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Many protocols and experiments in quantum information science are described in terms of simple
measurements on qubits. However in a real implementation the exact description is more difficult and more
complicated observables are used. The question arises whether a claim of entanglement in the simplified
description still holds, if the difference between the realistic and simplified models is taken into account.
We show that a positive entanglement statement remains valid if a certain positive linear map connecting the two
descriptions—a so-called squashing operation—exists; then lower bounds on the amount of entanglement are
also possible. We apply our results to polarization measurements of photons using only threshold detectors, and
derive procedures under which multiphoton events can be neglected.
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I. INTRODUCTION

According to Asher Peres, entanglement is “a trick that
quantum magicians use to produce phenomena that cannot
be imitated by classical magicians” [1]. Because of the key
role of entanglement in applications lots of effort is put into
realizing this fragile resource in the laboratory, for example via
parametric down-conversion (PDC) sources or with ion traps,
to only name a few. In a real experiment it is of course desirable
to unambiguously verify the creation of entanglement, and in
fact many different operational tools have been developed over
the past years to achieve this task, cf. Ref. [2] for a review. A
reliable entanglement verification has to satisfy a few crucial
criteria [3]; most importantly the verification method should
not rely on assumptions from the entanglement generation
process, but instead on the information acquired about the
system via measurements. Moreover the obtained data should
be considered under a worst case scenario. That is, in the
spirit of Ref. [4], the test is only considered to be affirmative
if, in the limiting case of an infinite number of experimental
runs, the data exclude compatibility with all separable states.
This viewpoint is even essential for certain tasks like quantum
cryptography [5].

In any case, it is typical to allow one basic ingredient: since
one usually believes in quantum mechanics, it is common
to assume that one is equipped with an accurate quantum
mechanical description of the employed measurement devices;
the actual testing or the (experimental) characterization of
a measurement device is anyway often combined with other
assumptions concerning the generated state [6–8]. Note that if
one does not restrict oneself to this model then one can still use
Bell inequalities for the verification. This leads to the known
drawback that the entanglement of certain states can never
be verified [9] and there is even the conjecture that complete
classes of interesting entangled states may be undetectable
[10]. However this will not concern us here, and we always
assume to have an operator set associated with the observed

data, which allows us connect the data to quantum mechanical
quantities.

An example of a straightforward and hence quite often
applied entanglement verification method, e.g., Ref. [11], is the
procedure which we call the tomography entanglement test in
the following: Since the useful entanglement might be confined
to a low-dimensional subspace, e.g., the single photon-pair
subspace of a PDC source or two very long-lived energy levels
of two ions in a trap, one just performs a few different mea-
surements to obtain tomography on this subspace. After several
runs of the experiment one has collected enough data to re-
construct the underlying density operator on this subspace via
some reconstruction technique. Note that here one employs the
knowledge of the measurement description. In order to check
for entanglement one just investigates whether this recon-
structed density operator describes an entangled state or not.

However, does one really verify entanglement via this
method? The problem lies within the measurement description,
because such ideal measurements, as the ones used in the
reconstruction mechanism, might not have actually been per-
formed in the experiment. A good example is represented by
the polarization measurement with two threshold detectors (see
also Fig. 2), which is typically employed in photonic experi-
ments. Apart from usually acting onto several input modes at
once, this device does not even respond solely to the single pho-
ton subspace, since such detectors cannot resolve the number
of photons. Hence the question arises whether one still verifies
the entanglement if a more realistic measurement description
is employed. It is the main purpose of this paper to study this
question. Note that the aforementioned scenario often occurs,
not because one is not aware of the more realistic model,
but because an oversimplified measurement description is
employed in order to ease the task of entanglement verification.

Specific instances of the problems considered here have
been investigated in several works in the literature. In Ref. [12]
inequalities for the detection of entanglement for two qubits
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have been proposed, where the measurement’s devices can be
misaligned to a certain degree. Bell-type inequalities which
are independent of the spectrum of the measured observables
have been recently introduced in Ref. [13]. Moreover, for
an experiment with photons from atomic ensembles, an
entanglement verification scheme which takes multiphoton
events into account has been introduced [14] and implemented
[15].

In this paper we proceed along the following lines. In
Sec. II we provide an example of a tomography entanglement
test which indeed leads to the wrong conclusion about the
presence of entanglement under a small, physical change of
the employed measurement description.

In Sec. III, we start to investigate under which conditions
such mistakes can safely be excluded. In short, the entan-
glement verification process remains stable as soon as the
considered set of operators are connected by a positive but not
necessarily completely positive map, the so-called squashing
operation. Similar relations between different measurement
schemes have recently been introduced in the context of
quantum key distribution (QKD), cf. Refs. [16,17], and
even other known verification methods can be cast into this
framework. However, complete positivity of the connecting
map was required there.

In Sec. IV we reformulate the existence of such a positive
map into a necessary and sufficient condition which provides a
particular intuitive solution for the tomography entanglement
test: The map exists if and only if each classical outcome
pattern from the refined set of observables remains compatible
with the oversimplified set of observables.

Then, in Sec. V we prove that the aforementioned polar-
ization measurement with threshold detectors along all three
different polarization axes represents an example which indeed
can only be linked to its single photon realization by a positive
but not completely positive map. This analysis concludes that
the tomography entanglement test which is typically employed
for a PDC source [18] or even in multipartite photonic
experiments [19] (using the single photon assumption) can
indeed be made error-free if the (local) double click events are
taken into account.

In Sec. VI we consider the issue of entanglement quantifica-
tion, proving that one can in principle get lower bounds on the
entanglement of the physical state in terms of the entanglement
of the operator that results from the local mapping between the
observables.

Finally, we conclude and provide an outlook on possible
further directions.

II. AN EXAMPLE FOR ION TRAP EXPERIMENTS

Let us first mention a simple, yet practically relevant
example, which shows that the tomography entanglement test
indeed can lead to a false conclusion about the presence of
entanglement if the structure of the observables is not properly
taken into account.

For a single 40Ca ion in a trap one typically considers only
the lowest two energy levels given by a lower level |S〉 = |1〉
and the upper level |D〉 = |0〉 and treats them as the qubit [20].
Resonance fluorescence provides a mechanism to read out the
occupation number of the energy levels. An electron in the |S〉

state is coupled to a higher energy level |P 〉, and observing
photons from the |S〉 ↔ |P 〉 transition signals that the qubit
was in the state |S〉. This overall process corresponds to a
projection onto the lower energy state and consequently allows
to measure the σz Pauli, while the measurement along different
directions is achieved by a local basis rotations prior to the σz

measurement, cf. Ref. [20].
In order to avoid too many measurements it is common

to measure the occupation probability only for the state |S〉,
simply because for qubits the other probability equals p(D) =
1 − p(S) due to the normalization, and similar for the remain-
ing basis settings. Suppose that one uses this measurement
procedure to obtain tomography in order to verify the creation
of entanglement between two separated ions in the trap. This
means that one measures the expectation values Eij (ρ) =
tr(ρFA

i ⊗ FB
j ) with FA

i ,FB
j ∈ {|1〉〈1|,|x−〉〈x−|,|y−〉〈y−|,1},

where |x±〉 = (|0〉 ± |1〉)/√2 and |y±〉 = (|0〉 ± i|1〉)/√2.
The inclusion of the two-dimensional identity operator, which
is not explicitly measured, formalizes the knowledge that one
deals with qubits. Consider now the example where a family of
expectation values Eij (p) related to this measurement strategy
and depending on a noise parameter p (a probability), are
such that for any 0 � p � 1 they allow the reconstruction of
the state

ρ(p) = (1 − p)|ψ+〉〈ψ+| + p
1

4
, (1)

that is, Eij (p) = Eij [ρ(p)]. We remark that, by virtue of
the partial-transposition criterion [21,22], the state ρ(p) is
entangled if and only if p < 2/3.

However, in practice the situation is more complicated
since the ion is not a simple two-level system. To model
this, one can add another energy level to only one of the
ions, thereby enlarging the two-qubit system to a qutrit-
qubit one. Without any additional information about the
occupation number of this extra level, it is clear that (i) the
assignment p(D) = 1 − p(S) is incorrect and (ii) one does
not obtain tomography. Indeed, working with the qutrit-qubit
model, the observed data Eij (p) (i) must be reinterpreted and
(ii) do not provide enough information to identify a specific
qutrit-qubit state. In particular, reinterpretation means that the
identity operator in the set of measured observables must
be taken to be three-dimensional for the qutrit, while all
other observables remain the same, although embedded in
the larger qutrit space. Moreover, as data are compatible
with a whole set of states, one verifies entanglement only
if the data turn out to be incompatible with all separable
qutrit-qubit states. This is only the case if p < 0.63, as can be
checked using the method from Ref. [23]. Hence in the interval
p ∈ [0.63,2/3) the performed tomography entanglement test
indicates the presence of entanglement in the simplified model,
although with the more realistic model it does not. Though this
region might be small this error can become important in the
multipartite scenario, where current experiments just operate
at the border of genuine multipartite entanglement [24–26].
Concerning the experimental consequences, however, two
facts are important:

1. For experiments with ion traps it is known that the
occupation probability for levels apart from the two logical
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states is very small, typically it is around 10−3.1 Given
this additional measurement data, it is possible to provide
a quantitative estimate of the resulting error in the used
entanglement verification scheme, e.g., the mean value of
an entanglement witness. For typical entanglement witnesses
employed in those scenarios this error is far below the
unavoidable statistical uncertainty, which is caused by the
finite number of copies of a state available in any experiment.

2. Note that the probabilities p(S) and p(D) of each
energy level can be measured independently by additional local
rotations, hence at the expense of more measurements. Then
the resulting probabilities correspond to the unnormalized two-
level state ρred that is obtained from our modeled three-level
system ρtot by a local projection, i.e., ρred = �ρtot�, with � =
|S〉〈S| + |D〉〈D|. As long as we prove entanglement of the
two-qubit system ρAB

red = � ⊗ 1 ρAB
tot � ⊗ 1, this also implies

entanglement for the total state ρAB
tot , since the projection is

local.
For instance, if one measures a witness like W = |00〉

〈00| + |11〉〈11| − |x+x+〉〈x+x+| − |x−x−〉〈x−x−| + |y+y+〉
〈y+y+| + |y−y−〉〈y−y−| [2], the mean value of W is nothing
more than a linear combination of certain probabilities on
the qubit space, and if the mean value is negative, the state
ρAB

red and hence ρAB
tot is entangled. This shows that additional

dimensions of the Hilbert space alone do not invalidate the
conclusion that the state is entangled when the measurement
devices are characterized properly.

III. POSITIVE SQUASHING OPERATIONS

We are ready to formulate the problem that we solve
throughout the subsequent sections. For each local measure-
ment setup one has two different sets of ordered observables; a
set of simple target observables labeled as Ti with i = 1, . . . ,n

acting on the Hilbert space HT which are used for the
entanglement verification process or in the reconstruction
mechanism, and a different set of so-called full operators
denoted as Fi with i = 1, . . . ,n onto the Hilbert space
HF which represent the more realistic model of the actual
observables in the experiment. In the above ion-trap example
we considered the case of qubit target observables, while our
full operators were acting on a qutrit system.

Consider the case where in an experiment one measures
the expectation values of the full operators Fi but instead
one interprets them as the expectation values of the target
observables Ti . The question arises, whether this may lead
to a false entanglement verification. In the following we
provide a simple condition on the two operator sets alone that
excludes such a possibility, and hence guarantees the presence
of entanglement.

Suppose that both sets of observables are connected by
a positive (but not necessarily completely positive) linear
map � : L(HF ) → L(HT ) which satisfies the following: the
expectation value of any observable Fi with respect to an
arbitrary input state ρF is the same as the expectation value of
the corresponding target operator Ti with respect to the output

1Christian Roos (private communication).

FIG. 1. Idea of the positive squashing operation: The given full
observable set {Fi} can be decomposed into a positive squashing
operator � followed by a particular target observable set {Ti} such
that the same expectation values Ei are obtained for all possible input
states ρF .

state of the corresponding map ρT = �(ρF ) (see Fig. 1). That
is,

tr(ρF Fi) = tr[�(ρF )Ti] (2)

holds for any input state ρF and for all i = 1, . . . ,n. Using
the adjoint map �† : L(HT ) → L(HF ) this condition can be
rephrased into

�†(Ti) = Fi (3)

for all i = 1, . . . ,n, while the positivity requirement transfers
also to the adjoint map �†.

Such a described connection between two different ob-
servables sets is an extension of the notion of a squashing
operation in the QKD context [16,17] which differs from
the present definition only by the extra condition of being
completely positive and trace preserving. Because of these
similarities we use the term positive squashing operation in
order to refer to map � (or its adjoint �†). Note that typically
we consider the case of a trace-preserving map � (or unital
map �†) such that density operators are mapped to properly
normalized density operator; however this requirement is not
mandatory. An example of a nontrace preserving, but positive
map between operator sets is given by the matrix of moments2

[27]; the only difference is that one must be careful with
entanglement criteria on the target space that explicitly employ
the normalization of the density operators (e.g., the computable
cross norm or realignment criterion), but one can also deal with
this [27].

The advantage of such a positive squashing operation is
that the structure of separable states (from the full to the target
Hilbert space) remains invariant, and hence any successful
entanglement verification on the target space directly translates
to a positive verification statement on the full Hilbert space:

2Though there are different applications of the matrix of mo-
ments, or equivalently the expectation value matrix, only the one
from Ref. [27] exploits it in the same spirit as for the present
purpose: Rather than trying to reconstruct the matrix of moments
of the partially transposed state [50,51], the verification method
from Ref. [27] applies the separability criteria directly onto the
matrix of moments, since it can be considered as an unnormalized
physical state. Moreover let us note that the matrix of moments
is the composition of a completely positive map followed by the
transposition, hence only positive but not completely positive.
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Proposition III.1. (Entanglement verification.) Let us as-
sume that each local set of observables is connected by a
positive squashing operation, i.e., a positive, not necessarily
completely positive linear map �

†
A relates the target and full

observables on Alice’s side, �
†
A(T A

i ) = FA
i , and a similar

relation holds for Bob’s observables. If the observed data verify
entanglement with respect to the target observables T A

i ⊗ T B
j ,

then these data also prove the presence of entanglement for
the full operator set FA

i ⊗ FB
j . An analogous statement holds

for more than two parties.
Proof. For the observed data Eij one has the identity

Eij = tr(ρABFA
i ⊗ FB

j ) = tr[�AB(ρAB)T A
i ⊗ T B

j ] due to the
property of the squashing operation. For any separable state
on the full bipartite Hilbert space ρ

sep
AB = ∑

k pkρ
k
A ⊗ ρk

B , one
obtains

σ
sep
AB := �AB

(
ρ

sep
AB

) =
∑

k

pk�A

(
ρk

A

) ⊗ �B

(
ρk

B

)
, (4)

which represents a valid (normalized) separable density oper-
ator on the bipartite target Hilbert space because of positivity
of the corresponding (unital) maps, and is compatible with the
observed data. Consequently, if one proves the incompatibility
of the mean values with all separable states on the target
space, the density matrix on the full space must be entangled.
Note that here one just needs positivity of �A and �B . It is
not required that each map be complete positive, or that the
combined map �A ⊗ �B be positive. �

Note that a local squashing operation between operator sets
does not represent the most general map between bipartite
observable sets that preserve the structure of separable states;
however we neglect other options on behalf of the “locality” of
this connection. Furthermore note that since we demand only
positivity of each local map, it can happen that the combined
bipartite map �A ⊗ �B is not positive. Hence there are cases
where the observed data can only originate from an unphysical
(not positive semidefinite) density matrix on the target space.
However such an operator is incompatible with a separable
initial state, as this situation can only occur for an entangled
state on the full bipartite Hilbert space. Hence the conclusion
of the entanglement verification process remains unaffected.

Finally, let us add that the precise state reconstruction
technique needed for the tomography entanglement test, either
direct inversion of Born’s rule or maximum likelihood estima-
tion [28] (although there are even problems associated with
them [29]), does not conflict with a positive but not completely
positive squashing operation. If the corresponding operator on
the target space is positive semidefinite both reconstruction
techniques deliver the same operator (in the limit where one
really obtains exact knowledge of the expectation value).
As any separable state on the full space corresponds to the
reconstruction of a valid separable target state, the possibility
that a separable state is mapped to an entangled state by the
reconstruction process is excluded. In the case of an unphysical
“entangled” target operator a direct inversion of Born’s rule
would directly “witness” the entanglement.3 In contrast the

3In this case one should be convinced that the actual operator
description T A

i ⊗ T B
j cannot be the correct one for the experiment.

maximum likelihood method produces the closest positive
semidefinite operator [29] (with respect to the likelihood
“distance”), hence an unphysical, entangled target state can be
mapped to a separable state via this reconstruction technique
and thus escapes the tomography entanglement test. But this
does not bother us here, because some entangled states are
missed anyway due to the simplified operator set, and we
principally aim at avoiding false claims that entanglement is
present when it is not.

IV. CRITERIA FOR THE EXISTENCE OF A POSITIVE
SQUASHING OPERATION

In this section we investigate which requirements need to
be fulfilled by the two different operator sets in order to be
connected by a positive squashing operation. There are, of
course, different ways how one can tackle this problem: One
method, in close analogy to that of Ref. [17], is to employ
the Choi-Jamio�lkowski isomorphism [30–32] between linear
maps and linear operators. This isomorphism transforms posi-
tive maps into entanglement witnesses, or more precisely into
linear operators that are positive on product states, while the
requirements from Eq. (3) change into a set of linear equations
that constrain the allowed form of the entanglement witness.
For an explicit solution to this reformulated problem one first
solves these linear equations and afterwards tries to choose the
remaining, undetermined parameters of the operator in such a
way that it meets the entanglement witness condition.

However, we take a different path that provides a clear
interpretation for the existence of such a positive linear map
and which is also employed in the later part to prove the
positive squashing property for the polarization measurements.

Equation (2) directly allows us to read off a necessary
condition: it states that for each physical density operator ρF

in the full Hilbert space there exists a valid density operator
�(ρF ) (if � is trace-preserving) in the target space such that
both operators assign the same expectation values for the
considered observables. Hence all possible expectation values
Ei that can in principle be observed on the full Hilbert space
must remain physical with respect to the target observables. As
we will see, this condition becomes also sufficient if the target
operators Ti with i = 1, . . . ,n provide a complete tomographic
set. Thus, in combination with Proposition III.1, we have the
following solution for the question posed in the Introduction:
The tomography entanglement test is error free as long as
the full local observables on Alice and Bob’s side can only
produce measurement results which are also consistent with
the local target, or reconstruction observables.

For the following proposition we need to define the set of
possible physical expectation values associated with a given
set of observables, defined as

SF = { �E ∈ Rn|there is a ρ ∈ D(HF ) such that

Ei = tr (ρFi) for all i = 1, . . . n}, (5)

and a similar definition for the operator set on the target system
ST . Concluding we have the following characterization:

However via the matrix of moments of the partially transposed
state [50,51] one effectively performs such a detection.
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Proposition IV.1 (Existence.) The set of full observables
{Fi} and the tomographically complete set of target observ-
ables {Ti} are related by a unital squashing operation �† if and
only if it holds that SF ⊆ ST .

Proof. One direction of the proof is clear: Suppose that
there exists a positive trace-preserving squashing operation
�. For any �E ∈ SF we must have a density operator ρF

such that one obtains Ei = tr(ρF Fi) = tr[�(ρF )Ti]. Because
of the properties of the corresponding map we receive a valid
target density operator ρT := �(ρF ) which provides the same
expectation values �E, hence �E ∈ ST . This concludes the first
direction of SF ⊆ ST .

For the other direction, we employ the fact that the set
of target operators are tomographically complete and the
set inclusion SF ⊆ ST to explicitly write down the positive
squashing operation. First note that for a given set of physical
expectation values �E ∈ ST , the corresponding target density
operator is uniquely determined by a direct inversion of
Born’s rule, RT : �E 
→ ρT ( �E), i.e., by a linear reconstruction
mechanism that maps the expectation values to its explicit
density operator. Moreover for a given full density operator
ρF the corresponding expectation values are already deter-
mined, which is described by the linear map MF : ρF 
→ �E.
Combining these two maps according to

� = RT ◦ MF (6)

provides the squashing operation: That is, for a given input
state ρF one first computes the expectation values Ei of the
full operator set and then uses these values in the reconstruction
algorithm (that depends on the target operators) to obtain the
corresponding target output state. The set inclusion guarantees
that any valid full density operator is mapped to a valid target
state, hence the described map is already positive. Since both
maps in the decomposition are linear the overall map is linear
as well. �

In a concrete example the proposition of course only helps if
one obtains knowledge on the sets S; although this is by far not
a trivial task, one can employ approximation techniques for a
special set of observables or even a hyperplane characterization
for the exact determination, see Ref. [33] for more details.

If the set of considered observables on the target space
is not tomographically complete, then, in order to establish
the existence of a positive mapping between the two sets of
operators, one can still invoke Proposition IV.1 with some
caution. Indeed, a positive squashing map exists if and only
if it is possible to extend both observable sets by additional
target and full operators, so that the extended target set is
finally tomographically complete and that the two sets of
physical expectation values—which depend on the choice of
the extensions—satisfy the condition of Proposition IV.1.

Finally, let us note that one can also characterize a
completely positive map via such a set inclusion requirement
if one adds an additional reference system R of dimension
equal to that of the full space (or of the target space, in the case
the dual map) on each side, because complete positivity of �

just means that idR ⊗ � is positive for such a reference R.
For an actual investigation of such a completely positive map,
however, the formalism of Ref. [17] seems more appropriate
to us.

FIG. 2. Schematic setup of the considered polarization measure-
ment: Via quarter (QWP) and half-wave plate (HWP) one can effec-
tively adjust the polarization basis β of the corresponding polarizing
beam splitter (PBS) according to the basis {±45◦,�/�,H/V } that
we label as {x,y,z}.

V. EXAMPLE: POLARIZATION MEASUREMENTS

In this section, we apply the developed formalism to a
physical relevant measurement setup. We draw our attention to
polarization measurements onto a two-mode system by using
only threshold detectors, i.e., such detectors cannot resolve
the number of photons. More precisely, as shown in Fig. 2,
the incoming light field is separated according to a chosen
polarization basis β ∈ {x,y,z} via a polarizing beam splitter,
followed by a photon number measurement on each of those
modes by a simple threshold detector. Hence in total four
different outcomes can be distinguished: no click at all, only
one of the detector clicks or both of them trigger a signal
and produce a double click. Because of its great simplicity
this measurement device appears quite frequently in quantum
optical experiments which employ the polarization degree of
freedom (for an overview see Ref. [34]). It turns out that
this measurement device provides, if measured along all three
different basis settings, a nontrivial example for the difference
between a positive and a completely positive squasher. This
means that the corresponding map � can only chosen to be
positive but not completely positive.

Next let us specify which observable sets should be con-
nected by the squashing operation; see also Ref. [17]. For each
chosen polarization basis β the different mode measurements
are denoted as Mi,β with the label i ∈ {vac,0,1,d} for all
classical outcome possibilities: vacuum, click in “0”, click
in “1”, and a double click. The target measurements are
chosen such that they justify a single photon description:
each click event is interpreted as a single photon state, hence
as target measurements one selects the same measurement
device, only that it just acts on the single photon subspace
and the vacuum component. In order to achieve the squashing
property, the double click events must be taken into account,
since such events are clearly incompatible in a (perfect)
single photon interpretation, but they nevertheless contribute
to the normalization. One can incorporate this effect by a
particular postprocessing scheme that represents a sort of
penalty for double click events. A common scheme, originally
introduced for the QKD context in Refs. [35,36], consists
of randomly assigning each double click event to one of
the single click outcomes. This particular set of processed
measurement operators becomes the exact set of full operators
{Fi,β} with i ∈ {vac,0,1} and β ∈ {x,y,z} and with the relation
Fi,β = Mi,β + 1/2Md,β with i = 0,1 for all β.
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Let us start with a perfect single-polarization mode descrip-
tion of the full operators; imperfections like finite efficiency
or dark counts are considered later. The “no click” outcome
is independent of the chosen polarization basis and becomes
Fvac,β = |0,0〉〈0,0|. All other observables are block-diagonal
with respect to the photon number subspace, i.e., Fi,β =∑∞

n=1 Fn
i,β and for a fixed number of photons we have

Fn
i,β = 1

2 [1n + (−1)i(|n,0〉β〈n,0| − |0,n〉β〈0,n|)], (7)

with i = 0,1. Here |k,l〉β denotes the corresponding two-
mode Fock state in the chosen polarization basis β (e.g.,
for n = 3 the state |2,1〉z = |2H,1V 〉 describes a system
with two horizontally and one vertically polarized photon)
and 1n represents the identity operator onto the n-photon
subspace. Note, that the states |n,0〉β and |0,n〉β are the only
n-photon states that exclusively trigger one of the “single
click” outcomes in the basis β; this is taken into account
by the second term on the right-hand side of Eq. (7). For
more details on this description we refer to Ref. [35]. This
perfect single-polarization mode description is also employed
for the target operators, however only acting on the vacuum
Tvac,β = |0,0〉〈0,0| or on the single photon subspace

Ti,β = F 1
i,β , (8)

with i = 0,1.
Let us further comment on these observable sets: Note that

if one selects the following standard basis for the single photon
subspace |1,0〉z = |0〉 and |0,1〉z = |1〉, then each difference
of the single click outcomes equals to a familiar Pauli operator,
i.e., σβ = T0,β − T1,β for all β. Hence each of the single click
operators Ti,β with i = 0,1 corresponds to a projection onto
one of the two different eigenstates of the related Pauli operator
σβ . Furthermore the corresponding difference between the
full observables Fβ = F0,β − F1,β is again block diagonal and
each n-photon part is given by

Fn
β = Fn

0,β − Fn
1,β = |n,0〉β〈n,0| − |0,n〉β〈0,n|, (9)

according to Eq. (7). Note that these observables are also
accessible with a different polarization measurement that only
uses a single threshold detector and which has alternatively
been employed for polarization experiments, cf. Ref. [11]. Let
us point out that these observables are also accessible with
a polarization measurement that only uses one of the two
threshold detectors4 and which has been used, for example,
in Ref. [11].

The following theorem proves the positive squashing
property between the two given sets of observables; however it

4The measurement setup is similar to the one from Fig. 2, however
one only measures behind one of the outputs of the polarizing beam
splitter. It is straightforward to check that the operators Fβ can be
obtained by using the difference on the two outputs (or alternatively
with appropriate adjusted wave plates). However in order to obtain
the normalization, respectively the identity 1, one has to measure the
overall input via a threshold detector, i.e., with no polarizing beam
splitter. It is not, as typically employed, given by the sum of both
clicks events on both different outcomes.

also applies to the aforementioned polarization measurement
with only a single threshold detector.

Theorem V.1. There exists a positive, but not completely
positive unital squashing operation �† for the polarization
measurements with operator sets {Fi,β} and {Ti,β} defined in
Eqs. (7) and (8), respectively, i.e., �†(Ti,β) = Fi,β . Therefore,
the interpretation of the {Fi,β} as single photon measure-
ments {Ti,β} does not invalidate the entanglement verification
scheme.

Proof. First let us point out that the existence of a completely
positive squashing operation has already been ruled out in
Ref. [17], to which we refer the reader for more detail.

In order to prove the existence of a positive squashing
operation we only need to focus on the “click” events, since
the vacuum part can be directly removed by a projection
discriminating between the vacuum and all other Fock states.
Note that it is sufficient to prove the squashing operation for
a complete set of linear independent target operators only,
because other linear dependencies are implicitly present in the
linear map. In short, it is equivalent to prove a unital squashing
operation �†(σβ) = Fβ for all β ∈ {x,y,z}, where Fβ is the
described difference between the click outcomes of the full
observables.

Since we only concentrate on the single photon subspace we
are equipped with a full tomographic set and hence can readily
apply Proposition IV.1, such that it remains to prove SF ⊆ ST .
Since each full observable is photon number diagonal one
obtains that SF is given by the convex hull of all n-photon sets
Sn

F , i.e., the set of physical expectation values on an n-photon
state. Hence we need to verify that each n-photon state can
only produce expectation values which are also compatible
with a single photon state, i.e., Sn

F ⊆ S1
F = ST for all n � 1.

The set S1
F directly equals to the familiar Bloch sphere. Hence

we prove existence of a positive squashing operation if we can
show that

∑
β∈{x,y,z}

[
tr
(
ρFn

β

)]2 � 1 (10)

holds for all n photon density operators ρ, and for all photon
numbers n � 1.

In order to simplify the analysis in the following, each
operator Fn

β can be regarded as an operator acting onto an
n-qubit space. Indeed, the n-photon Hilbert space Hn

F = Cn+1

is isomorphic to the symmetric subspace Sym(Hn) of an n-
qubit system Hn = (C2)⊗n. Using the given standard basis
definition one obtains, for example,

Fn
z = |0〉〈0|⊗n − |1〉〈1|⊗n, (11)

while for any other operator Fn
β one just replaces the states

|0〉,|1〉 with the eigenvectors of the corresponding Pauli
matrix σβ .

Expanding these operators in a multi-qubit basis delivers

Fn
β =

(
1 + σβ

2

)⊗n

−
(
1 − σβ

2

)⊗n

= 1

2n−1

∑
j odd

∑
π

π
(
σ

⊗j

β ⊗ 1⊗(n−j )
)
, (12)
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in which
∑

π denotes the sum over all possible permutations
π (·) of the subsystems that yield different terms.

Next, we exploit the result from Ref. [37] that for odd j

every quantum state ρ, hence also each state on the symmetric
space, satisfies

∑
β=x,y,z

〈
π

(
σ

⊗j

β

)〉2
ρ

� 1, (13)

with the abbreviation
〈
π

(
σ

⊗j

β

)〉
ρ

= tr
[
ρπ

(
σ

⊗j

β ⊗ 1⊗(n−j )
)]

. (14)

This inequality is based on the property that the observables
π (σ⊗j

β ⊗ 1⊗(n−j )) with β ∈ {x,y,z} have all eigenvalues equal
to ±1 and anticommute pairwise.5 Note that this identity
holds for all occurring j and for all possible permutations
π . Consequently one obtains
∑

β

[
tr
(
ρFn

β

)]2

= 1

22n−2

n∑
j,j ′odd

∑
π,π ′

⎡
⎣∑

β

〈
π

(
σ

⊗j

β

)〉
ρ

〈
π ′(σ⊗j ′

β

)〉
ρ

⎤
⎦ � 1, (15)

where the inequality (together with the Cauchy-Schwarz
inequality) was used to upper bound each term in the squared
bracket by 1. For the final result one needs to count the numbers
of distinct permutations π , which is given by a corresponding
binomial coefficient. �

How can one use this result in the tomography entan-
glement test of a PDC source? First each party measures
along all three different polarization axes. Next one either
actively postprocesses the double click events or just passively
computes the corresponding rates and/or probabilities of the
full operators. Afterwards both parties can safely use the single
photon assumption, or more precisely, the set of perfect single
photon target operators {Ti,β} to compute the corresponding
two-qubit state ρAB (single photon subspace on each side)
via their preferred reconstruction technique. In case that this
reconstructed state is entangled one can be assured that the
observed data still verify entanglement if both parties believe
in the more realistic measurement description {Fi,β}.

Next let us focus on the imperfections of the photodetectors.
Real photodetectors register only some portion of the incoming
photons, a significant part is not detected. If both detectors in
the setup of Fig. 2 have the same inefficiency, this inefficiency
can be modeled by an additional beam splitter in front of
the perfect measurement device [38], hence if one combines
the beam splitter map (completely positive) with the already
proven positive squashing map from the perfect case then one
directly extends the validity of the positive squashing property

5For completeness, let us recall the proof: Let Mi be anticom-
muting observables (i.e., MiMj + MjMi = 0 for all i �= j ) with
M2

i = 1 for all i and let λi be real coefficients with
∑

i λ
2
i = 1.

Then (
∑

i λiMi)2 = 1. Therefore, (
∑

i λi〈Mi〉)2 � 〈(∑i λiMi)2〉 =
1, hence

∑
i λi〈Mi〉 � 1, and, since the λi are arbitrary,

∑
i〈Mi〉2 � 1.

to an inefficient measurement description. The same idea
applies to dark counts, which can be modeled as a particular
postprocessing scheme on the classical outcomes [35], and to
misalignment errors, that are described by a fixed depolarizing
channel onto each photon separately. Even the extension to a
multimode description is possible if one employs the model
from Ref. [39].

Concerning real experiments, one should note that double
clicks in a spatial mode can arise from different physical
mechanisms. First, it can happen that due to the higher orders
in the PDC process more than the desired number of photons
are generated and injected into the setup. Second, dark counts
may lead to double click events. Finally, double-click events
may occur in special setups for the generation of certain
multipartite states, this case is, however, not important for
our discussion.6

Then, it is worth mentioning that the post processing used
in the above scheme is usually not applied in real experiments:
double click events are typically just thrown away. In practice,
however, the amount of these undesired events is quite small:
For instance, in the four-photon experiment of Ref. [19] the
number the coincidences where a double click occurs in one
mode while in the other three modes there is one click, is
around 0.77% of the (desired) events, where in each mode
there is exactly one click.7 It should be noted, however, that
in experiments with more and more photons, these rates can
be higher [40], so that the penalty effect of the postprocessing
scheme becomes higher.

Additionally we comment on two points: As one can prove,
the corresponding squashing map is completely positive on the
single and two photon subspace [17]. Hence one only observes
a violation of positivity of the corresponding target density
operator if the local multiphoton contributions are very large
in comparison to the single and double photon part (and even
then only for very particular entangled states); consequently,
to observe such a nonpositive target operator in a real PDC
experiment is very unlikely.

As a last point we should make it clear that one cannot
always apply Theorem V.1. Especially in multipartite experi-
ments, it happens that one does not even want to obtain full
tomography onto the multipartite target space but instead tries
to measure an entanglement witness with the least number of

6In some setups, double click events arise from the statistical
nature of the state preparation: For instance, in Ref. [41] entangled
multiphoton states are generated by producing several entangled
photon pairs first, and then letting them interact via beam splitters.
The desired state is only produced if all the photons are distributed
uniformly over all the spatial modes, that is, if each mode contains
one photon. Due to the statistical properties of the beam splitters, this
is not always the case, and often one of the spatial modes contains
more than just one photon (and a different mode contains no photon),
so that the double click rate at this outcome side drastically increases.
However, neglecting these double-clicks is justified: Since in this case
some spatial mode does not contain any photon, disregarding these
events is equivalent to projecting the total multi-photon state onto the
space where each mode contains at least one photon. Since this is a
local projection, it cannot produce fake entanglement.

7Witlef Wieczorek (private communication).
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different global measurement settings. This may require more
than three different settings on each photon. For instance,
in the six-photon experiment of Ref. [41] an entanglement
witness was measured which required seven measurements
settings of the type Mi ⊗ Mi ⊗ · · · ⊗ Mi , which is a significant
advantage compared with the 36 = 729 settings required for
state tomography. However, on each photon seven polarization
measurements have been made and the target observables are
tomographically overcomplete. In such cases this theorem does
not apply, because the linear dependencies imposed by the
target operators are not satisfied by the full observable set, cf.
Eq. (3), hence the local squashing operation does not exist—in
fact the map cannot even be linear. Here one might attempt
to proceed with a global, separable squashing operation, cf.
comment after Proposition III.1.

VI. POSITIVE SQUASHING AND ENTANGLEMENT
QUANTIFICATION

In this section we argue that a local squashing operation,
even if it is not completely positive, can in principle not
only provide qualitative indications about the presence of
entanglement, as was proved in Proposition III.1, but also
quantitative ones.

Let us start by recalling the notion of entanglement measure.
An entanglement measure is a function from density operators
to (positive) real numbers, that captures quantitatively some
property of entangled states. There are many entanglement
measures in the literature [42]; some of them have an
operational character, while some others focus on structural
properties of entangled states, for example, the fact that, by
definition, they do not admit a separable decomposition. Even
if some entanglement measures do not have a direct operational
interpretation, they are nonetheless useful because they may
provide upper and lower bounds to operational measures
or other interesting quantitative properties of entanglement.
Furthermore, any entanglement measure can be considered as
a benchmark for the quality of an experiment designed to create
“highly entangled” states and to display a good global control
on more than one subsystem at a time. This is due to two facts.
The first is that, although different entanglement measures do
not correspond to the same ordering of states from “unentan-
gled” to “maximally entangled”, there is typically a correla-
tion: a state that is highly entangled with respect to one measure
is, in most cases of interest, highly entangled with respect to
another one. The second fact is that in an axiomatic approach to
entanglement measures, it is typically asked that entanglement,
as quantified by some entanglement measure, does not increase
under the restricted class of local operations and classical
operations (LOCC). Indeed, entanglement cannot be created
by LOCC operations alone, and it is natural to require that
any entanglement measure does not increase under this set of
operations. In this way, on one hand, entanglement is elevated
to a resource that by LOCC can only be manipulated and not
augmented, and on the other hand, entanglement measures
satisfying such a LOCC monotonicity are a fair benchmark
for the ability of the experimenters to jointly manipulate many
subsystems.

Let us be more precise about the LOCC monotonicity of
entanglement measures, focusing on the bipartite case. We say

that E is a LOCC monotone if

E(ρAB) � E(�LOCC[ρAB]), (16)

where �LOCC is a LOCC transformation. In particular, local
completely positive trace-preserving (CPTP) maps belong to
the class of LOCC operations, so that E is monotone with
respect to CPTP local operations:

E(ρAB) � E((�A ⊗ �B)[ρAB]). (17)

Thus, if the squashing is realized by local CPTP maps,
the entanglement of the reconstructed squashed state (�A ⊗
�B)[ρAB] is a lower bound for the entanglement of the
physical state actually prepared. The point here is that one can
generalize Eq. (17) to the case of positive but not completely
positive maps, at least for the entanglement measure called
negativity [43,44], which is one of the few entanglement
measures that can be easily computed.

The negativity of a bipartite state ρAB is defined as

N (ρ) =
∥∥ρ	

AB

∥∥
1 − 1

2
, (18)

where ρ	
AB = (T ⊗ id)[ρAB] denotes the partial transpose of

the original density operator. Here, T is the transposition,
which is a positive but not completely positive trace-preserving
map, while “id” stands for the identity map, and ‖X‖1 =
tr(

√
X†X) is the trace norm on operators. The value of the

negativity is independent of the party we choose to apply
transposition to, and quantifies the degree of violation of the
partial transposition separability criterion [21,22]. Indeed, it
corresponds to the sum of the absolute values of the negative
eigenvalues of ρ	

AB.
In the Appendix we prove the following inequality:

N (ρAB) � 1

‖�̃A ⊗ �B‖H
1

(
N((�A ⊗ �B)[ρAB])

− ‖�̃A ⊗ �B‖H
1 − 1

2

)
, (19)

with �̃A = T ◦ �A ◦ T being (completely) positive if and only
if �A is (completely) positive, and with a norm on linear
maps defined as ‖
‖H

1 ≡ max|ψ〉:〈ψ |ψ〉=1 ‖
[|ψ〉〈ψ |]‖1 (cf.
Ref. [45]). We stress that ‖�̃A ⊗ �B‖H

1 is a measure of the
joint violation of complete positivity of �̃A and �B . Indeed,
if both maps �̃A and �B are trace-preserving and completely
positive then one obtains ‖�̃A ⊗ �B‖H

1 = 1 and one recovers
the inequality given by Eq. (17).

Let us remark that N((�A ⊗ �B)[ρAB]) is the negativity,
as defined by Eq. (18), of the Hermitian operator (�A ⊗
�B)[ρAB]. If the local squashing operations �A and �B are
not completely positive, then the latter need not be a physical
state because of negative eigenvalues even before the partial
transposition. The correcting terms in Eq. (19), with respect to
Eq. (17), in particular the presence of ‖�̃A ⊗ �B‖H

1 , take care
of this possibility, making inequality (19) hold.

Note that in the event that a reconstructed state on the
target space results in a nonzero lower bound in Eq. (19),
then the state in the full space ρAB is entangled. This is
similar to Proposition III.1, where if entanglement is verified
on the target space, then entanglement is verified on the full
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space. However, it is possible that we verify entanglement
on the target space, (and so by Proposition III.1 the state in
the full space is entangled, and the negativity is positive)
but we have no positive lower bound on the negativity
from Eq. (19).

As shown in the Appendix, a different and possibly weaker
lower bound on the negativity is given by

N (ρAB) � 1

‖�A‖�‖�B‖�

(
N((�A ⊗ �B)[ρAB])

− ‖�A‖�‖�B‖� − 1

2

)
. (20)

Here ‖
‖� ≡ ‖
 ⊗ id‖1 is the diamond norm [46], with the
identity map that can be considered as acting on the same input
space as 
, and ‖
‖1 ≡ sup‖X‖1�1 ‖
[X]‖1 the trace norm for
maps.

We further remark that, in the case of a positive but not
completely positive squashing operation, it might be possible
to obtain lower bounds for the entanglement of the original
state also for other entanglement measures. Although we are
unable to provide further explicit examples at this time, we
observe that this might be true for the relative entropy of
entanglement [47,48]. The latter is defined for a state ρAB

as

ER(ρAB) = min
σ

sep
AB

S(ρAB‖σAB), (21)

where the minimum runs over all separable states and
S(ρAB‖σAB) = tr[ρAB(log2 ρAB − log2 σAB)] is the relative
entropy. Monotonicity of this measure under CPTP LOCC
operations can be easily checked as follows:

ER(ρAB) = min
σ

sep
AB

S
(
ρAB

∥∥σ
sep
AB

)

� min
σ

sep
AB

S
(
�LOCC[ρAB]‖�LOCC

[
σ

sep
AB

])

� min
τ

sep
AB

S(�LOCC[ρAB]‖τAB)

= ER(�LOCC[ρAB]). (22)

In the first inequality one uses monotonicity of the relative en-
tropy under CPTP maps; for the second inequality one employs
the fact that a CPTP LOCC map transforms a separable state
into another separable state. Now, a local map �A ⊗ �B also
transforms a separable state into a separable state as soon as the
maps �A and �A are positive and trace-preserving—this was
the key fact used in Proposition III.1. If monotonicity of the
relative entropy holds under some local map �A ⊗ �B , even if
�A and �B are just positive but not completely positive, then
the inequality ER(ρAB) � ER((�A ⊗ �B)[ρAB]) still remains
true. This possibility is left open for example by the fact that the
requirement often used to prove monotonicity of the relative
entropy is not complete positivity, but the weaker request
of two-positivity [49] (together with a trace preservation
condition). A given map 
 is two-positive if(

A B

C D

)
� 0 ⇒

(

[A] 
[B]


[C] 
[D]

)
� 0, (23)

where A, B, C, and D are matrices themselves. Hence, if
both maps �A and �B are positive and trace-preserving,

and the combined local map �A ⊗ �B is two-positive,
then the inequality ER(ρAB) � ER((�A ⊗ �B)[ρAB]) still
holds.

In conclusion, a positive squashing operation does not
only provide qualitative statements about entanglement, but
potentially also quantitative ones. Open problems regard the
application of the derived bounds on the negativity to specific
cases, and the analysis of other entanglement measures. Let
us remark that in case of the negativity a detailed analysis of
lower bounds on the entanglement essentially deals with the
issue of separating the negativity due to the application of the
local squashing maps from the negativity due to partial trans-
position. As the bounds are conservative, only states that are
sufficiently entangled may result in a nontrivial lower bound.
Indeed, it is clear that if N((�A ⊗ �B)[ρAB]) = 0—this is
the case for a separable ρAB and positive �A and �B—and
‖�̃A ⊗ �B‖H

1 > 1 or ‖�A‖�‖�B‖� > 1, respectively, then
the right-hand sides of Eqs. (19) and (20) are actually negative.
It is worth remarking that in the derivation of the bounds for
the negativity we have not made use of the positivity of the
squashing operations. This indicates that if one considers local
squashing operations with the aim of entanglement verification
and quantification, then one may hope to be able to further
relax the requirements on the corresponding maps, not only
going beyond complete positivity, but also beyond positivity
if adequate care is taken.

VII. CONCLUSIONS

Entanglement verification typically assumes that one knows
the underlying measurement operators so that each classical
outcome gets an accurate quantum mechanical interpretation.
We have addressed the question under what conditions an affir-
mative entanglement statement remains valid if a simplified de-
scription of the measurement apparatus is used. This situation
can occur if the actual measurement observables are different
from the ones used in the verification analysis, simply because
of imperfections or wrong calibration. However it can even
happen on purpose: Indeed one can try, despite being aware of
certain differences, to explain the data via an oversimplified
model, e.g., a very low-dimensional description, that eases
then the task of applying an entanglement criteria. Such a case
occurs for example for an active polarization measurement
with threshold detectors to analyze the entanglement from a
PDC source. Here one may choose a single photon description
only, although one knows that certain multiphoton states can
also trigger events that are indistinguishable from a single
photon case, because then one easily obtains “tomography”
by using three different measurement settings and directly
checks for entanglement on the reconstructed two-qubit
state.

Summarizing, a positive entanglement statement remains
valid if the two operator sets can be related by a positive
(not necessarily completely positive) map. In case that the
reconstruction operators provide complete tomography such a
positive maps exists if and only if all measurement results from
the refined, actual measurement devices are compatible with
the assumed measurement description of the device. We have
shown that the aforementioned polarization measurement,
measured along all three different polarization axes, constitutes
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a physical relevant example of such a connection that is
positive but not completely positive. This result shows that
most of the performed tomography entanglement tests for a
PDC source are indeed error-free if one incorporates a penalty
for double clicks during the state reconstruction. This verifies
entanglement for a more realistic model, with imperfections
and multiphoton contributions, of the measurement used.
Finally, we argued that it might be possible to obtain not
only a positive qualitative statement about the presence of
entanglement, but also a quantitative one, even in cases where
the squashing map is not completely positive and standard
results about monotonicity of entanglement measures cannot
directly be used.
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APPENDIX

For a Hermitian operator ρAB normalized to satisfy
tr(ρAB) = 1, we define negativity as

N (ρAB) =
∥∥ρ	

AB

∥∥
1 − 1

2
, (A1)

where ρ	
AB = (T ⊗ id)[ρAB], and T is the transposition.

Negativity corresponds to the sum of the negative eigenvalues
of ρ	

AB.
Any Hermiticity preserving map � can be written as

�[X] = ∑
i ciKiXK

†
i , ci ∈ R. Then T ◦ � = �̃ ◦ T , with

�̃ : X 
→ ∑
i ciK

∗
i XKT

i , i.e., �̃ = T ◦ � ◦ T . If � is (com-
pletely) positive, that is if ci � 0 for all i, then �̃ is
(completely) positive. It also holds that � is trace-preserving
if and only if �̃ is trace-preserving.

For any map 
 we define the norm ‖
‖H
1 ≡

max|ψ〉:〈ψ |ψ〉=1 ‖
[|ψ〉〈ψ |]‖1 [45]. Moreover, we observe that
the trace norm of a Hermitian operator X can be expressed as
‖X‖1 = max−1�M�1 tr(MX). For any −1 � M � 1,

|〈ψ |
†[M]|ψ〉 = |tr(
†[M]|ψ〉〈ψ |)|
= |tr(M
[|ψ〉〈ψ |])| � ‖
‖H

1 . (A2)

Therefore, if −1 � M � 1, then −1 � 
†[M]
‖
‖H

1
� 1.

Thus, assuming that �A and �B are trace-preserving—so
that tr((�A ⊗ �B)[ρAB]) = 1:

N((�A ⊗ �B)[ρAB])

= ‖((T ◦ �A) ⊗ �B)[ρAB]‖1 − 1

2

=
∥∥(�̃A ⊗ �B)

[
ρ	

AB

]∥∥
1 − 1

2

= 1

2

{
max

−1�M�1
tr
(
M(�̃A ⊗ �B)

[
ρ	

AB

]) − 1

}

= 1

2

{
max

−1�M�1
tr
(
(�̃A ⊗ �B)†[M]ρ	

AB

) − 1

}

= 1

2

{
‖�̃A ⊗ �B‖H

1 max
−1�M�1

tr

(
(�̃A ⊗ �B)†[M]

‖�̃A ⊗ �B‖H
1

ρ	
AB

)
−1

}

� 1

2

{
‖�̃A ⊗ �B‖H

1 max
−1�M ′�1

tr
(
M ′ρ	

AB

) − 1

}

= 1

2

{‖�̃A ⊗ �B‖H
1 ‖ρ	

AB‖ − 1
}

= ‖�̃A ⊗ �B‖H
1 N (ρAB) + ‖�̃A ⊗ �B‖H

1 − 1

2
. (A3)

Solving for N (ρAB) we finally find

N (ρAB) � 1

‖�̃A ⊗ �B‖H
1

(
N((�A ⊗ �B)[ρAB] )

− ‖�̃A ⊗ �B‖H
1 − 1

2

)
. (A4)

For a Hermiticity preserving map � one easily checks that
‖
 ◦ �‖H

1 � ‖
‖H
1 ‖�‖H

1 . In our case

‖�̃A ⊗ �B‖H
1 �

∥∥�̃A ⊗ idBout

∥∥H

1

∥∥idAin ⊗ �B

∥∥H

1

= ∥∥�A ⊗ idBout

∥∥H

1

∥∥idAin ⊗ �B

∥∥H

1

� ‖�A‖�‖�B‖�. (A5)

By idBout and idAin we have denoted the identity map on
the output space of �B and on the input space of �A,
respectively. The equality in the second line is due to the
fact that ‖T ◦ 
 ◦ T ‖H

1 = ‖
‖H
1 . The diamond norm [46] is

defined as ‖
‖� ≡ ‖
 ⊗ id‖1, with the identity map that can
be taken as acting on the same input space as 
, and with
‖
‖1 ≡ sup‖X‖1�1 ‖
[X]‖1 the trace norm for maps. The last
inequality is due to the fact that ‖
 ⊗ id‖H

1 � ‖
 ⊗ id‖1 �
‖
‖�, for id acting on an arbitrary dimension [46]. Thus, we
finally obtain the lower bound

N (ρAB) � 1

‖�A‖�‖�B‖�

(
N((�A ⊗ �B)[ρAB])

− ‖�A‖�‖�B‖� − 1

2

)
. (A6)
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[24] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-kar,

M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt
et al., Nature (London) 438, 643 (2005).

[25] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad,
J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer
et al., Nature (London) 438, 639 (2005).

[26] W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel,
Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimen-
tal demonstration of a hyper-entangled ten-qubit Schrödinger cat
state” (2008), e-print arXiv:0809.4277.

[27] A. Miranowicz, M. Piani, P. Horodecki, and R. Horodecki, Phys.
Rev. A 80, 052303 (2009).

[28] Z. Hradil, Phys. Rev. A 55, R1561 (1997).
[29] R. Blume-Kohout, New J. Phys. 12, 043034 (2010).
[30] J. de Pillis, Pacific J. Math. 23, 129 (1967).
[31] A. Jamio�lkowski, Rep. Mat. Phys. 3, 275 (1972).
[32] M.-D. Choi, Proc. Symp. Pure Math. 38, 583 (1982).
[33] T. Moroder, M. Keyl, and N. Lütkenhaus, J. Phys. A: Math.

Theo. 41, 275302 (2008).
[34] J.-W. Pan, Z.-B. Chen, M. Żukowski, H. Weinfurter, and
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