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Controlled-NOT gate with weakly coupled qubits: Dependence of fidelity on the form of interaction
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An approach to the construction of the controlled-NOT quantum logic gate for a four-dimensional coupled-qubit
model with weak but otherwise arbitrary coupling has been given recently [M. R. Geller et al., Phys. Rev. A
81, 012320 (2010)]. How does the resulting fidelity depend on the form of qubit-qubit coupling? In this paper
we calculate intrinsic fidelity curves (fidelity in the absence of decoherence versus total gate time) for a variety
of qubit-qubit interactions, including the commonly occurring isotropic Heisenberg and XY models, as well as
randomly generated ones. For interactions not too close to that of the Ising model, we find that the fidelity curves
do not significantly depend on the form of the interaction, and we calculate the resulting interaction-averaged
fidelity curve for the non-Ising-like cases and a criterion for determining its applicability.
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I. INTRODUCTION

The operation of a quantum computer requires the im-
plementation of a universal two-qubit quantum logic gate,
such as the controlled-NOT (CNOT) gate [1]. The problem of
constructing a CNOT gate has been addressed from various
perspectives and for different physical systems [2–12]. In
recent work, Geller et al. [13] approached the problem of
CNOT gate construction from a somewhat general standpoint.
Starting with a Hamiltonian for a four-dimensional coupled-
qubit model, they derived a CNOT pulse sequence assuming
weak coupling. In this work, we calculate the intrinsic fidelity
of the CNOT gates constructed according to this protocol.

The question of CNOT gate fidelity has already been
discussed from other standpoints [14,15]. Fidelity loss can be
separated into intrinsic errors, which include errors resulting
from the use of weak-coupling and weak-driving approxi-
mations, and errors resulting from decoherence [16,17]. The
latter, which of course depends sensitively on the experimental
architecture and noise sources, is largely a function of total
gate time. Therefore, by evaluating the intrinsic fidelity as
a function of total gate time (which indirectly determines
the strength of the qubit-qubit interaction), we can separate
intrinsic and extrinsic errors in a way that allows application
to a wide variety of architectures and environments. The
CNOT fidelity curves we calculate are the intrinsic fidelities
as a function of gate time, optimized over all pulse sequence
parameters and coupling constants that lead to the same
total gate time. We calculate fidelity curves for coupled-qubit
models with commonly occurring forms of interaction, such
as XY and Heisenberg couplings, as well as for randomly
generated ones with lower symmetry. We find that, for qubit-
qubit interactions not too close to that of the Ising model,
the fidelity curves are largely insensitive to the form of the
interaction. This allows us to provide a single fidelity curve
for non-Ising-like models and a criterion for determining its
applicability.

The remainder of the paper is organized as follows. In
Sec. II, we review the perturbative CNOT gate design derived in
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Ref. [13] and describe the model considered there. In Sec. III,
we discuss the various sources of intrinsic errors and define
the fidelity measure used for all subsequent computations. In
Sec. IV, we explain the methodology used for our fidelity
calculations, which involve exact numerical simulations of
the underlying coupled-qubit models. In Sec. V, we present
fidelity curves for different forms of interaction and the
interaction-averaged fidelity, and in Sec. VI we explain the
poor performance when the interaction is close to that of the
Ising model.

II. CNOT PROTOCOL

In this section, we briefly review the main results of
Ref. [13] for constructing a CNOT gate pulse sequence.

A. Model Hamiltonian

The Hamiltonian for a wide variety of physical systems
being considered for quantum computation can be written as

H =
∑
i=1,2

[
−εi

2
σ z

i + �i cos

(
εi t

h̄
+ φi

)
σx

i

]

+
∑

µ,ν=x,y,z

Jµν σ
µ

1 ⊗ σ ν
2 , (1)

where Jµν is a 3 × 3 coupling matrix which takes different
forms for different architectures under consideration. The
parameters εi and �i (with �i � εi) are tunable, and
weak coupling (|Jµν | � εi) is assumed. The CNOT gates are
implemented according to a pulse sequence consisting of
two entangling operations along with single qubit rotations.
The entangling operations are carried out with tuned qubits
(ε1 = ε2) and the local rotations are performed with detuned
qubits. Table I gives values of the model parameters used
for our simulations. For weakly coupled tuned qubits, the
Hamiltonian (1) can be written in the interaction picture (or
rotating frame) as

H ≈
∑
i=1,2

�i

2

(
cos φiσ

x
i − sin φiσ

y

i

) + H, (2)
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TABLE I. Parameter values used in this work. The tuned qubit
frequency is the frequency of the qubits used during the entangling
operations. During single-qubit operations, the frequency of qubit 2
is suddenly increased to 11 GHz. The ranges of allowed values of
Rabi frequencies and overall coupling strengths are used to constrain
the optimization described in the body of the paper. J ∗

µν and g are
defined in Eq. (14).

Parameter Value

Common tuned qubit frequency (ε/h) 10 GHz
Qubit-qubit detuning 1 GHz
Range of allowed Rabi frequencies (�/h) 50–500 MHz
Range of allowed coupling strengths (g/h) 1–500 MHz
Range of gate times tgate considered 10–50 ns

J ∗
µν for isotropic Heisenberg coupling

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

J ∗
µν for Ising coupling

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦

J ∗
µν for XY coupling

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦

where

H ≡ J
(
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2 + σ
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)
.

(3)

The parameters J and J ′ in Eq. (3) are given by

J ≡ Jxx + Jyy

2
and J ′ ≡ Jxy − Jyx

2
. (4)

B. CNOT Pulse sequence

The pulse sequence derived in Ref. [13], carried out from
right to left, is

CNOT = ei 3π
4 Ry

(
−π

2

)
1
Rx

(
−π

2

)
2
Rz (−ϕ)2 Rx

×
(π

2

)
1
e−iH�t/h̄Rx(π )1e
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(π

2

)
1
,

(5)

where Rµ(θ )i ≡ e− i
2 (θ)σµ

i (with µ = x,y,z and i = 1,2) is a
single qubit rotation. Here

ϕ ≡ arg(J + iJ ′) and �t ≡ πh̄

8
√

J 2 + J ′2 . (6)

The operator e−iH�t/h̄ represents the action of bringing the
qubits into resonance for a time �t . The CNOT pulse sequence
given in Eq. (5) involves two rotations about the z axis. For
our exact simulations below, it is convenient to rewrite Eq. (5)
in terms of x and y rotations, leading to

CNOT = ei 3π
4
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1
. (7)

This is the CNOT pulse sequence used in the present analysis.
Operations inside square brackets can be performed simulta-
neously.

III. INTRINSIC FIDELITY

The CNOT pulse sequence (7) is an exact identity; the
errors come from realizing the individual terms in it using
Hamiltonian (1). Here we discuss the possible sources of errors
and the precise definition of fidelity used in this work.

A. Sources of error

As mentioned earlier, we are not concerned here with
extrinsic errors, such as noise and decoherence, since these
depend very much on the specific experimental architecture
and noise sources. The fidelity loss computed here originates
from intrinsic sources. The exact CNOT pulse sequence (7) is
derived in the context of the approximate Hamiltonian (2),
which is derived from the model Hamiltonian (1) assuming
weak coupling (|Jµν | � εi) and weak driving (�i � εi).
These approximations contribute to the accumulation of
fidelity loss. In addition, we also assume that the coupling is
always on, even when the local rotations are being performed.
This assumption is necessitated by the fixed coupling used
in most experimental architectures. Due to the presence of
more local rotations than entangling operations in the pulse
sequence, the latter causes a larger contribution to the intrinsic
error.

B. Definition of fidelity

In general, fidelity gives a measure of how close two
quantum states are. Different measures of fidelity exist. The
definition we adopt is given by (see Ref. [18], p. 222, Eq. (14))

F (|ψ〉,ρ) ≡ 〈ψ |ρ|ψ〉, (8)

where |ψ〉 is considered a pure state and ρ is the density matrix
of an arbitrary state. Here we are interested in calculating
the fidelity between two operations (ideal CNOT and realized
CNOT), which requires some modifications of the definition
given by Eq. (8). In this context fidelity means how close these
operations are. Suppose we have two unitary operations, U

and Utarget, and we want to calculate the fidelity between these
operations. A natural way to understand this closeness is to
take a randomly generated vector |χ〉 (defined on a Hilbert
space), then apply the operations U and Utarget on the vector
to obtain transformed vectors U |χ〉 and Utarget|χ〉, and finally
identify these transformed states with ρ and |ψ〉 in Eq. (8) to
derive an expression for fidelity that depends on the state |χ〉,

Fχ (Utarget,U ) = 〈χ |U †
target︸ ︷︷ ︸

〈ψ |

U |χ〉〈χ |U †︸ ︷︷ ︸
ρ

Utarget|χ〉︸ ︷︷ ︸
|ψ〉

. (9)

Finally, we average over randomly generated |χ〉 (chosen
from a uniform distribution) to introduce an average fidelity
according to

Fav(Utarget,U ) = 1

N (|χ〉)
∑
|χ〉

Fχ (Utarget,U ), (10)
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where N (|χ〉) is the total number of randomly generated |χ〉
states. To obtain a closed-form expression of fidelity we change
this sum to an integral,

Fav(Utarget,U ) =
∫

|〈χ |M|χ〉|2dV, (11)

where M ≡ U
†
targetU and dV is a normalized measure. It has

already been proven [19–21] that, for any linear operator M

on an n-dimensional complex Hilbert space,∫
S2n−1

|〈χ |M|χ〉|2dV = Tr(MM†) + |Tr(M)|2
n(n + 1)

, (12)

where the normalized state vectors |χ〉 are defined on the unit
sphere S2n−1 in C. Using Eq. (12) for a four-dimensional
Hilbert space, we can rewrite our expression for average
fidelity as

Fav(Utarget,U ) = 4 + |Tr(U †
targetU )|2

20
. (13)

We use Eq. (13) for computing the fidelity between any two
unitary quantum operations and express it in percent.

IV. SIMULATIONS

For a given qubit-qubit coupling tensor Jµν , the pulse
sequence (7) is realized by performing the pair of two-qubit
entangling operations with tuned qubits [for a time �t given in
Eq. (6)] and the single-qubit operations with strongly detuned
qubits. The time to implement the full pulse sequence depends
on Jµν and the Rabi frequencies, which in principle can be
different for each qubit and for each local rotation required.
However, in this work we choose all Rabi frequencies to have
the same value.

The coupling tensor Jµν can be decomposed according to

Jµν = gJ ∗
µν, (14)

where g > 0 is a measure of the overall strength and J ∗
µν

describes the form of the coupling. J ∗
µν is defined to satisfy

|J ∗
µν | � 1 for all µ,ν. (15)

Three important examples of J ∗
µν are given in Table I.

The simulations reported here are obtained by exact
numerical integration of the model (1). Our choice of fixed
experimental parameters was motivated by superconducting
architectures [22]. We optimize over Rabi frequencies and
qubit-qubit interaction strengths only, and we do not allow
for variation in the local rotation angles of Eq. (7). Although
small refinements of these rotation angles can make slight
improvements in the fidelity (by compensating for the qubit
coupling that is suppressed by detuning but still always
present), the fidelity changes are small on the scale of the main
effects we consider (the dependence on the form of qubit-qubit
interaction). These considerations lead us to vary the coupling
tensor Jµν , total gate time, and Rabi frequency and to compute
the fidelity as a function of these variables. But since we know
the pulse sequence, we can determine the total gate time as a
function of Jµν and the single Rabi frequency by adding up
the time required for each operation. So, for the simulation
we fix total gate time, vary Rabi frequency within an allowed
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FIG. 1. (Color online) Plot of optimal fidelity vs total CNOT gate
time for the Heisenberg interaction.

range given in Table I, compute corresponding values of g,
and optimize the fidelity from the evolution of the original
Hamiltonian (1). This procedure leads to a single point on a
fidelity curve.

V. FIDELITY CURVES

Figures 1 and 2 give the optimal CNOT fidelities as a
function of total gate time for the Heisenberg and XY

interactions and Tables II and III show corresponding optimal
values of relevant parameters. The fidelity curves are similar,
indicating that a fidelity of 99% can be obtained in less than
15 ns and 99.9% can be obtained in about 50 ns. Alternatively,
these results indicate that for these common forms of
qubit-qubit coupling, 99% can be achieved with a coherence
time in excess of 15 ns and 99.9% can be achieved with at least
50 ns of coherence. [We remind the reader that model (1) does
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FIG. 2. (Color online) Optimal fidelity vs total gate time for the
XY interaction.
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TABLE II. Optimum values of parameters for Heisenberg
interaction.

Total time
(ns) Fidelity (%) g/h (MHz) �/h (MHz)

10.00 97.832 1 19.196 4 430
11.25 98.459 9 16.104 9 430
12.50 98.840 5 13.871 0 430
13.75 99.088 1 12.181 3 430
15.00 99.257 9 10.858 6 430
16.25 99.379 2 9.795 0 430
17.50 99.468 8 8.921 2 430
18.75 99.536 8 8.190 5 430
20.00 99.589 5 7.570 4 430
22.50 99.664 6 6.574 9 430
25.00 99.714 4 5.810 8 430
27.50 99.748 9 5.205 8 430
30.00 99.779 4 4.885 1 340
40.00 99.845 2 3.512 4 340
50.00 99.873 4 2.741 9 340

not include higher-energy (nonqubit) states, which further
limit performance, and that results are obtained for 10-GHz
qubits.]

The weak dependence of the fidelity curve on the form of
interaction is typical, unless the interaction is close to that of
the Ising model (see Table I). To quantify this closeness we
define a parameter [recall Eqs. (4) and (14)]

η ≡
√

J 2 + J ′2

g
. (16)

It can be shown that 0 � η �
√

2. For the Ising interaction, η =
0, whereas for the Heisenberg and XY interactions, η = 1. A
“typical” value of η, defined by averaging the function η(Jµν)
over an unconstrained uniform distribution of Jµν tensors, is
about 0.52.

In Fig. 3 we show fidelity curves for randomly gener-
ated forms of interaction with three fixed values η. The

TABLE III. Optimum values of parameters for XY interaction.

Total time
(ns) Fidelity (%) g/h (MHz) �/h (MHz)

10.00 98.175 0 17.857 1 500
11.25 98.861 8 23.809 5 250
12.50 99.271 0 19.230 8 250
13.75 99.490 2 16.666 7 240
15.00 99.617 4 14.285 7 240
16.25 99.696 6 12.500 0 240
17.50 99.749 4 11.111 1 240
18.75 99.786 4 10.000 0 240
20.00 99.813 3 9.090 9 240
22.50 99.849 1 7.692 3 240
25.00 99.871 3 6.666 7 240
27.50 99.886 1 5.882 4 240
30.00 99.897 3 5.208 3 250
40.00 99.921 1 3.676 5 250
50.00 99.931 1 2.840 9 250
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FIG. 3. (Color online) Plot of optimal fidelity vs total gate time
for random interactions.

unambiguous loss of fidelity for η = 0.1 is due to the fact
that the interaction is close to the Ising limit (η = 0). The
similar behavior of fidelity for η = 0.5 and η = 1.0 affirms
our assertion that fidelity curves do not significantly depend
on the form of the interaction as long as η is not too close
to zero. The reason for the poor performance for small η is
discussed in Sec. VI.

Given that the fidelity is largely independent of the
form of interaction, as long as η is not too small, it is
useful to average over interaction forms to obtain interaction-
independent fidelity curves. This is provided in Fig. 4, which
presents interaction-averaged fidelity curves for η = 0.1, 0.5,
and 1.0.
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FIG. 4. (Color online) Plot of optimal fidelity vs total gate time,
averaged over randomly generated interactions with fixed values of
η, for η = 0.1, 0.5, and 1.0.
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FIG. 5. (Color online) Plot of optimal fidelity vs total gate time
for Heisenberg interaction in the presence of amplitude damping with
500 ns.

VI. CONCLUSIONS

We have shown that the intrinsic fidelity versus total gate
time for the CNOT gate as constructed by Eq. (7) is largely
independent of the form of qubit-qubit interaction, as long as
that interaction is not too close to that of the Ising model, as
measured by the the parameter η defined in Eq. (16). For typical
(non-Ising-like) couplings, the fidelity is given in Fig. 4; here
one can use either the η = 0.5 or η = 1.0 curves.

The origin of the poor fidelity when η is small can
be understood as follows: In the pulse construction (7) of
Ref. [13], a Cartan decomposition is used to decompose the
time-evolution operator generated by Eq. (2) into single-qubit
rotations, an entangling operator, and a global phase factor.
The entangler has the form

A(x,y,z) ≡ e−i(xσx
1 σx

2 +yσ
y

1 σ
y

2 +zσ z
1 σ z

2 ), (17)

where x, y, and z are three coordinates (angles). Following
Zhang et al. [4], the entangler coordinates trace out a
trajectory in the three-dimensional space of entanglers as time
progresses. In the construction of Ref. [13], the trajectory starts
in the plane x = y, and then a refocusing π pulse is used to
reflect the trajectory to the point ( π

4 ,0,0) or (−π
4 ,0,0) on the

x axis. (The actual point reached depends on the sign of J .)
The time it takes to do this—neglecting the time needed for
the π pulse—is 2�t [see Eq. (6)], or πh̄/4gη. Including all
the single-qubit rotations in Eq. (7) leads to a total gate time
of

tgate = πh̄

4gη
+ 3π + 2ϕ

�
. (18)

Because the first term in Eq. (18) is inversely proportional to
ηg, for a fixed gate time a larger value of coupling strength g is

TABLE IV. Optimum values of parameters for Heisenberg inter-
action with 500-ns amplitude damping.

Total time
(ns) Fidelity (%) g/h (MHz) �/h (MHz)

10.00 96.927 2 21.022 7 370
11.25 97.309 8 17.370 9 370
12.50 97.449 3 14.800 0 370
13.75 97.469 9 12.892 0 370
15.00 97.426 0 11.419 8 370
16.25 97.342 3 10.249 3 370
17.50 97.235 5 9.296 5 370
18.75 97.112 5 8.505 7 370
20.00 96.978 1 7.839 0 370
22.50 96.690 4 6.776 6 370
25.00 96.386 6 5.967 7 370
27.50 96.074 0 5.331 4 370
30.00 95.756 5 4.817 7 370
40.00 94.473 6 3.477 4 370
50.00 93.196 9 2.720 6 370

required when η is small. But when g increases, the assumption
of weak coupling used in Ref. [13] is violated and the
corrections to the rotating-wave approximation get larger.
Furthermore, that large coupling leads to considerable errors
during the single-qubit operations because the qubit-qubit
interaction is not switched off.

Although we have focused on the intrinsic fidelity in this
work, it is interesting to calculate one example of a fidelity
curve with decoherence. We choose the Heisenberg interaction
for this study, with 500 ns amplitude damping. Reoptimizing �

and g for each total gate time leads to the fidelity curve shown
in Fig. 5. Table IV gives the corresponding optimal parameters.
The curve exhibits a maximum fidelity (≈97.47%) at about
13.75 ns, which represents the optimal time to construct a
CNOT gate with this assumed decoherence model. The optimal
interaction strength and Rabi frequency are g/h ≈ 12.89 MHz
and �/h ≈ 370 MHz.

Figures 3 and 4 are our principal results. To use the fidelity
curve of Fig. 4 for a particular application, one should calculate
the η value for the application and extrapolate between the
curves provided. We note, however, that for small η the
pulse sequence (7) is not useful, and one should construct
an alternative pulse sequence using the methods of Refs. [4]
and [13] to generate an entangler on the z axis instead of on
the x axis.
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