15.632 15.924 15.800 15.755 15.80(12) 15.80(11) 15.7832
E2 7s1/2 5d3/2 6.177 6.254 4.038 4.641 4.789 4.743 4.653 4.74(9) 3.9021
E2 7s1/2 5d5/2 7.896 7.972 5.372 6.043 6.216 6.166 6.059 6.17(11) 5.2072
M1 5d3/2 5d5/2 1.549 1.549 1.531 1.549 1.549 1.549 1.549 1.549

(SD all-order method including partial triple excitations) in
Ba II are compared in Table IV with theoretical results given
by Iskrenova-Tchoukova and Safronova [1] and by Gopakumar
et al. [4]. I mentioned earlier that here I use a different
approach than that used in Ref. [1]. The major difference is in
treatments of the Breit interaction. In the approach used in [1],
Breit contributions were treated perturbatively through the
second-order MBPT. Here, I include both Coulomb and Breit
contributions to the Breit-Dirac-Fock potential and then treat
the residual Breit and Coulomb interactions perturbatively. B
splines are used to generate a complete set of DF basis orbitals
for use in the evaluation of all atomic properties. Also, the
number of basis-set orbitals is increased to 70 instead of the
50 used in [1]. Results in Ref. [1] also include semiemperical
scaling in some cases.

The Z(SD) and Z(SDpT) values given in Table IV for the
6s1/2-5dj transitions differ from those in [1] by about 1%.
A similar difference (about 1%) is found between the Z(SD)

and Z(SDpT) values and results in Ref. [4] for the 6s1/2-5dj

transitions; however, there is a large difference (about 20%)
in results for the 7s1/2-5dj transitions. It looks that treatment
in [4] was different for the 6s1/2-5dj and 7s1/2-5dj transitions.
One can see from Table IV that values in [4] for the 6s1/2-5dj

transitions are in better agreement with the Z(SD) and Z(SDpT)

values, but those for the 7s1/2-5dj transitions are in better
agreement with my Z(DF+2+3) values. Included in Table IV
are results for the 5d3/2-5d5/2 reduced magnetic-dipole matrix
element. The importance of this transition for lifetime value
of the 5d5/2 state was recently shown by Guet and Johnson
in [45].

I have estimated uncertainties of my results on the examples
of the electric-qudrupole matrix elements and 5dj state
lifetimes. Table IV lists results for electric-quadrupole matrix
elements calculated in different approximations: lowest-order
DF, second-order RMBPT, third-order RMBPT, and all-order
method with and without the triple excitations. These results
allow us to estimate the size of the correlation corrections

and study the convergence of the perturbation theory. We
find that the correlation correction, estimated as the relative
difference between the lowest order and the final results,
contributed about 16% for the 6s-5dj transitions and 30%
for 7s-5dj transitions. Moreover, fourth- and higher-order
corrections beyond RPA, estimated as the difference between
the final and the third-order results, contribute 7% and 14%
for the 6s-5dj and 7s-5dj transitions, respectively. Such large
contributions of higher-order corrections beyond RPA indicate
poor convergence of low-order perturbation theory. To make a
more accurate estimate of the uncertainty of my calculations,
I carry out semiempirical scaling that accounts for the effect
of dominant missing contributions starting from both SD and
SDpT approximations. The corresponding results are listed
in Table IV with subscript sc [1]. I estimate the uncertainty
of these values as max([Z(SD)

sc -Z(SDpT)], [Z(SD)
sc -Z(SDpT)

sc ]). The
Z(SD)

sc results are taken as final. We find that the uncertainties
of the 6s-5dj and 7s-5dj transitions are on the order of 1% and
2%, respectively. Larger uncertainties of the 7s-5dj transitions
in comparison with 6s-5dj ones are consistent with the larger
size (by a factor of 2) of the correlation corrections to these
properties. These final results and their uncertainties are used
to evaluate the uncertainties of the 5dj state lifetimes given in
Table V.

In this section, only a limited set of multipole matrix
elements are considered. I choose transitions to compare
with available precision calculations to compare various
approaches. In what follows, results for different properties
of Ba II are presented.

IV. LIFETIMES IN BA II

I calculate lifetimes of the ns1/2 (n = 7–8), npj (n = 6–8),
ndj (n = 5–6), and nfj (n = 4) states in Ba II using the
SD and SDpT results for dipole matrix elements and NIST
data [75] for energies. I list lifetimes τ (SD) obtained with the SD

TABLE V. Lifetimes (in s) of 5dj states in Ba II. The SD [τ (SD)], SDpT [τ (SDpT)], SD scaled [τ (SDsc)], and SDpT scaled [τ (SDpTsc)] values are
compared with theoretical and experimental data.

State SD SDpT SDsc SDpTsc Final Th [1] Th [44] Expt. [42]

5d3/2 83.26 80.12 81.46 81.94 81.5(1.3) 81.5(1.2) 80.1(7) 89.4(15.6)
5d5/2 30.88 29.94 30.33 30.48 30.3(4) 30.3(4) 29.9(3) 31.6(4.6)
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TABLE VI. Lifetimes (in ns) of nlj states in Ba II. The SD [τ (SD)]
and SDpT [τ (SDpT)] values are compared with theoretical [9] and
experimental data [28,37].

Level τ (DF) τ (SD) τ (SDpT) τ th. τ expt

6p1/2 5.579 7.798 7.626 7.92(10) [9] 7.90(10) [37]
6p3/2 4.504 6.245 6.107 6.30(17) [9] 6.32(10) [37]
7p1/2 28.98 36.02 35.84 31.8(1.3) [37]
7p3/2 20.75 27.36 27.19 24.5(8) [37]
8p1/2 73.47 90.60 90.18
8p3/2 52.51 73.00 72.58
7s1/2 4.855 5.165 5.124 7.91(56) [28]
8s1/2 7.933 8.196 8.146
6d3/2 3.708 4.169 4.126 5.56(34) [28]
6d5/2 3.959 4.417 4.375 4.99(33) [28]
4f5/2 1.912 2.577 2.75(6) [37]
4f7/2 1.912 2.538 2.75(8) [37]

method and τ (SDpT) obtained with the SDpT method in Table VI
and compare my values with available experimental [28,37]
and latest recent theoretical [9] results. The calculation in
Ref. [9] was performed with the RCC method for the 6pj

states only. It should be noted that I did not find any precision
calculation for other states. The only available calculations
for these states include the scaled Thomas-Fermi-Dirac wave
function with including spin-orbit interaction results [12] and
the nonrelativistic Coulomb approximation values [8]. I noted
large contributions of correlation effects in the electric-dipole
matrix elements in the previous section. One can see from
Table VI that τ (DF) values differ from the τ (SD) and τ (SDpT)

values by 20–30%. The difference between τ (SD) and τ (SDpT)

values is about 1–2%. The τ (SD) values for the 6pj states agree
with experimental measurements performed by Pinnington
et al. [37] when experimental uncertainties are taken into
account. Good agreement is found between my third-order
RMBPT values and measurements in [37] for the lifetimes
of the 4fj levels, even that the correlation contribution to
DF value is about 26%. Experimental lifetime values for the
7pj states are between my DF and SD values [the difference
between τ (expt) and τ (DF) is equal to 8.8% and 15% for
j = 1/2 and 3/2, respectively, while the difference between
τ (expt) and τ (SD) is equal −13% and −12% for j = 1/2 and
3/2, respectively]. Disagreement between my results and the
measurements in [28] can be explained by considering only
one channel for decay in [28]. For example, there are two
channels for decay from the 7s1/2 level (7s1/2 → 6p1/2 and
7s1/2 → 6p3/2). Taken into account only the 7s1/2 → 6p3/2

channel with largest transition rate, we find τ (DF) = 7.418
ns, τ (SD) = 7.862 ns, and τ (SDpT) = 7.806 ns. Experimental
lifetime values of the 7s1/2 (7.91 ± 0.56 ns; see Table VI) are
in perfect agreement with those values.

Recently, precision measurements of the branching ratio
in the 6p3/2 decay of Ba II was performed by Kurz et al.
[39] using a single trapped ion. Relative strengths normalized
to unity were found to be 0.756 ± 0.046, 0.0290 ± 0.0015,
and 0.215 ± 0.0064 for 6s1/2, 5d3/2, and 5d5/2, respectively
[39]. The SD results (0.743, 0.0280, and 0.230) and SDpT
results (0.741, 0.0282, and 0.231) are in a good agreement
with measurements, taking into account uncertainties in [39].

Table V lists lifetimes of 5dj states in Ba II. The SD
[τ (SD)], SDpT [τ (SDpT)], SD scaled [τ (SDsc)], and SDpT scaled
[τ (SDpTsc)] values are compared with theoretical [1,44] values
and experimental results given by Gurell et al. [42]. Reduced
electric-qudrupole matrix elements for the 6s1/2-5dj transi-
tions and magnetic-dipole matrix elements for the 5d3/2-5d5/2

transition calculated in SD and SDpT approximations are
given in Table IV. I use NIST energies [75] to evaluate the
electric-qudrupole and magnetic-dipole transition rates and
finally, the lifetime of 5dj calculated with the SD [τ (SD)] and
SDpT [τ (SDpT)] approximations. I also added the SD scaled
[τ (SDsc)] and SDpT scaled [τ (SDpTsc)] values in Table V. The
scaled values of lifetimes [τ (SDsc) and τ (SDpTsc)] are in better
agreement with each other than the τ (SD) and SDpT τ (SDpT)

values, as expected. As a result, I use scaled values as final
result and list them under “Final” in Table V. There is a
small difference between my results and results given by
Iskrenova-Tchoukova and Safronova [1], owing to different
treatment of the Breit interaction.

V. STATIC MULTIPOLE POLARIZABILITIES OF THE 6S
GROUND STATE OF BA II

The static multipole polarizability αEk of Ba II in its 6s

ground state can be separated into two terms: a dominant first
term from intermediate valence-excited states, and a smaller
second term from intermediate core-excited states. The later
term is smaller than the former one by several orders of
magnitude and is evaluated here in the RPA [83]. The dominant
valence contribution is calculated using the sum-over-state
approach,

αEk
v = 1

2k + 1

∑
n

|〈nlj‖rkCkq‖6s〉|2
Enlj − E6s

, (1)

where Ckq(r̂) is a normalized spherical harmonic and nlj is
npj , ndj , and nfj for k = 1, 2, and 3, respectively [84]. The
reduced matrix elements in the preceding sum are evaluated
using the SD approximation for basis states with n � 26, and
in the DF approximation for the remaining states, scaling is
included into E2 and E3 matrix elements.

Contributions to dipole, quadrupole, and octupole polar-
izabilities of the 6s ground state are presented in Table VII.
The first two terms in the sum-over-states for αE1, αE2, and
αE3 contribute 99.8%, 81.5%, and 77.1%, respectively, of
the totals. The rapid convergence of the sum over states for
αE1 has been emphasized in many publications (for example,
Refs. [69,70,85]). I use available recommended NIST energies
[75] for nl = 6s-12s,6p-11p,5d-11d,4f -12f and theoretical
SD energies for other states up to n = 26. The sums over n for
n � 26 in αE2 and αE3 essentially reproduce the final results,
since the contributions from 27 � n � 70 are smaller than
0.01% in all cases.

The final results for the multipole polarizabilities of the
ground-state Ba II are compared in Table VII with calcula-
tions given in Refs. [1,56] and experimental measurements
presented in Ref. [54]. I mentioned earlier that dipole po-
larizability αE1 was studied theoretically [1,56,57,86] and
experimentally [52–55] in a number of works. The difference
between all of the results are within 0.3%–1.5%. Theoretical

052506-8



RELATIVISTIC MANY-BODY CALCULATION OF . . . PHYSICAL REVIEW A 81, 052506 (2010)

TABLE VII. Contributions to multipole polarizabilities (in a.u.) of the 6s state of Ba II. The two leading terms and those terms
with n � 26 in the expression for αEk

v [Eq. (1)] are evaluated using SD wave functions. The remainders (n > 26), labeled “tail,” are
evaluated in the DHF approximation. Contributions from core-excited states αEk

c are evaluated in the RPA. My final SD αE1, αE2, and
αE3 polarizabilities of the 6s ground state of Ba II are compared with other calculations and with experiment.

nlj = 6p1/2 40.231 nlj = 5d3/2 1404.72 nlj = 4f5/2 11 924
nlj = 6p3/2 73.920 nlj = 5d5/2 1890.06 nlj = 4f7/2 15 846
nl = [7p-26p] 0.225 nl = [6d-26d] 747.09 nl = [5f -26f ] 8274
nl = [2p-5p] −0.511 nl = [3d-4d] 0.0
tail 0.014 tail 3.64 tail 24
αE1

v 113.879 αE2
v 4045.51 αE3

v 36 067
αE1

c 10.630 αE2
c 45.99 αE3

c 401
αE1 124.51 αE2 4091.5 αE3 36 468
αE1

th. [1] 124.15 αE2
th. [1] 4182(34) αE3

th. [56] 26 510
αE1

th. [56] 124.7 αE2
th. [56] 4821

αE1
expt [54] 123.88(5) αE2

expt [54] 4420(250)

results for quadrupole polarizability αE2 given in Refs. [1,56]
differ by 20%. I mentioned previously that experimental
results for αE2 given in Refs. [52,53] and in Refs. [54,55]
differ almost by a factor of two; these differences have been
addressed in Ref. [55]. It was noted in [55] the importance
of contributions from higher-excited levels, the core, and a
valence-core counterterm. There is only one publication [56]
concerning the octupole polarizability in Ba II. I mentioned
earlier that the αE3 polarizabilities in [56] were calculated
using simple wave functions based on the asymptotic behavior
and on the binding energies of the valence electron. One can
see from the rightmost column of Table VII that the difference
between the SD αE3 values and the αE3

th values from Ref. [56] is
equal to contributions from all states (nl = [5f -26f ]) except
the nl = 4f state.

VI. SCALAR POLARIZABILITIES OF THE ns1/2, npJ , AND
nd j STATES AND TENSOR POLARIZABILITIES OF

THE np3/2 AND ndJ EXCITED STATES OF BA II

The scalar α0(v) and tensor α2(v) polarizabilities of an
excited state v of Ba II are given by

α0(v) = 2

3(2jv + 1)

∑
nlj

Iv(nlj ),Iv(nlj ) = |〈v||rC1||nlj 〉|2
Enlj − Ev

,

(2)

α2(v) = (−1)jv

√
40jv(2jv − 1)

3(jv + 1)(2jv + 1)(2jv + 3)

×
∑
nlj

(−1)j
{

jv 1 j

1 jv 2

}
Iv(nlj ). (3)

As before, the calculation of the sums is divided into three
parts. The first part is the sum over valence states with n � 26,
which is carried out using SD wave functions. The second part
is the sum over basis states with n > 26, which is carried out
in the RPA. The third part is the contribution from core-excited
states, which is carried out also in the RPA.

A breakdown of contributions to the scalar dipole polariz-
ability for the excited ns1/2 (n = 7–10), npj (n = 6 and 7),

and ndj (n = 5 and 6) states is presented in Table VIII. I
evaluate contribution from ionic core αcore in the RPA and find
αcore = 10.630 3 a3

0 .
Contributions from the excited npj states with n > 26 in

the case of the excited 9s1/2 and 10s1/2 are below 0.1 a3
0 .

Contributions from excited ns and nd states with n > 26 are
very small in the case of the excited npj [αn>26(6p1/2) =
−0.002 7 a3

0 and αn>26(6p3/2) = −0.0006 a3
0] and are cal-

culated in the RPA approximation. Contributions from the
excited npj and nfj states with n > 26 are the largest in the
case of the excited 5dj states [αn>26(5d3/2) = −0.674 8 a3

0 ,
αn>26(5d5/2) = −0.820 9 a3

0].
A counterterm αvc(nlj ) compensating for excitation from

the core to the valence shell which violates the Pauli principle
is also evaluated in the RPA and found to be larger than the
α

(RPA)
tail (nlj ) for the 6pj and 7pj states. The largest contribution

of the αvc(nj ) term is for the 5dj state [αvc(5d3/2) = 0.465 4
a3

0 and αvc(5d5/2) = 0.418 3 a3
0]. It should be noted that the

terms α
(RPA)
tail (nlj ) and αvc(nlj ) have different signs and partly

cancel each other.
The above values were combined to obtain the final results

for the scalar polarizabilities α(SD)(nlj ) for the four nsj (n = 7,
8, 9, and 10), two npj (n = 6 and 7), and two ndj (n = 5 and
6) excited states in Ba II.

It should be noted that I have very different np1/2, np3/2,
nf5/2, and nf7/2 contributions for the α(SD)(5dj ) with j = 3/2
and 5/2. In the case of j = 5/2, the contribution from the np1/2

[
∑26

n=6 I
(SD)
5d5/2

(np1/2)] is equal to zero owing to E1 selection
rules. This term gives the largest contribution in the value of
α(SD)(5d3/2). However, the resulting values of α(SD)(5dj ) with
j = 3/2 and 5/2 differ by 0.2% only. The larger difference
(3%) is found between values of α(SD)(6dj ) with j = 3/2 and
5/2. The largest difference (factor of 2.2) is between values
of α(SD)(6pj ) with j = 1/2 and 3/2. In the case of j = 1/2,
the contribution from the nd5/2 [

∑26
n=5 I

(SD)
6pj

(nd5/2)] is equal
to zero owing to E1 selection rules, while this term gives the
largest contribution in the value of α(SD)(6pj ) with j = 3/2.
Final results for the scalar dipole polarizabilities of α(SD)(nlj )
in Ba II are given in Table VIII.

A breakdown of contributions to the tensor dipole polar-
izability for the excited np3/2 (n = 6–9) and ndj (n = 5 and
6) states is presented in Table IX. Evaluation of the tensor
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TABLE VIII. Contributions to scalar polarizability of Ba II in the
excited ns1/2 states (n = 7 − 10), np1/2, np3/2 states (n = 6, 7), and
nd3/2, nd5/2 states (n = 5, 6) calculated with SD wave functions:
α0(ns1/2) = ∑70

n′=2 Ins1/2 (n′pj ); α0(np1/2) = ∑70
n′=3 Inp1/2 (n′d3/2) +∑70

n′=1 Inp1/2 (n′s1/2) ,α0(np3/2) = ∑70
n′=3 Inp3/2 (n′dj ) +∑70

n′=1 Inp3/2 (n′s1/2); α0(nd3/2) = ∑70
n′=4 Ind3/2 (n′f5/2) +∑70

n′=2 Ind3/2 (n′pj ), α0(nd5/2) = ∑70
n′=4 Ind5/2 (n′fj ) +∑70

n′=2 Ind5/2 (n′p3/2).

Contribution 7s1/2 8s1/2 9s1/2 10s1/2∑26
n′=6 I (SD)

nsj
(n′p1/2) 489.42 2727.19 10 528.7 32 300.7∑26

n′=6 I (SD)
nsj

(n′p3/2) 857.73 4645.99 17 560.7 52 967.9

α(SD)
main(nsj ) 1347.15 7373.18 28 089.4 85 268.5

α
(RPA)
tail (nsj ) 0.01 0.01 0.0 0.0

αcore 10.63 10.63 10.6 10.6
αvc(nsj ) −0.08 −0.03 −0.0 −0.0
α(SD)(nsj ) 1357.7 7383.8 28 100.0 85 279.0

6p1/2 6p3/2 7p1/2 7p3/2∑26
n′=6 I (SD)

npj
(n′s1/2) −18.359 −8.575 −291.22 −177.30∑26

n′=5 I (SD)
npj

(n′d3/2) 28.581 4.948 −1078.59 −66.39∑26
n′=5 I (SD)

npj
(n′d5/2) 0 38.892 0 −713.98

α(SD)
main(npj ) 10.222 35.265 −1369.81 −957.67

α
(RPA)
tail (npj ) −0.003 −0.001 −0.00 −0.00

αcore 10.630 10.630 10.63 10.63
αvc(npj ) 0.189 0.135 0.35 0.24
α(SD)(npj ) 21.04 46.03 −1358.8 −946.8

5d3/2 5d5/2 6d3/2 6d5/2

∑26
n′=6 I

(SD)
ndj

(n′p1/2) 22.211 0 760.42 0∑26
n′=6 I

(SD)
ndj

(n′p3/2) 3.833 25.400 120.12 786.56∑26
n′=4 I

(SD)
ndj

(n′f5/2) 19.224 0.980 1963.34 101.87∑26
n′=4 I

(SD)
ndj

(n′f7/2) 0 19.226 0 1863.32

α(SD)
main(ndj ) 45.268 45.605 2843.88 2751.75

α
(RPA)
tail (ndj ) −0.675 −0.821 −0.05 −0.06

αcore 10.630 10.630 10.63 10.63

αvc(ndj ) 0.465 0.418 0.33 0.29

α(SD)(ndj ) 55.69 55.83 2854.8 2762.6

polarizability follows the same patterns as evaluation of the
scalar polarizability [compare Eqs. (2) and (3)]. The difference
in the evaluations of the α

(SD)
0 (nlj ) and α

(SD)
2 (nlj ) values is

in the angular part only. As one can see from comparison
results given in Tables VIII and IX, we obtain different
distribution from the

∑26
n′=6 I (SD)

npj
(n′s1/2),

∑26
n′=5 I (SD)

npj
(n′d3/2),

and
∑26

n′=5 I (SD)
npj

(n′d5/2) terms (in the case of npj excited states)

and from the
∑26

n′=6 I
(SD)
ndj

(n′p1/2),
∑26

n′=6 I
(SD)
ndj

(n′p3/2), and∑26
n′=4 I

(SD)
ndj

(n′f5/2) terms (ndj excited states) in scalar and

tensor polarizabilities. As a result, the values of α
(SD)
2 (nlj ) are

smaller than those of α
(SD)
0 (nlj ) and have different sign.

TABLE IX. Contributions to tensor polarizability
of Ba II in the excited np3/2 states (n = 6–9) and
nd3/2, nd5/2 states (n = 5, 6) calculated with SD wave
functions: α2(np3/2) = ∑70

n′=3 Inp3/2 (n′dj ) + ∑70
n′=1 Inp3/2 (n′s1/2);

α2(nd3/2) = ∑70
n′=4 Ind3/2 (n′f5/2) + ∑70

n′=2 Ind3/2 (n′pj ), α2(nd5/2) =∑70
n′=4 Ind5/2 (n′fj ) + ∑70

n′=2 Ind5/2 (n′p3/2).

Contribution 6p3/2 7p3/2 8p3/2 9p3/2∑26
n′=6 I (SD)

npj
(n′s1/2) 8.575 177.30 1124.55 4685.47∑26

n′=5 I (SD)
npj

(n′d3/2) 3.959 −53.11 −527.23 −2554.84∑26
n′=5 I (SD)

npj
(n′d5/2) −7.778 142.80 1336.62 6370.67

α(SD)
main(npj ) 4.755 266.99 1933.95 8501.30

α
(RPA)
tail (npj ) −0.029 −0.035 −0.033 −0.028

α(SD)(npj ) 4.726 266.95 1933.9 8501.3

5d3/2 5d5/2 6d3/2 6d5/2∑26
n′=6 I

(SD)
ndj

(n′p1/2) −22.211 0 −760.42 0∑26
n′=6 I

(SD)
ndj

(n′p3/2) 3.067 −25.400 96.09 −786.56∑26
n′=4 I

(SD)
ndj

(n′f5/2) −3.845 1.119 −392.67 116.42∑26
n′=4 I

(SD)
ndj

(n′f7/2) 0 −6.867 0 −665.47

α(SD)
main(ndj ) −22.989 −31.147 −1056.99 −1335.61

α
(RPA)
tail (ndj ) −0.095 −0.119 −0.07 −0.08

α(SD)(ndj ) −23.08 −31.27 −1057.1 −1335.7

States with n > 20 in my basis have positive energies and
provide a discrete representation of the continuum. One can see
that the continuous part of spectra is responsible for about 1%
of α2(6p3/2). I decided to evaluate the continuum contributions
and near continuum contribution in the range 11 < n � 26
using SD wave functions for both dipole matrix elements and
energies. For n � 11, I use SD matrix elements and NIST
energies [75] in the sums. The resulting contribution to α2(nlj )
comes from states with n � 26. Contributions from states
with n > 26 is negligible (about 10−4%). The final results
for α

(SD)
2 (nlj ) are given in Table IX.

VII. HYPERFINE CONSTANTS FOR 137BA II

Calculations of hyperfine constants follow the pat-
tern described earlier for calculations of transition ma-
trix elements. Table X lists hyperfine constants A for
137Ba II and compares my values with available theo-
retical [66] results and experimental measurements from
Refs. [58,62,63].

This table presents the lowest-order A(DF), the all-order
A(SD), and A(SDpT) values for the ns, np, and nd levels up
to n = 8. It should be noted that the values of A(SDpT) are
obtained by using the SD all-order method including partial
triple excitations. The difference between A(SD) and A(SDpT) is
about 0.1–4%, while the ratios of A(SD) and A(DF) are equal to
0.6–1.6 for some cases. The largest difference between A(SD)

and A(SDpT) (15%) is for the 5d2D5/2 level. Even the sign of
A(DF) and A(SD) is different and the ratio A(DF) and A(SD) is
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TABLE X. Hyperfine constants A (in MHz) in 137Ba+ (I = 3/2, µ = 0.937 365 [87]). The SD and SDpT (SD all-order method including
partial triple excitations) data are compared with other theoretical values and experimental results.

Level A(DF) A(SD) A(SDpT) A(th.) [66] A(expt.)

6s2S1/2 2912.73 4162.52 3997.39 4078.20 4018.870 833 85(18) [58]
7s2S1/2 957.35 1237.83 1211.73 1196.30
8s2S1/2 439.39 551.14 542.50
6p2P1/2 490.97 765.75 733.98 740.77 743.79(3) [62]
7p2P1/2 192.25 274.72 267.00 264.92
8p2P1/2 95.56 132.44 129.35 109.93
6p2P3/2 71.77 126.62 121.35 128.27 127.29(2) [62]
7p2P3/2 28.43 46.23 44.87 45.77
8p2P3/2 14.22 22.48 21.91
5d2D3/2 128.43 195.90 191.53 189.22 189.728 8(6) [63]
6d2D3/2 27.75 38.50 38.39
7d2D3/2 12.30 16.85 16.83
5d2D5/2 51.59 −8.70 −9.99 −11.67 −12.028 (11) [63]
6d2D5/2 11.27 7.26 6.90
7d2D5/2 5.01 4.05 3.91

equal to 7.1. The largest difference (about 16%) between my
A(SD) and A(SDpT) values and the A(th.) value from Ref. [66]
is for the 8p2P1/2 level. The difference between A(SD) and
A(SDpT) values and available experimental measurements is
about 0.5–1.5%, except for the results for the 5d 2D5/2 level,
where the difference is about 20%.

Hyperfine constants B (in MHz) in 137Ba+ are given
in Table XI. The nuclear quadrupole moment Q is equal
to 0.246(2) in barns (1 b = 10−24 cm2) [63]. The SD and
SDpT data are compared with theoretical [66] and exper-
imental data from Refs. [62,63] in the same table. Three
columns of Table XI list the B (DF), B(SD), and B(SDpT)

values divided by nuclear quadrupole moment Q. Three other
columns of Table XI list the B(DF), B(SD), and B(SDpT) values.
The difference between B(SD) and B(SDpT) is about 0.9–3.7%,
while the ratios B(SD) and B(DF) are equal to 1.4–1.68 for
some cases. In the two last columns of Table XI show few
available theoretical and experimental values of the B constant.
The B(SDpT) value for the 6p2P3/2 level is in better agreement
with both results than the B(SD). For the 5d2D3/2 and 5d2D5/2

states, one can see that the B(SD) values are in an excellent
agreement (0.1–0.9%) with theoretical results from Ref. [66],
while experimental values [63] are in a better agreement (2%)
with the B(SDpT) values.

VIII. HYPERFINE-INDUCED TRANSITION
POLARIZABILITY OF THE 137BA II GROUND STATE

I now turn to the calculation of the quadratic Stark shift
of the ground-state hyperfine interval (F = 2 to F = 1) in
137Ba II. The quadratic Stark shift is closely related to the
blackbody radiation shift discussed, for example, in Refs. [69,
70,88] and my calculation follows the procedure outlined in
[69].

The dominant second-order contribution to the polarizabil-
ity cancels between the two hyperfine components of the 6s

state so the Stark shift of the hyperfine interval is governed
by the the third-order F -dependent polarizability α

(3)
F (0). The

expression for the α
(3)
F (0) is [69]:

α
(3)
F (0) = 1

3

√
(2I )(2I + 1)(2I + 2)

{
jv I F

I jv 1

}

× gIµn(−1)F+I+jv (2T + C + R), (4)

where gI is the nuclear gyromagnetic ratio, µn is the nuclear
magneton, I = 3/2 is the nuclear spin, and jv = 1/2 is the
total angular momentum of the ground state in Ba II. The
F -independent sums (|v〉 ≡ |6s1/2〉) are given by Eqs. (5)–(7)
by Johnson et al. [69].

TABLE XI. Hyperfine constants B (in MHz) in 137Ba+. Nuclear quadrupole moment Q equal to 0.246(2)b in barns (1 b = 10−24 cm2)
[63]. The SD and SDpT (SD all-order method including partial triple excitations) data are compared with experimental results.

Level B(DF)

Q

B(SD)

Q

B(SDpT)

Q
B (DF) B (SD) B (SDpT) B (th) B (expt)

6p2P3/2 223.20 393.11 378.57 54.91 96.71 93.13 92.87 [66] 92.5(2) [62]
7p2P3/2 88.41 141.58 137.89 21.75 34.83 33.92 32.98 [66]
8p2P3/2 44.20 68.16 66.65 10.87 16.77 16.40
5d2D3/2 133.46 189.66 185.07 32.83 46.66 45.53 46.23 [66] 44.5417(16) [63]
6d2D3/2 28.82 51.62 51.00 7.09 12.70 12.55
7d2D3/2 12.76 22.65 22.44 3.14 5.57 5.52
5d2D5/2 171.26 253.06 247.14 42.13 62.25 60.80 62.17 [66] 59.528(43) [63]
6d2D5/2 37.38 69.77 68.90 9.20 17.16 16.95
7d2D5/2 16.60 30.64 30.35 4.08 7.54 7.47
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I note first that in the DHF approximation the values of T ,
C, and R in atomic units are

2T DF = 1.4482 × 10−3, CDF = 2.2603 × 10−5,

RDF = 2.6238 × 10−3. (5)

Since the value of CDF is smaller than the T DF and RDF by
two orders of magnitude, I did not recalculate the C term in
the SD approximation.

The expression for R is similar to that for αE1 (compare
Eqs. (1) and (7) [69]). The difference is an additional factor of
the diagonal hyperfine matrix element:

〈6s1/2‖T ‖6s1/2〉(SD) = 1.1971 × 10−6 a.u.

I evaluate matrix elements 〈v‖rC1‖n〉 in the SD approximation
for n � 26. I use recommended NIST energies [75] for n

up to n = 12 and SD energies for 13 � n � 26. The sum of
terms for n � 26 is Rn�26 = 2.11051 × 10−3. The remainder
of the sum, evaluated in the DHF approximation, Rn>26 =
5.1 × 10−7 is less than 0.03%. The expression for T includes
sums over two indices m and n. To calculate the dominant
part of T , I limit the sum over m to six states (m = 6p1/2,
6p3/2, 7p1/2, 7p3/2, 8p1/2, and 8p3/2) and sum over ns

to n = 36. It should be noted that I use Ens energies and
〈ns‖T (1)‖6s〉 and 〈mpj‖rC1‖ns〉 matrix elements evaluated
in SD approximation for ns = 14s-26s and in the RPA
approximation for ns = 27s-36s:

T
m�3
n�36

= −1

2

36s∑
ns=6s

〈ns‖T (1)‖6s〉
(Ens − E6s)

×
[ 〈6s‖rC1‖6p1/2〉〈6p1/2‖rC1‖ns〉(

E6p1/2 − E6s

) − 〈6s‖rC1‖6p3/2〉〈6p3/2‖rC1‖ns〉(
E6p3/2 − E6s

)
+ 〈6s‖rC1‖7p1/2〉〈7p1/2‖rC1‖ns〉(

E7p1/2 − E6s

) − 〈6s‖rC1‖7p3/2〉〈7p3/2‖rC1‖ns〉(
E7p3/2 − E6s

)
+ 〈6s‖rC1‖8p1/2〉〈8p1/2‖rC1‖ns〉(

E8p1/2 − E6s

) − 〈6s‖rC1‖8p3/2〉〈8p3/2‖rC1‖ns〉(
E8p3/2 − E6s

) ]
. (6)

The sum of the six contributions from Eq. (6) is 1.325 85 ×
10−3. The ratio of contributions to the sum from the 7p and
8p to 6p states are surprisingly very small (about 10−2).
The relatively small remainder T − T

m>7
n>36

= 0.003 5 × 10−3

is evaluated in the DHF approximation, leading to a final value
2T (SD) = 1.329 4 × 10−3. Combining these contributions, we
obtain

2T SD + CDF + RSD = 3.4631 × 10−3 a.u. (7)

The F -dependent factor [see Eq. (4)]

A(F ) = gIµn

3

√
(2I )(2I + 1)(2I + 2)

×
{

jv I F

I jv 1

}
(−1)F+I+jv

is equal to −0.425 191 for F = 1 and 0.255 114 for F = 2.
Using these values and the result from Eq. (7), we obtain

α
(3)
F=2(0) − α

(3)
F=1(0) = 2.355 9 × 10−3 a.u.

The Stark shift coefficient k defined as �ν = kE2 is k =
− 1

2 [α(3)
F=2(0) − α

(3)
F=1(0)]. Converting from atomic units, we

obtain

k(SD) = −1.1780 × 10−3 a.u.

= −0.293 1 × 10−10 Hz/(V/m)2.

In the DHF approximation [Eq. (5)], we find k(DF) =
−0.346 6 × 10−10 Hz/(V/m)2.

The relative blackbody radiative shift β is defined as

β = − 2

15

1

νhf
(απ )3T 4αhf(6s1/2), (8)

where νhf is the 137Ba II hyperfine (F = 2 and F = 1) splitting
equal to 8 037.741 668 MHz and T is a temperature equal to
300 K. Using those factors, we can rewrite Eq. (8):

β = −1.071 35 × 10−12αhf(6s1/2). (9)

Using the SD value for αhf(6s1/2) = 2.355 9 × 10−3 a.u., we
obtain finally

β(SD) = −0.252 4 × 10−14. (10)

This result is in a good agreement with results [−0.245(2)]
given in Ref. [68].

IX. CONCLUSION

In summary, a systematic RMBPT study of the energies of
the ns1/2, npj , and ndj (n � 12) states in singly ionized barium
is presented. The energy values are in excellent agreement
with existing experimental data. Electric-dipole (6s1/2-npj ,
n = 6–26), electric- quadrupole (6s1/2-ndj , n = 5–26), and
electric-octupole (6s1/2-nfj , n = 4–26) matrix elements are
calculated to obtain the ground-state E1, E2, and E3 static
polarizabilities. Scalar polarizabilities of the ns1/2, npj , and
ndj states and tensor polarizabilities of the np3/2 and ndj

excited states of Ba II are evaluated, including matrix elements
with high n up to n = 26. All of the aforementioned matrix
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elements are determined using the all-order method. Hyperfine
A and B values are presented for the first low-lying levels up to
n = 8. The quadratic Stark shift of the ground-state hyperfine
interval in 137Ba II is also evaluated. These calculations provide
a theoretical benchmark for comparison with experiment and
theory.

Throughout the article, I compare my all-order results with
the RCC calculations of Refs. [44,66]. These works focused
on the properties of the low-lying levels so relatively few
comparisons could be made. In general, results of my work
are in good agreement with RCC values. The comparison
with experiment is not sufficiently conclusive to demonstrate
better agreement of one method over the other. Both methods
utilize the coupled-cluster approach but differ significantly in
its implementation. Differences in the results are due to the
inclusion or omission of different types of terms (nonlinear
terms and triple excitations), the use of different basis sets (B-
splines vs Gaussian-type orbitals) and different parameters of
the nuclear distribution, and the completeness of the basis sets,
including the use of the different numbers of the partial waves.
For some properties, the discrepancies may be exacerbated
owing to significant cancellations between certain terms. To
provide more information regarding the importance of the
triple excitations, I include both SD and SDpT values. These
calculations omit nonlinear terms. However, it was shown in
Ref. [89] that nonlinear terms tend to cancel nonperturbative
triple excitations that are omitted in Refs. [44,66], and
their inclusion may not lead to more accurate values. I use
completely saturated B-spline basis sets and include more

partial waves than RCC calculations that are important for
certain properties. Since there are relatively few RCC data and
precision experimental results available for comparison it does
not appear possible to make general statements regarding the
comparative accuracy of these two approaches. In the case
of the 6p lifetimes, my SD data are expected to be in better
agreement with experiment than SDpT data based on studies
of the alkali-metal atoms. About 1% accuracy is expected for
these values. Indeed, my SD values are in agreement with
experiment and RCC data within the uncertainties. While
central values of the RCC data are in closer agreement with
experiment, the experimental precision is also on the order
of 1.3–1.6%. The comparison of the all-order, RCC, and a
number of experiment results for the 5dj lifetimes is discussed
in great detail in Ref. [1]. The values for A and B hyperfine
constants are more sensitive to the differences in the methods
discussed previously than the transition matrix elements. As
a result, one can see somewhat larger differences between
all-order and RCC data. The agreement with experiment
is again not conclusive since all-order values are in closer
agreement with experiment for the ground-state A constant
and most B constants, while RCC data are in closer agreement
for other cases. In conclusion, more precision experimental
results would be useful for benchmark comparisons.
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