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We introduce a family of states, the fermionic projected entangled pair states (fPEPS), which describe fermionic
systems on lattices in arbitrary spatial dimensions. It constitutes the natural extension of another family of states,
the PEPS, which efficiently approximate ground and thermal states of spin systems with short-range interactions.
We give an explicit mapping between those families, which allows us to extend previous simulation methods
to fermionic systems. We also show that fPEPS naturally arise as exact ground states of certain fermionic
Hamiltonians. We give an example of such a Hamiltonian, exhibiting criticality while obeying an area law.
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I. INTRODUCTION

Understanding the behavior of correlated quantum many-
body systems is one of the most challenging problems in
various fields of physics. For spin systems on a lattice with
local (i.e., short-range) interactions, powerful methods have
been developed in recent years. They rely on families of
states which, on the one hand, depend on very few parameters
and, on the other, approximate the quantum state of the
spins in thermal equilibrium. In one spatial dimension, matrix
product states (MPS) [1] (which underly [2,3] the successful
density matrix renormalization group algorithm [4,5]) provide
a good approximation to the ground state of any gapped local
Hamiltonian. Projected entangled pair states (PEPS) [6,7]
(cf. also [8,9]), which naturally extend MPS to higher spatial
dimensions, approximate spin states at any finite temperature
[10] and have been successfully used to simulate spin systems
which cannot be dealt with otherwise [11–14].

Fermionic quantum many-body systems are central to many
of the most fascinating effects in condensed matter physics.
In one spatial dimension, it is possible to adapt the methods
based on MPS to such systems thanks to the Jordan-Wigner
transform, which maps fermions into spins while keeping
the interactions local. In higher dimensions, however, this is
no longer possible: fermionic operators at different locations
anticommute, which effectively induces nonlocal effects when
mapping fermions to spins. Thus, the use of PEPS to
describe fermionic systems is no longer justified (see, however,
Refs. [15,16] for different approaches).

In this article we introduce a family of states, the fermionic
projected entangled pair states (fPEPS), which naturally
extend the PEPS to fermionic systems. According to their
definition, fPEPS are well suited to describe fermionic systems
with local interactions. They can be, in turn, efficiently
described in terms of standard PEPS at the prize of having to
double the number of parameters. This automatically implies
that the algorithms introduced to simulate ground and thermal
states, as well as the time evolution of spin systems using
PEPS [6,7], can be readily adapted to fPEPS. We also show
that certain fPEPS are exact ground states of local fermionic
Hamiltonians, in as much the same way as PEPS are for
spins [17]. In particular, we give the explicit construction
of a Gaussian Hamiltonian which has an fPEPS as exact
ground state. Remarkably, the state is critical, i.e., gapless with

polynomially decaying correlations, yet obeys an entropic area
law [18], in contrast to what happens with other free fermion
systems [19].

We have organized this article as follows. First, we will
briefly review PEPS and explain why they are well suited
to describe spin systems with local interactions in thermal
equilibrium. Then, we will construct the family of fPEPS
following the same idea. We will then consider a subfamily of
fPEPS for which we can build local “parent” Hamiltonians,
i.e., those for which they are exact ground states. Finally,
we will give a particular example which presents criticality.
For the sake of simplicity, we will concentrate on two spatial
dimensions.

II. CONSTRUCTION OF PEPS

For simplicity, let us consider a 2D lattice of N ≡ NhNv

spin-1/2 particles, with states |0〉 and |1〉. To each node of
coordinates (h,v) we associate four auxiliary spins, with states
|n〉 (n = 0, . . . ,D − 1), where D is called bond dimension.
Each of them is in a maximally entangled state

∑ |n,n〉 with
one of its neighbors, as indicated in Fig. 1(a). The PEPS |�〉
is obtained by applying a linear operator (“projector”) to each
node that maps the auxiliary spins onto the original ones. This
operator can be parametrized as

P(h,v) =
D−1∑

l,r,u,d=0

1∑
k=0

(B(h,v))
[k]
l,r,u,d |k〉〈l,r,u,d|. (1)

Let us now explain why PEPS are well suited to describe
spins in thermal equilibrium in the case of local Hamiltonians,
H = ∑

hλ. For simplicity, we will assume that each hλ acts
on two neighboring spins. We first rewrite the (unnormalized)
density operator e−βH = trB[|χ〉〈χ |], where |�〉 = e−βH/2 ⊗
1|χ〉AB is a purification [20] and |χ〉AB a pairwise maximally
entangled state of each spin with another one, the latter playing
the role of an environment. We will show now that |�〉
can be expressed as a PEPS. We consider first the simplest
case where [hλ,hλ′] = 0 so |�〉 = ∏

λ e−βhλ/2 ⊗ 1|χ〉AB . The
action of each of the terms e−βhλ/2 on two spins in neighboring
nodes can be viewed as follows: we first include two auxiliary
spins, one in each node, in a maximally entangled state,
and then we apply a local map in each of the nodes which
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FIG. 1. (Color online) (a) Construction of a PEPS in two
dimensions. The balls joined by lines represent pairs of maximally
entangled D-dimensional auxiliary spins, which are then mapped
to the physical spins (red), as illustrated by the light blue spheres.
(b) Why PEPS approximate thermal states well: exp[−βhij ] can be
implemented using local maps only if an entangled pair is available.

involves the real spin and the auxiliary spin, which ends up
in |0〉. By proceeding in the same way for each term e−βhλ/2,
we end up with the PEPS description [see Fig. 1(b)]. This
is valid for all values of β, in particular for β → ∞, i.e.,
for the ground state. In case the local Hamiltonians do not
commute, a more sophisticated proof is required [10]. One
can, however, understand qualitatively why the construction
remains to be valid by using a Trotter decomposition to
approximate e−βH ≈ ∏M

m=1

∏
λ e−βhλ/2M with M 	 1. Again,

this allows for a direct implementation of each exp[−βhλ/2M]
using one entangled bond, yielding M bonds for each vertex
of the lattice. Since, however, the entanglement induced by
each exp[−βhλ/2M] is very small, each of these bonds will
only need to be weakly entangled, and the M bonds can thus
be well approximated by a maximally entangled state of low
dimension. Note that the spins belonging to the purification do
not play any special role in this construction, and thus we will
omit them in the following.

III. CONSTRUCTION OF fPEPS

We will now extend the above construction to fermionic
systems in such a way that the same arguments apply.
We consider fermions on a lattice and work in second
quantization. For a Hamiltonian H = ∑

hλ, each term hλ

must contain an even number of fermionic operators for the
Trotter decomposition to be still possible. Thus, we just have
to find out how to express the action of e−βhλ in terms of
auxiliary systems. This is very simple: one just has to consider
that the auxiliary particles are fermions themselves, forming
maximally entangled states, and write a general operator which
performs the mapping as before. Following this route, we arrive
at the definition of fPEPS. More specifically, we define at
each node (h,v) four auxiliary fermionic modes, with creation
operators α

†
(h,v),β

†
(h,v),γ

†
(h,v),δ

†
(h,v), respectively. We define

H(h,v) = 1√
2

(
1 + β

†
(h,v)α

†
(h+1,v)

)
(2)

V(h,v) = 1√
2

(
1 + δ

†
(h,v)γ

†
(h,v+1)

)
(3)

which create maximally entangled states out of the vacuum.
We also define the “projectors”

Q(h,v) =
∑

(A(h,v))
[k]
lruda

†k
(h,v)α

l
(h,v)β

r
(h,v)γ

u
(h,v)δ

d
(h,v), (4)

where a(h,v) is the annihilation operator of the physical
fermionic mode, and the sum runs for all the indices from
0 to 1, with the condition that (u + d + l + r + k) mod 2 = c,
where c is fixed for each node.1 The latter is related to the
parity of the hλ and will ensure that the parity of the fPEPS is
well defined. The fPEPS is then

|�〉 =
〈∏

(h,v)

Q(h,v)

∏
(h,v)

H(v,h)V(v,h)

〉
aux

|vac〉, (5)

where the expectation value is taken in the vacuum of the
auxiliary modes, and |vac〉 denotes the vacuum of the physical
fermions. Note that the definition of fPEPS straightforwardly
extends to systems with both more than one physical mode
per site and more than one mode per bond, as well as to open
boundaries or higher spatial dimensions.

IV. RELATION BETWEEN fPEPS AND PEPS

Next, we will find an efficient description of any fPEPS
in terms of standard PEPS. With that, one can readily use
the methods introduced for PEPS [6,7] in order to determine
physical observables, as well as to perform simulations of
ground or thermal states, and time evolution. We have to
identify the Fock space of the fermionic modes with the Hilbert
space of spins. For that, we sort the lattice sites according to
M = (v − 1)Nh + h and associate a

†k1
1 . . . a

†kN

N |vac〉 to the spin
state |k1, . . . , kN 〉. Then we write |�〉 in that basis and express
it as a PEPS in terms of tensors B (1). The goal is to find
the relation between the tensors B (corresponding to the spin
description) and A (fermionic description). In principle, the
fPEPS to PEPS transformation can be done straightforwardly
by adding extra bonds to the PEPS which take care of the signs
which arise from reordering the fermionic operators; however,
this would lead to a linear number of bonds per link and thus
to a dimension which is exponential in N . Remarkably, it is
possible to express every fPEPS as a PEPS by introducing only
one additional bond per horizontal link as follows: Replace
each fermionic bond by a bond of maximally entangled spins,
adding one additional horizontal qubit bond everywhere except
at the boundaries (see Fig. 2). This means that the tensor B will
have now two more indices, say l′ and r ′, which are associated
to those new bonds. Then, we find the relation

(Bh,v)[k]
lrr ′ud = (−1)f(h,v)(k,u,d,l,r)(Ah,v)[k]

lrud (−1)(d+l)r ′
(6)

for h = 1, while for h > 1 we have

(Bh,v)[k]
ll′rr ′ud = (−1)f(h,v)(k,u,d,l,r)(Ah,v)[k]

lrud (−1)dr ′

× δl′,(r ′+u+d) mod 2, (7)

1In fact one can freely choose c for all but one Q(h,v): Since, e.g.,
the bond (2) is invariant under (iβ(h,v) + β

†
(h,v))(iα(h+1,v) + α

†
(h+1,v)),

the corresponding maps (4) can be right multiplied with it, switching
their parity.
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FIG. 2. (Color online) Every fPEPS can be represented as a PEPS
at an extra cost of at most one additional bond per link (shown for a
3 × 3 PBC lattice).

where f(h,v)(k,u,d,l,r) is a function which only depends on
the local indices and r ′ = 0 for h = Nh.

Let us briefly explain how to obtain this result. Consider
an fPEPS of the form (5) which we want to bring into the
normal ordered form by commuting the fermionic operators.
To this end, we perform the following three steps on the total
projector

∏
Q(h,v), observing that local sign contributions

can be absorbed in the tensors (A(h,v))
[k]
lrud : First, commute

all physical modes to the left. This results in a factor
(−1)p(p−1)/2, where p = ∑

(h,v) k(h,v) is the parity of the
fPEPS; since the latter is fixed, this yields a global phase.
Next, contract the horizontal bonds: The nonboundary bonds
only yield local contributions, while the horizontal boundary
bond on any line v gives a contribution (−1)l(1,v)�(1,v) with
�(h,v) = ∑

j>h(u(j,v) + d(j,v)). Finally, contract the vertical
bonds, proceeding columnwise from h = 1. For each bond
between (h,v) and (h,v + 1) this gives a sign contribution
(−1)d(h,v)�(h,v); due to the fixed parity of the bonds this holds
even for the bonds across the boundary. Thus, all signs can be
computed if the respective parity �(h,v) is available at each
site, which is achieved by the additional bonds passing this
information to the left. Note that the same proof applies to
open boundaries, as well as systems with more physical or
virtual modes per site, without the need for further extra bonds
to compute �(h,v). Similarly, one can derive a corresponding
result for higher dimensions.

V. FERMIONIC GAUSSIAN STATES AND PARENT
HAMILTONIANS

Fermionic Gaussian states [21] (also known as quasifree
states) constitute an important subclass of states, as they
appear as ground and thermal states of quadratic Hamiltonians,
corresponding to free fermion or BCS states. These states
can be written as an exponential of a quadratic form in the
fermionic operators and are thus completely characterized by
their covariance matrix 	

(x,y)
kl = tr[ i

2 [c(x)
k ,c

(y)
l ]ρ], where c

(1)
i =

a
†
i + ai and c

(2)
i = (−i)(a†

i − ai) are Majorana operators. We
will now introduce Gaussian fPEPS, which we then use to
show that fPEPS naturally appear as ground states of free
local Hamiltonians. The techniques used here follow closely
the corresponding methods for bosons introduced in Ref. [22].

Gaussian fPEPS are obtained by restricting the map (4)
to be Gaussian (H and V are already of that form). Those
transform Gaussian states into Gaussian states, so they can be
characterized through the map 	in → 	out. The most general
(pure) map can be written as [21] 	out = B(D − 	in)−1BT +
A with

G =
(

A B

−BT D

)
= −GT , GGT = −1. (8)

We denote the covariance matrix (CM) of the translationally
invariant states of the virtual modes by 	in = ⊕ωh,v , where
ωh,v is the CM of the maximally entangled horizontal or ver-
tical bonds. Then the desired family of states can be obtained
by applying the same Gaussian map to each node �n = (h,v) of
the lattice: G = ⊕�nG̃, where G̃G̃T = 1. Due to translational
invariance, 	out can be conveniently expressed in Fourier
space, 	out = ⊕�φ	̂out( �φ), with 	̂out = B[D − ω̂( �φ)]−1BT +
A, where �φ = ( 2πkh

Nh
, 2πkv

Nv
) is the reciprocal lattice vector. As

we show in Appendix A, it is straightforward to see that the �φ
dependence of ω̂( �φ) yields

	̂out( �φ)

= 1

d( �φ)

⎛
⎜⎜⎜⎜⎝

0 Re[q( �φ)] −Im[q( �φ)] p( �φ)

−Re[q( �φ)] 0 p( �φ) Im[q( �φ)]

Im[q( �φ)] −p( �φ) 0 Re[q( �φ)]

−p( �φ) −Im[q( �φ)] −Re[q( �φ)] 0

⎞
⎟⎟⎟⎟⎠,

(9)

with p, q, and d as low-degree polynomials in �φ; in particular,
d( �φ) = det[D − ω̂( �φ)]. Now define the Hamiltonian H =
i
∑

kl hklckcl , where h is defined through its Fourier transform
ĥ( �φ) = d( �φ)	̂out( �φ). H has 	out as its ground state, since
	̂out( �φ) and ĥ( �φ) are diagonal in the same basis, and unless H
is gapless—corresponding to zeros of d( �φ)—the ground state
is unique. Moreover, since the degree of p and q is bounded
by twice the number of virtual modes per site, it follows that
H is local.

Example. Let us now give an example of a local
Hamiltonian which has an fPEPS as its exact ground
state. We present only the main results in the main
text and refer the reader interested in the details to
Appendix B. We choose the (translational invariant) fPEPS
projector Q = e(iα+β)(−γ+iδ)+αβ+γ δ+a†(−iα−β−γ+iδ) which
yields p( �φ)/d( �φ) = (sin φ1 − sin φ2)/(−1 + sin φ1 sin φ2)
and q( �φ)/d( �φ) = cos φ1 cos φ2/(−1 + sin φ1 sin φ2). The
resulting parent Hamiltonian is [Fig. 3(a)]

Hcrit = 2i
∑
(h,v)

a
†
(h,v)a

†
(h,v+1) − a

†
(h,v)a

†
(h+1,v) + H.c.

−
∑
(h,v)

a
†
(h,v)(a(h+1,v+1) + a(h+1,v−1)) + H.c.

and Nh,Nv odd, which will ensure that the ground state
is unique. By Fourier transforming 	̂out( �φ) into position
space, one obtains that the correlations of Majorana operators
of equal (different) type at distance (n1,n2) scale asymp-
totically as the real (imaginary) part of K(n1,n2) = (n1 +
3 + in2)/(n1 + 1 + in2)3 for n1 + n2 odd (even) and vanish
otherwise [Fig. 3(b)]. Notably, the ground state possesses
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FIG. 3. (Color online) (a) Hopping terms in the Hamiltonian.
(b) Exact value and asymptotic scaling for the correlations in direction
of the axis (red), along the diagonal (green), and along the direction
(n,2n) (blue) [cf. (c)] for Majorana operators of the same type (top)
and different type (bottom).

correlations that decay as power laws and the Hamiltonian
is gapless in the limit N → ∞. In fact, our example provides
us with a critical fermionic system obeying the area law, which
directly follows from the fact that its ground state is a PEPS
with bounded bond dimensions. Note that, although Hcrit is
not particle conserving, it can be converted into a particle
conserving one via a simple particle-hole transformation in the
B sublattice. This new Hamiltonian possesses a spectrum with
a Dirac point separating the modes with positive and negative
energies. Thus, the Fermi surface has zero dimension, which
explains why our results do not contradict the violation of the
area law expected for free Fermionic systems [19].

In summary, in this work we have introduced fPEPS which
are obtained by applying fermionic linear maps to maximally
entangled fermionic states placed between nearest neighbors.
This construction resembles the construction of PEPS and is
well suited to describe ground and thermal states of local
fermionic Hamiltonians (both free and interacting), in the same
way as PEPS are suited to describe ground states of local spin
systems. We have then shown how fPEPS can be transformed
into PEPS at the cost of only one additional bond providing
an explicit mapping for the corresponding tensors. This also
demonstrates the use of fPEPS for numerical simulations.
Further, we have investigated the role of fPEPS as ground
states of local Hamiltonians. To this end, we have introduced
Gaussian fPEPS and shown that they naturally arise as ground
states of quasifree local Hamiltonians. Finally, we have used
these tools to demonstrate the existence of local free fermionic
Hamiltonians which are critial without violating the area law.
(Note added: Recently several algorithms based on fPEPS have
been developed and applied to interacting fermions [23–25].)
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APPENDIX A: GAUSSIAN fPEPS AND PARENT
HAMILTONIANS

In this section we present the details that lead to Eq. (9).
Recall that we apply the translationally invariant channel,
Eq. (8), to the translationally invariant input state 	in = ⊕ωh,v .
The structure of the problem suggests an approach in
Fourier space, and we introduce the Fourier transform of
the mode operators f̂ �φ = ( 1√

N
)2 ∑

�n e− 2π
N

i �φ·�nf�n, where f is
either a physical or virtual mode and �φ = ( 2πkh

Nh
, 2πkv

Nv
) is the

reciprocal lattice vector. Now we consider the CM of
the output state in the qp-ordered form, i.e., we write

	out =
[

	
(1,1)
out 	

(1,2)
out

	
(2,1)
out 	

(2,2)
out

]
, (A1)

where 	
(r,s)
out = 〈 i

2 [c(r),c(s)]〉, r,s = 0,1. The translationally in-

variant construction is reflected in the fact that the blocks 	
(r,s)
out

are circulant matrices. Hence, they all can be diagonalized
simultaneously by a Fourier transformation F . The Fourier
transform of 	out, Ĝout = F	outF†, has diagonal blocks

Ĝ
(r,s)
out = F

〈
i

2
[c(r), c(s)]

〉
F† =

〈
i

2
[d̂ (r), d̂ (s)†]

〉
= diag(g(r,s)( �φ)),

where g(r,s)( �φ) ∈ C are the eigenvalues of the blocks 	
(r,s)
out . The

operators d̂
(r)
�φ are the Fourier transformed Majorana operators,

d̂
(r)
�φ = ( 1√

N
)2 ∑

�n e− 2π
N

i �φ·�nc(r)
�n , while the Majorana operators

in the reciprocal lattice space are given by ĉ
(1)
�φ = â

†
�φ + â �φ ,

ĉ
(2)
�φ = (−i)(â†

�φ − â �φ), with CM (	̂(x,y)
out ) �φ1, �φ2

= 〈 i
2 [ĉ(x)

�φ1
,ĉ

(y)
�φ2

]〉.
Both representations are linked via a unitary transformation.
In the following we make use of Ĝout to derive properties
of 	̂out. To this end, we regroup the modes such that
Ĝout = ⊕

�φ Ĝout( �φ) is a direct sum of blocks corresponding
to the same lattice vector, i.e., we write

Ĝout( �φ) =
[

g(1,1)( �φ) g(1,2)( �φ)

g(2,1)( �φ) g(2,2)( �φ)

]
. (A2)

Since 	out is antisymmetric and corresponds to a pure state,
i.e., 	2

out = −1, and the Fourier transformation is unitary, we
find that Ĝout( �φ) can be written as

Ĝout( �φ) = 1

d( �φ)

[
ip( �φ) q( �φ)

−q( �φ) −ip( �φ)

]
, (A3)

where p( �φ), q( �φ), d( �φ) ∈ R. To obtain more information on
theses functions, we use the fact that the channel E describes
a translationally invariant map. This implies that the blocks
A, B, and D are block diagonal and thus commute with the
Fourier transform. Hence,

Ĝout = F	outF† = B[D − Ĝin( �φ)]−1BT + A, (A4)

where Ĝin = FGinF†. We use that [D − Ĝin( �φ)]−1 =
adj[D − Ĝin( �φ)]/ det[D − Ĝin( �φ)] where adj denotes the ad-
jugate matrix, and we define d( �φ) = det[D − Ĝin( �φ)]. As 	in

is the covariance matrix of a system of maximally entangled
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states between nearest neighbors, its Fourier transform Ĝin( �φ)
is built out of terms of the form eiφ1,2 only. Thus, d( �φ) =
det[D − Ĝin( �φ)] and adj[D − Ĝin( �φ)] are polynomials of low
order in φ1,2. As B and A are local operators, we see that p and
q are polynomials of low degree as well. These results lead to
the 	̂out given in Eq. (9).

APPENDIX B: EXAMPLE OF A CRITICAL fPEPS

Like every Gaussian map the projector Q =
e(iα+β)(−γ+iδ)+αβ+γ δ+a†(−iα−β−γ+iδ) can be described as
a channel of the form given in Eq. (8), where

B = 1

2

(
1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 −1

)
,

D = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 2 1 −1 1 −1
0 0 2 2 −1 1 −1 1

−2 −2 0 0 1 −1 1 −1

−2 −2 0 0 −1 1 −1 1

−1 1 −1 1 0 0 2 2

1 −1 1 −1 0 0 2 2

−1 1 −1 1 −2 −2 0 0

1 −1 1 −1 −2 −2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and A = 0. Using this representation, a straightforward
calculation shows that the functions p, q, and d

defined in Eq. (9) are of the form p( �φ)/d( �φ) =
(sin φ1 − sin φ2)/(−1 + sin φ1 sin φ2) and q( �φ)/d( �φ) =
cos φ1 cos φ2/(−1 + sin φ1 sin φ2).

Note that the success probability of the PEPS projection is
related to the absolute value of [22]

det[D − Ĝin( �φ)] ∝ (−1 − sin φ1 sin φ2) sin2 φ1

2 sin2 φ2

2

which means that the fPEPS has zero norm (i.e., is not
properly defined) for �φ = (π

2 , 3π
2 ) and �φ = ( 3π

2 , π
2 ), as well

as for φ1 = 0,π and φ2 = 0,π . The former condition implies
that the state is not defined if the lattice size is a multiple of four
in both directions. This condition cannot be removed, since it
is inherent to the way the critical model is constructed—these
are exactly the zeros of d( �φ). The other zeros, however, cancel
out in (A4), and it turns out that one can modify the fPEPS
construction to have nonzero norm in those cases, without
changing the CM of the state itself. This can be seen by
expressing the virtual fermions in terms of two Majorana
modes: one finds that only one of these modes per virtual
fermion is connected to the physical fermion by the PEPS
projector, while the other is only perfectly correlated with the
corresponding Majorana mode of the opposite fermion. Thus,
these “unused” Majorana modes from perfectly correlated
loops around the torus, which make the state vanish for
even loop sizes due to the fermionic statistics. By properly
modifying the bond across the boundary in the unused
Majorana mode one can prevent the state from vanishing
without affecting the fPEPS itself, which is still described
by (A4).

Let us now show that the system is critical by deriving the
asymptotic behavior of the correlation functions p and q in

position space. For large systems we can replace the discrete
Fourier transform by a continuous one. Let ξ = p,q and
define

ξn1,n2 ≡ 〈
ic

(1)
(1,1)c

(yξ )
(n1,n2)

〉 = 1

(2π )2

∫ 2π

0

ξ (φ1,φ2)

d(φ1,φ2)

× ein1φ1ein2φ2dφ1dφ2,

where yp = 1 and yq = 2 for p and q correlations respectively.
We make the substitution z = eiφ1 so that dz = izdφ1 and
arrive at

p(z,φ2)

d(z,φ2)
= i

z2 − 1 − 2iz sin φ2

2iz − (z2 − 1) sin φ2
, (B1)

q(z,φ2)

d(z,φ2)
= i

(z2 + 1) cos φ2

2iz − (z2 − 1) sin φ2
. (B2)

Then ξn1,n2 can be written as

ξn1,n2 = 1

2π

∫ 2π

0
dφ2e

in2φ2I (ξ )
n1,n2

(φ2),
(B3)

I (ξ )
n1,n2

(φ2) = 1

2πi

∮
C

dz
ξ (z,φ2)

d(z,φ2)
zn1−1,

where C is the closed loop on the unit circle in the
complex plane. Since d(z,φ2)−1 has poles at z± = i(1 ±
| cos φ2|)/ sin φ2 and p as well as q are holomorphic at z±,
the integral I

(ξ )
n1,n2 (φ2) is proportional to the residue within C

according to the residue theorem. As only z− lies within the
unit circle we obtain

I (ξ )
n1,n2

(φ2) = ξ (z0,φ2)

∂zd(z,φ2)|z=z0

. (B4)

Next, we calculate the p correlations. With the help of (B1)
we obtain

I (p)
n1,n2

(φ2) = 1

2πi

∮
C

dz i
z2 − 1 − 2iz sin φ2

2iz − (z2 − 1) sin φ2
zn1−1

= in1+1(1 − |cos φ2|)n1
|cos φ2|

(sin φ2)n1+1
.

From the symmetry I
(p)
n1,n2 (φ2 + π ) = (−1)n1+1I

(p)
n1,n2 (φ2) and

the fact that for φ2 ∈ [−π/2,π/2] we have |cos φ2| = cos φ2,
implying

I (p)
n1,n2

(φ2) = in1+1 cos φ2

1 − cos φ2

(
tan

φ2

2

)n1+1

, (B5)

we can conclude that

pn1,n2 = 1

2π
[1 − (−1)n1+n2 ]2Re

[∫ π/2

0
dφ2 ein2φ2I (p)

n1,n2
(φ2)

]
.

To obtain that result, we have further made use of the relation
I

(p)
n1,n2 (−φ2) = (−1)n1+1I

(p)
n1,n2 (φ2), so that for n1 even (odd)

I
(p)
n1,n2 (φ2) is an odd (even) function, and only the sine (cosine)

part of the exponential ein2φ2 gives a nonvanishing contribution.
Following a similar strategy, one can derive

qn1,n2 = − 1

2π
[1+(−1)n1+n2 ]2Re

[∫ π/2

0
dφ2 ein2φ2I (p)

n1,n2
(φ2)

]
.
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To prove criticality we are interested in the asymptotic
behavior of the integral

Jn1,n2 =
∫ π/2

0
dφ2 ein2φ2I (p)

n1,n2
(φ2).

The correlations are symmetric under the exchange of n1 and
n2. This follows from translational invariance and can also be
seen directly from the form of p(φ1,φ2) and q(φ1,φ2). Hence,
to determine the asymptotic behavior, we can assume without
loss of generality n1 � 1. In this limit, the absolute value of
I

(p)
n1,n2 (φ2) attains its maximum for φ2 = ±arccos(1/n − 1) →

π/2. We rewrite
I (p)
n1,n2

(φ2) = in1+1c(φ2)e(n1+1)t(φ2),

where the functions c and t are given by c(φ2) = cos φ2

1−cos φ2

and t(φ2) = ln(tan φ2

2 ). Next, we expand c(φ2) and t(φ2) around
π/2: cos φ2

1−cos φ2
= −(φ2 − π

2 ) + (φ2 − π
2 )2 + O((φ2 − π

2 )3),

ln(tan φ

2 ) = (φ2 − π
2 ) + 1

6 (φ2 − π
2 )3 + O((φ2 − π

2 )5). Substi-
tuting φ2 → φ2 − π

2 the integral attains the form

Jn1,n2 = in1+n2+1
∫ 0
−π/2 dφ2J (n1,n2,φ2) with kernel

J (n1,n2,φ2) = ein2φ2
(−φ2 + φ2

2

)
e(n1+1)φ2+φ3

2/6(n1+1)

× [
1 + O

(
φ3

2

)]
.

We use Jn1,n2 = ∫ 0
−∞ dφ2J (n1,n2,φ2) − ∫ −π/2

−∞ dφ2

J (n1,n2,φ2) and obtain∫ 0

−∞
dφ2J (n1,n2,φ2) = 3 + n1 + in2

(1 + n1 + in2)3
+ O

(
1

n4
1

,
1

n4
2

)
,

while the second integral can be bounded by∣∣∣∣∣
∫ −π/2

−∞
dφ2J (n1,n2,φ2)

∣∣∣∣∣ � e−(n1+1)π/2

∣∣∣∣∣
∫ −π/2

−∞
dφ2e

1/6(n1+1)φ3
2

× (−φ2 + φ2
2

)[
1 + O

(
φ3

2

)]∣∣∣∣∣.
This gives rise to only an exponentially small correction that
can be neglected in the asymptotic limit. Summarizing, we
see that the p correlations are nonvanishing only for n1 + n2

odd, while q correlations are nonvanishing only for n1 + n2

even:

pn1,n2 ∼ [1 − (−1)n1+n2 ] Re

[
3 + n1 + in2

(1 + n1 + in2)3

]
,

qn1,n2 ∼ [1 + (−1)n1+n2 ] Im

[
3 + n1 + in2

(1 + n1 + in2)3

]
.
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