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A secret-sharing scheme is a cryptographic protocol to distribute a secret state in an encoded form among a
group of players such that only authorized subsets of the players can reconstruct the secret. Classically, efficient
secret-sharing schemes have been shown to be induced by matroids. Furthermore, access structures of such
schemes can be characterized by an excluded minor relation. No such relations are known for quantum secret-
sharing schemes. In this paper we take the first steps toward a matroidal characterization of quantum-secret-sharing
schemes. In addition to providing a new perspective on quantum-secret-sharing schemes, this characterization has
important benefits. While previous work has shown how to construct quantum-secret-sharing schemes for general
access structures, these schemes are not claimed to be efficient. In this context the present results prove to be
useful; they enable us to construct efficient quantum-secret-sharing schemes for many general access structures.
More precisely, we show that an identically self-dual matroid that is representable over a finite field induces a
pure-state quantum-secret-sharing scheme with information rate 1.
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I. INTRODUCTION

Secret sharing is an important cryptographic primitive
originally motivated by the need to distribute secure in-
formation among parties some of whom are untrustworthy
[1,2]. Additionally, it finds applications in secure multiparty
computation [3,4]. Secret-sharing schemes have a rich mathe-
matical structure [5] and they have been shown to be closely
associated with error-correcting codes [4,6,7] and matroids
[4,8–10,12,32]. The interplay with these objects has enabled
us to obtain new insights about not only secret-sharing schemes
but also codes and matroids. Although relatively new, the field
of quantum secret sharing [13] has made rapid progress both
theoretically [14–20] and experimentally [21–24]. However,
its connections with other mathematical disciplines have not
been as well studied. In particular, no connections have been
made with the theory of matroids, which is in sharp contrast
to the classical scenario. These connections are of more
than theoretical interest. Classically, optimal secret-sharing
schemes, that is, those with information rate 1, are induced
by matroids. Additionally, matroids provide alternate methods
to prove bounds on the rates that can be achieved for
certain access structures. For all these reasons it is useful to
develop the theory of matroids and quantum-secret-sharing
schemes.

In this paper it is our goal to bring to bear the theory
of matroids to characterize quantum-secret-sharing schemes.
While our results are only the first steps toward this character-
ization, they do indicate the usefulness of such associations.
The paper is organized as follows. We begin with a brief review
of the necessary background in secret sharing. In Sec. II we
review some of the known results on classical secret-sharing
schemes and matroids; these results are not well known in
the quantum information community and also provide the
backdrop for generalizing the connections between matroids
and secret-sharing schemes. In Sec. III we prove the central
result of this paper, namely, how representable identically
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self-dual matroids lead to efficient quantum-secret-sharing
schemes. We assume that the reader is familiar with the basic
results on quantum computing and stabilizer codes.

A. Classical secret sharing

A secret-sharing scheme is a protocol to distribute a secret
s among a set of players P , by a dealer D, such that only
authorized subsets of P can reconstruct the secret. Subsets of
P which cannot reconstruct the secret are called unauthorized
sets. The access structure � consists of all subsets that can
reconstruct the secret. The adversary structure A consists of
all unauthorized subsets. Any access structure � is required
to satisfy the monotone property; that is, if A ∈ �, then any
set B ⊇ A is also in �. This is the only restriction on the
access structures for classical secret-sharing schemes. Any
access structure satisfying the monotone property can be
realized by an appropriate secret-sharing scheme, albeit with
great complexity (see, e.g., [12]). A secret-sharing scheme is
said to be perfect if the unauthorized sets cannot extract any
information about the secret. A precise information theoretic
formulation can be given that quantifies this condition. We
typically require the secret to be taken from a finite alphabet,
K. The shares distributed need not be in the same domain
as the secret; in fact each share can be in a domain of
different alphabet. Let the domain of the ith party be Si . An
important metric of performance for secret-sharing schemes is
the information rate ρ. This is defined as (see [12])

ρ = min
i

log2 |K|
log2 |Si | . (1)

Secret-sharing schemes with ρ = 1 are said to be ideal. The
associated access structure is said to be ideal. More generally,
if an access structure can be realized with information rate
1 for some secret-sharing scheme, then it is said to be ideal.
Note that we do not restrict the dimension of the secret in this
case. An important problem of secret sharing is to construct
ideal secret-sharing schemes for any given (monotone) access
structure. Not every access structure can be realized with an
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information rate of 1 [25]; see [12] for examples of access
structures which cannot be realized with information rate 1.

B. Quantum secret sharing

A quantum-secret-sharing scheme generalizes the classical
one in two possible ways. We use quantum states to share
either a secret quantum state or a classical secret. We assume
that the shares are distributed by means of a completely
positive trace-preserving map.1 Some authors refer to the first
case as quantum state sharing, reserving the term “quantum
secret sharing” for situations where the secret is shared in
an adversarial setting. Although this might be preferable
in some contexts, we will continue to use the traditional
terminology. Quantum-secret-sharing schemes for classical
secrets were introduced by Hillery et al. in [13]. They also
proposed schemes for sharing quantum secrets, however, these
are not perfect, that is, unauthorized sets can extract some
information about the secret. Cleve et al. [14] proposed the first
perfect quantum-secret-sharing schemes for quantum secrets.
The theory of quantum secret sharing was developed further,
making important connections with quantum coding theory
in [14] and [15], with quantum information theory in [16]
and [19], and, more recently, with graphs via labeled graph
states in [18].

In this paper we are concerned with (perfect) sharing of
quantum secrets. Unlike classical secret-sharing schemes, a
quantum-secret-sharing scheme cannot realize every mono-
tone access structure. An additional constraint due to the
“no-cloning theorem” [26,27] has to be imposed on a realizable
access structure. Recall that the no-cloning theorem states
that an arbitrary quantum state cannot be copied. In any
quantum-secret-sharing scheme we cannot have two disjoint
authorized sets in the access structure, as this would violate
the no-cloning theorem. This condition in conjunction with the
monotonicity of the access structure determines the allowed
access structures for all quantum-secret-sharing schemes
[15, Theorem 8]. The same condition has been stated in
different forms in the literature. We record this result in its
various forms for future use. First, we need the notion of dual
for a collection of sets. Let P be a set, then we denote the
powerset of P as 2P . For any subset A ⊆ 2P , we define the
dual of A as

A∗ = {x ⊂ P | x �∈ A}. (2)

Lemma 1. Self-orthogonal access structures. Let � be the
access structure and A the adversary structure of a secret-
sharing scheme. Then the following statements are equivalent:

A ∩ B �= ∅ for all A,B ∈ �. (3)

� ⊆ �∗. (4)

A∗ ⊆ A. (5)

Further, every such � can be realized by a quantum-secret-
sharing scheme.

Proof. We shall show that (3) ⇒ (4). It follows that if A ∈
�, then A �∈ � as A ∩ A = ∅. But �∗ = {B | B �∈ �}. Since

1We thank an anonymous referee for emphasizing this.

A �∈ �, it follows that A ∈ �∗ and � ⊆ �∗. Conversely, let
� ⊆ �∗. Then from the definition of �∗, it follows that for
any A ∈ �, we must have A �∈ �; that is, A ∈ A. Further, all
subsets of A are also in A. Now assume that there exists some
B ∈ � such that A ∩ B = ∅. Then B ⊆ A. But all subsets of
A ∈ A; that is, they are not in �, which contradicts that B ∈ �.
Therefore there exists no subset B ∈ � such that A ∩ B = ∅,
proving that (4) ⇒ (3).

Now we shall show that (4) ⇔ (5). Assume that (4)
holds. Then since � ∩ A = ∅ and � ∪ A = 2P = �∗ ∪ A∗,
we have that A = (�∗ ∪ A∗) \ � = (�∗ \ �) ∪ A∗, where we
used the fact that �∗ ∩ A∗ = ∅ and � ⊆ �∗. It now follows
that A∗ ⊆ A, and (5) holds. Now assume that (5) holds, then
again, we have � ∪ A = �∗ ∪ A∗, and this time we can write
�∗ = (� ∪ A) \ A∗ = (�∗ \ �) ∪ A∗, and therefore �∗ ⊇ �

and (4) holds. This establishes the equivalence of these three
conditions. That an access structure satisfying these conditions
can be realized follows from [15, Theorem 8]. �

We often refer to an access structure that is realizable by a
quantum-secret-sharing scheme as a quantum access structure.
Smith [28, Theorem 1] characterized the adversary structure
of quantum-secret-sharing schemes as in (5). Condition (4) is
somewhat reminiscent of the requirement for self-orthogonal
classical codes for quantum error correction. If � = �∗, then
we say that the access structure is self-dual.

A quantum-secret-sharing scheme which encodes a pure-
state secret into a global pure state is said to be a pure-state
scheme, and one that encodes into a global mixed state is
a mixed-state scheme. Self-dual access structures can be
realized by pure-state schemes, whereas non-self-dual access
structures can be realized only as mixed-state schemes. This is
a consequence of Corollary 8 in Ref. [14], which states that in
every pure-state scheme, the complement of any unauthorized
set is an authorized set, and vice versa. Consequently, we
must have |�| = |A|, but |A| = |�∗|, and since � ⊆ �∗, this
is possible if and only if � = �∗. A theorem [15, Theorem
3] due to Gottesman shows that every mixed-state scheme
can be derived from a pure-state scheme. So we do not lose
any generality by focusing on the pure-state schemes. The
simplest access structures are the ((k,n)) threshold access
structures—in this case, the authorized sets are any subset of
size � k and unauthorized sets are subsets of cardinality less
than k. Smith [28] and, independently, Gottesman [15] showed
how to construct quantum-secret-sharing schemes with general
access structures.

In studying general access structures it is often convenient
to work with the minimal access structures, which are the
generating sets of the access structures. We define the minimal
access structure �min of the access structure � as

�min = {A ∈ � | B �⊂ A for any B ∈ �}. (6)

If every party in P occurs in at least one minimal authorized
set of �, then we say that the access structure is connected. We
restrict our attention to such access structures in this paper.
Our primary goal in this paper is to explore connections
of quantum-secret-sharing schemes with matroids and to
characterize the associated access structures in terms of
matroids if possible. We also address the construction of
secret-sharing schemes. Our constructions make use of CSS
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codes [29] reminiscent of the constructions of Smith for
general access structures.

The efficiency of a quantum-secret-sharing scheme is
quantified in terms of a metric called the quantum information
rate, analogous to the information rate of classical schemes.
This metric was first explicitly defined in [16] in terms of the
von Neumann entropies of the secret and the shares; a notion
of efficiency in terms of size of shares with respect to the secret
was implicit in [15]. For our purposes it suffices to know that
the quantum information rate, as in the classical case, is upper
bounded by 1 [16, Corollary 7]. A quantum-secret-sharing
scheme with rate 1 is said to be ideal. Alternatively, an ideal
quantum-secret-sharing scheme is one in which the sizes of
the secret and of each share are the same.

II. MATROIDS AND SECRET SHARING

Matroids have been associated with secret-sharing schemes
[4,9]; see [12] for a brief overview of some of the main results.
Secret-sharing schemes which are induced by a matroid are
called matroidal. Useful results with respect to characterization
and performance of secret-sharing schemes can be derived
by means of such an association, [8,9]. Such an association
also implies an implicit correspondence between matroids and
access structures. In fact, classically, most of the associations
focus on this correspondence and tend to ignore the scheme
realizing the access structure. To a large extent we take the
same approach, however, since a given access structure might
not be a quantum access structure, we do bear in mind that
we cannot entirely ignore the fact that the access structure is
being realized through a quantum scheme. It is important to
note that not every secret-sharing scheme can be associated
with a matroid.

A. Matroids

First we recall a few facts about matroids; readers interested
in a comprehensive introduction to matroids can refer to [30].

A set V and C ⊆ 2V form a matroid M(V,C) if and only if
the following conditions hold. For any A,B ∈ C and A �= B,

(M1) A �⊆ B.
(M2) If x ∈ A ∩ B, then there exists a C ∈ C such that

C ⊆ (A ∪ B) \ {x}.
We say that V is the ground set and C the set of circuits

of the matroid. A proper subset of any circuit is said to be
independent, while a set containing any circuit is said to
be dependent. With every matroid we define a nonnegative
integer-valued function called the rank function, rk : V → N
as

rk(X) = |I |, (7)

where I ⊆ X ⊆ V is a maximal independent subset of X. A
matroid is said to be (linearly) representable over a field F if
the ground set can be identified with the columns of a matrix M

(over F ) and the circuits with the minimal dependent columns
of the matrix. We say that M is a representation of the matroid.
In this paper we are only interested in finite fields. We can also
define matroids in terms of their bases, which are maximal
independent sets of V . A set V and B ⊆ 2V form a matroid
M(V,B) if and only if the following conditions hold.

(B1) B �= ∅.
(B2) If B1,B2 ∈ B such that x ∈ B1 \ B2, then there exists

a y ∈ B2 \ B1 such that (B1 \ x) ∪ {y} ∈ B.
Given a matroid M(V,B) we define its dual matroid

M(V,B)∗ as the matroid with ground set V and bases
B∗ = {V \ B | B ∈ B}; that is, M(V,B)∗ = M(V,B∗).

B. Secret-sharing schemes from matroids

We can associate a secret-sharing scheme with a given
matroid M(V,C); strictly speaking, it is the access structure
which is associated with the matroid. We assume that the
ground set of the matroid is given by V = {0,1, . . . , n − 1, n}.
We identify one of the elements of the ground set, say i ∈ V ,
as the dealer and then list all the circuits of M that contain i.
Let this be denoted

�i,min = {C | C ∪ {i} ∈ C}. (8)

We note that �i,min is minimal in the sense that there exist no
sets A,B ∈ �i,min such that A�B, as that would imply that the
circuit A ∪ {i}�B ∪ {i}, which is not possible for two circuits
by M1. Consider the access structure given by

�i = {A | V \ {i} ⊇ A ⊇ C for some C ∈ �i,min}. (9)

We can easily verify that �i is a monotonic and that its minimal
access structure is given by �i,min. Since any monotonic access
structure can be realized as a secret-sharing scheme, every
matroid defines an access structure. This result is stated in the
following fact (see [4]).

Fact 1. Every matroid M(V,C) induces an access structure
�i as defined in Eq. (9).

Please note that the preceding association is, in a sense,
nonconstructive: it does not specify how to derive the associ-
ated secret-sharing scheme; it merely states that there exists
a secret-sharing scheme that can realize the induced access
structure �i . Further, depending on which element of the
ground set of the matroid is identified as the dealer, we may
obtain many schemes with possibly different access structures
from the same matroid.

A natural question that we are faced with is how to make
this association constructive and determine the bounds on the
information rate of the resulting access structure. Brickell and
Davenport [9] showed that if the matroid is representable over
a finite field,2 then the matroid induces ideal secret-sharing
schemes and access structures.

However, if the matroid is not representable, then we can no
longer be certain whether the matroid induces an ideal secret-
sharing scheme. Seymour proved that there exist nonrepre-
sentable matroids which cannot induce an ideal secret-sharing
scheme [32], while Simonis and Ashikhmin [7] showed that
there exist nonrepresentable matroids, such as the non-Pappus
matroid, which induce ideal schemes. However, the latter
matroids—while not affording a linear representation—can be
multilinearly represented. Matroids which induce ideal access
structures are called secret-sharing-representable matroids
[31]. They may not be linearly representable.

2Strictly, Theorem 2 in Ref. [9] only requires the matroid to be
representable over a near field.
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C. Matroids from secret-sharing schemes

Given that we can obtain secret-sharing schemes from
matroids, we could ask if the converse is possible. As we
mentioned earlier, such a correspondence does not exist for
all secret-sharing schemes. We review some of the related
work in this context. The correspondence between the matroids
and secret-sharing schemes naturally implies that the access
structure is associated with the circuits of the matroid. This
association could involve the scheme explicitly. However, a
result due to Martin [5] (see also [12]) shows that we can
associate the access structure with a matroid independently
of the scheme used to realize that structure. This involves a
function, say f , defined on the space of access structures; f

maps an access structure to an ordered pair, which may or may
not be a matroid. If f (�) is a matroid, then we say that � is
matroid related. The minimal access structure will play a more
important role in this regard. As usual we denote the set of
participants P and the dealer D. Define the extended structure
�ext = {A ∪ {D} | for all A ∈ �min}. Further, let

J (A,B) = A ∪ B\
(⋂

C∈�ext
C⊆A∪B

C

)
(10)

C� =
{

minimal sets of J (A,B) for

all A,B ∈ �min and A �= B

}
. (11)

We let f (�) = (P ∪ {D},C�). If C� satisfies the axioms M1
and M2, then we associate � with the matroid M� , whose
ground set is P ∪ {D}, and the set of circuits is given by C�;
that is,

M� = M(P ∪ {D},C�). (12)

This definition of the matroid is in terms of the circuits that
can be formed from the ground set. We could always define a
structure from the secret-sharing scheme, or, equivalently, its
access structure, as in Eq. (12), but the resulting structure is
not necessarily a matroid. It is a matroid only under certain
conditions. Only when (P ∪ {D},C�) induce a matroid do we
say that � is matroidal or matroid related.

Classically an access structure induces a matroid only
when it satisfies certain conditions. Before we can state this
condition precisely we need the notion of minors. Let � be
an access structure; then we define two operations of deletion
and contraction, which we denote \ and /, respectively. Given
a set Z ⊆ P , we define

� \ Z = {A ⊆ P \ Z | A ∈ �}, (13)

�/Z = {A ⊆ P \ Z | A ∪ Z ∈ �}. (14)

An access structure �′ derived from � through a sequence
of deletions and contractions is called a minor of �. A result
of Seymour’s [11] shows that an access structure is matroid
related if it satisfies a forbidden minor relation.

Lemma 2 [11]. An access structure � ⊆ 2P is matroid
related if and only if it does not have the following minors.

(a) �a = {{1,2},{2,3},{3,4}}.
(b) �b = {1,2},{1,3},{1,4},{2,3}}.
(c) �c = {{1,2},{1,3},{2,3,4}}.
(d) �d = {{1, . . . ,s},{1,s + 1}, . . . ,{s,s + 1}}, where P =

{1, . . . ,4} except in d, where P = {1, . . . s,s + 1} and s � 3.

Matroidal

Classical access structures

Ideal

FIG. 1. Relation among ideal, matroidal, and general classical
access structures.

Please note that in the preceding result, the minimal access
structures are given rather than the complete access structure.
Seymour originally stated this result in terms of matroid
ports. The reformulation we have given here in terms of the
access structures is due to Martı́-Farré and Padró [31]. This
result together with Lemma 1 immediately provides us with a
criterion as to which quantum access structures can be induced
by matroids.

Self-orthogonality, however, is not a property inherited by
minors of access structures. For instance, contraction does not
always preserve the self-orthogonality of the access structures.
Consider the following (minimal) access structure: � =
{{1,2,3},{2,3,4},{3,4,5}}. Then �/3 = {{1,2},{2,4},{4,5}}. In
this case we have two disjoint authorized sets; such an access
structure cannot be realized by a quantum-secret-sharing
scheme, as it would lead to a violation of the no-cloning
theorem. Therefore, it is not possible to determine a result
similar to Lemma 2 for self-orthogonal access structures, that
is, a finite list of forbidden minors for access structures that
are self-orthogonal.

Brickell and Davenport [9, Theorem 1] showed that
every classical ideal access structure induces a matroid. In
Figs. 1 and 2 we summarize the relation among permissible
access structures, matroidal access structures, and ideal access
structures for classical schemes and quantum schemes. We
do not know if every access structure that is realized by
an ideal quantum-secret-sharing scheme induces a matroid.
For this reason, in Fig. 2, the set of ideal quantum access
structures is depicted as not being entirely in the set of

Quantum access structures

Matroidal

Ideal

FIG. 2. Relation among ideal, matroidal, and general quantum
access structures. It is possible that all ideal quantum access structures
are also matroidal.
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matroidal access structures, although we caution that it is
possible that all ideal quantum access structures are also
matrodial.

III. RELATING MATROIDS AND QUANTUM SECRET
SHARING

A. Matroidal quantum-secret-sharing schemes

In this section we present the central result of our paper,
Theorem 4. It shows that a class of matroids induces ideal
pure-state quantum-secret-sharing schemes. First, we need the
following preliminaries. We say a matroid is self-dual if it is
isomorphic to its dual matroid. If it is equal to its dual matroid,
then we say it is an identically self-dual (ISD) matroid.

Fact 2. Let �i and �d
i be the access structures induced by a

matroid M(V,C) and its dual matroid M∗ by treating the ith
element as the dealer. Then we have

�d
i = �∗

i . (15)

Fact 2 was stated in [4]. For an identically self-dual matroid,
we have �i = �d

i ; therefore, together with Lemma 1, and the
fact that every self-dual access structure can be realized as
a pure-state scheme [15, Theorem 8], we have the following
result, stated explicitly due to its relevance for us.

Corollary 3. An identically self-dual matroid M induces a
pure-state quantum-secret-sharing scheme.

However, the preceding result does not give us a method to
construct a quantum-secret-sharing scheme from the matroid,
nor does it tell us if the scheme is ideal. The following theorem
gives the general procedure to transform a representable
identically self-dual matroid into a quantum-secret-sharing
scheme. We denote a finite field with q elements as Fq .
Following standard notation, we use [n,k,d]q to denote a
classical code over Fq and [[n,k,d]]q to denote a quantum
code over Fq . If C is a code, we denote a generator matrix of
C by GC . The code obtained by deleting the ith coordinate of C

is called a punctured code of C and denoted ρi(C). Suppose we
consider the subcode of C with the ith coordinate 0; then the
code obtained by puncturing the ith coordinate of the subcode
is called a shortening of C and denoted σi(C). If C is an
[n,k,d]q code, then σi(C) is an [n − 1,k − 1,d]q code, while
ρi(C) is an [n − 1,k,d − 1]q code. We have the following
useful relations between the punctured and shortened codes
and their duals [33, Theorem 1.5.7]:

σi(C) ⊂ ρi(C) and σi(C)⊥ = ρi(C
⊥). (16)

We also have ρi(C)⊥ ⊂ σi(C)⊥.
If x ∈ Fn

q , then we denote the support of x as supp(x) =
{i | xi �= 0}. A codeword x in C is said to be a minimal support
element if there exists no nonzero codeword y in C such
that supp(y)�supp(x). If, in addition, its leftmost nonzero
component is 1, then it is said to be a minimal codeword.
Minimal codewords were introduced by Massey [6]. They
facilitate the study of classical secret-sharing schemes, espe-
cially in characterizing the access structures. We now give
the quantum-secret-sharing schemes that realize the access
structures induced by matroids. These schemes assume that
the domain of the secret is Fq where q = pm and p is the
characteristic of the finite field. In other words, we are sharing

a qudit whose state space is the q-dimensional complex vector
space Cq . Let B = {|x〉 | x ∈ Fq} be an orthonormal basis of
Cq . The generalized Pauli operators on a qudit are given by

X(a)|x〉 = |x + a〉 and Z(b)|x〉 = ej2π/ptr(bx)|x〉,
where tr(x) = ∑m−1

i=0 xpi

. A generalized Pauli operator on n

qudits is of the form

ej2πl/pX(a1)Z(b1) ⊗ X(a2)Z(b2) ⊗ · · · ⊗ X(an)Z(bn),

where l ∈ Fp. We denote this compactly as ej2πl/pX(a)Z(b)
and its representation over F2n

q is given by (a1, . . . , an |
b1, . . . , bn) = (a | b). It suffices for now to recall that an
[[n,k]]q CSS code encoding k qudits into n qudits can be
defined by a classical code over F2n

q which has a generator
matrix of the form

G =
[
G1 0

0 G2

]
,

where G1G
t
2 = 0, G1 ∈ F s×n

q , and G2 ∈ F (n−k−s)×n
q . We call

G the stabilizer matrix of the quantum code or, simply,
the stabilizer. For the case where k = 1, we call a pair of
elements X = X(a)Z(b) and Z = X(c)Z(d), or, equivalently,
their representations (a | b) and (c | d), the encoded or logical
operators of the code if a · d − b · c = 1 and G1b

t = G1d
t =

0 and G2a
t = G2c

t = 0. We note that other choices are
possible for the encoded operators. For further details on
nonbinary stabilizer codes we refer the reader to [34] and [35];
for quantum circuits over a nonbinary alphabet, to [36].

Theorem 4. Let M(V,C) be an identically self-dual matroid
representable over a finite field Fq , where V = {0,1, . . . , n −
1, n}. Suppose that C ⊆ Fn+1

q such that the generator matrix
of C is a representation of M. Let

GC =
[

1 g

0 Gσ0(C)

]
and Gρ0(C) =

[
g

Gσ0(C)

]
. (17)

Then there exists an ideal pure-state quantum-secret-sharing
scheme � on P = {1, . . . ,n} whose access structure �0 and
minimal access structure �0, min are defined by Eqs. (9) and
(8), respectively. The encoding for � is determined by the
stabilizer code, with the stabilizer matrix given by

S =
[
Gσ0(C) 0

0 Gρ0(C)⊥

]
. (18)

Given an authorized set A, the reconstruction procedure
(involving a possible renumbering of the shares so that shares
in A correspond to the first |A| parties) is the transformation on
S such that the encoded operators for the transformed stabilizer
code are X

′ = X(1) ⊗ I⊗n−1 and Z
′ = Z(1) ⊗ I⊗n−1.

Proof. The proof of Theorem 4 is structured as follows.
Since � relies on the encoding of the stabilizer code derived
from S, we first show that S defines a stabilizer code and
identify certain properties of the codes C and C⊥ essential
to recovering the secret. Then we show that if the secrets
are encoded using the stabilizer encoding, then an element
A ∈ �0, min does correspond to a minimal authorized set by
explicitly reconstructing the secret with the shares in A

and proving that no proper subset of A can reconstruct the
secret.
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Encoding the secret: We can easily check that the matrix
given in Eq. (18) does define a stabilizer code. Assuming
that C is an [n + 1,k,d]q code, we see that σ0(C) is an
[n,k − 1,d]q code, while ρ0(C) is an [n,k,d − 1]q code
with σ0(C) ⊂ ρ0(C). Therefore we have ρ0(C)⊥ ⊂ σ0(C)⊥,
ensuring the orthogonality of σ0(C) and ρ0(C)⊥ in Eq. (18).
The dimension of S is given by k − 1 + n − k = n − 1. Thus
S defines an [[n,1]]q quantum code, Q.

Since M(V,C) is an identically self-dual matroid, both C

and C⊥ represent M(V,C). Therefore, g �= 0; otherwise the
zeroth column would be all zero in C⊥, which would mean
that {0} is a circuit, while from C, we would conclude that {0}
is independent and not a circuit: a contradiction. Furthermore,
without loss of generality we can choose (1 | g) to be a minimal
codeword c in C.3

The mapping for the secret-sharing scheme is given as
follows up to a normalization factor:

|s〉 �→
∑

x∈σ0(C)

|sg + x〉, where s ∈ Fq . (19)

Encoding of an arbitrary secret state follows by linearity of
the encoding map. The encoded X operator for the quantum
code is given by X = ⊗n

i=1X(gi) or, equivalently (g | 0), its
representation over F2n

q .
Recovering the secret: Let A ∈ �0, min; then A ∪ {0} ∈ C

and there exists a minimal codeword c′ ∈ C⊥ such that
supp(c′) = A ∪ {0} and c′

0 = 1. Because M(V,C) is an identi-
cally self-dual matroid, we know that there exists a codeword
c ∈ C such that supp(c) = supp(c′). We can choose c0 = 1
since C is a linear code. Then we have ρ0(c) �∈ σ0(C). Further,
both ρ0(c) and g are in the same coset of σ0(C) in ρ0(C). This
holds because the cosets of σ0(C) in ρ0(C) are in one-to-one
correspondence with the cosets of [0 | σ0(C)] in C. The various
coset representatives are given by (α | αg), α ∈ Fq . Two coset
representatives r,r ′ represent the same coset if and only if
r0 = r ′

0. Therefore all the codewords c, with c0 = 1 are in the
same coset as (1 | g). From this it follows that ρ0(c) is in the
same coset as (g). Therefore, the state |s〉 might as well be
given by

|s〉 �→
∑

x∈σ0(C)

| s · ρ0(c) + x〉. (20)

Denote the columns of Gσ0(C) by si , where 1 � i � n. Since
c′ ∈ C⊥, we have

GC(c′)t =
[

1 c1 c2 . . . cn

0 s1 . . . sn

] ⎡
⎢⎢⎣

1
c′

1
...
c′
n

⎤
⎥⎥⎦ = 0.

3If (1 | g) is not minimal, then there exists some codeword (1 | g′) or
(0 | a) such that its support is strictly contained in supp(1 | g). If
supp(0 | a) ⊂ supp(1 | g), then we can find a codeword (1 | g′), from
a linear combination of (1 | g) and (0 | a), such that supp(1 | g′) ⊂
supp(1 | g) and supp(0 | a) �⊂ supp(1 | g′). In either case there is a
codeword of the form (1 | g′) whose support is strictly smaller than
supp(1 | g). If (1 | g′) is minimal, we are done, or we can repeat this
process until we find one; the process will terminate in a finite number
of steps, as n is finite.

This equation can also be written as

[
c1 c2 . . . cn

s1 . . . sn

] ⎡
⎢⎣

−c′
1

...
−c′

n

⎤
⎥⎦ =

[
1
0

]
.

In other words, there exists a linear combination of the columns
in Gσ0(C) such that∑

i∈supp[ρ0(c′)]

cic
′
i = −1 and

∑
i∈supp[ρ0(c′)]

c′
i si = 0. (21)

Now let us rewrite the stabilizer and the encoded X operator
as follows:

[
X

S

]
=

⎡
⎣ ρ0(c) 0

Gσ0(C) 0
0 Gρ0(C)⊥

⎤
⎦ ,

=
⎡
⎣ c1 · · · cl 0 · · · 0 0

s1 · · · sn 0
0 r1 · · · rn

⎤
⎦ ,

where, without loss of generality, we can assume that ρ0(c′)
and therefore ρ0(c) have support in the first l columns only
(that is, ci �= 0 for 1 � i � l) and that ci = 0 for i > l, where
1 � l � n. This amounts to a renumbering of the shares
so that the shares in A are the first |A| shares. Note that
l � 1 because we must have c · c′ = 0 and l = 0 implies that
(1 | 0) · (1 | 0) = 0, which is clearly not possible.

Let us transform the first column of S per Eq. (21); that is,
s1 �→ −∑

i∈supp[ρ0(c′)] c
′
i si . For binary schemes this involves

applying controlled-NOT (CNOT) gates from supp[ρ0(c′)] \ {1}
to the qudit {1} (as the target qudit). For nonbinary
schemes, we have to use the generalized CNOT gates
(called ADD gates in [36]) along with appropriately
scaling by c′

i .
4 More concretely, after scaling the first

qudit by c′
1, we implement a circuit of the form

Si −ci • −1/ci

S1

for each i ∈ supp[ρ0(c′)] \ {1}, where Si is the ith qudit. Then
S and X are transformed as⎡

⎣ 1 c2 · · · cl 0 · · · 0 0
0 s2 · · · sn 0

0 r1 r̃2 · · · r̃l rl+1 · · · rn

⎤
⎦ .

Therein, the columns r2 to rl are transformed in the Z part,
while only the first column is transformed in the X part
(see Lemma 2 in [36]). Now let us transform the encoded
X operator to the operator given by X

′ = X(1) ⊗ I⊗n−1,
which acts only on the first qudit. This can be achieved by
(generalized) CNOT gates applied from qudit {1} to each of the

4The ADD gate generalizes the CNOT gate and is defined as
ADDi,j = ∑

x,y∈Fq
|x〉i |x + y〉j 〈y|j 〈x|i . Scaling is implemented via

the multiplier gate, which is defined as Mγ = ∑
x∈Fq

|γ x〉〈x| for
γ ∈ F×

q ; see [36] for additional details.
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qudits in supp[ρ0(c′)] \ {1}. This time qudit {1} is the control
qudit. This gives us

⎡
⎢⎣

1 0 0

0 s̃2 · · · s̃l sl+1 · · · sn 0

0 0 r̃2 · · · r̃l rl+1 · · · rn

⎤
⎥⎦ ,

which is in the form

⎡
⎣ 1 0 0

0 S̃X 0
0 S̃Z

⎤
⎦ .

The column r̃1 has to become 0 because the stabilizer must
commute with the encoded X operator, now given by X

′ =
X(1) ⊗ I⊗n−1. [The encoded Z operator is now given by Z

′ =
Z(1) ⊗ I⊗n−1, since it clearly commutes with the elements
of the transformed stabilizer but not with X

′
.] Further, the

encoded secret has now been transformed as∑
x∈S̃X

|s〉|x〉 = |s〉
∑
x∈S̃X

|x〉.

As can be seen, the secret is completely disentangled from the
rest of the qubits. Furthermore, in all these transformations
we operated only on the qudits in the support of the minimal
codeword. Thus the elements of �0, min are authorized sets.

Completeness of �0: By Fact 2, the access structure �0

is self-dual, therefore |�0| = 2n−1. But the complement of
every one of these authorized sets is an unauthorized set;
otherwise we would violate the no-cloning theorem. Together
these sets exhaust all the possible subsets of {1, . . . , n}.
Thus there are no more authorized sets outside the ones
given in �0 and the quantum access structure is completely
defined by �0.

Minimality of �0, min: We now claim that �0, min does define
the minimal access structure of the quantum-secret-sharing
scheme. Suppose A ∈ �0, min is not a minimal authorized set
for �. Then there exists a B�A that is authorized. Since �0

contains all the authorized sets of �, it follows that B ∈ �0.
From Eqs. (8) and (9) , we see that �0, min is the minimal access
structure of �0, therefore there exists some element D ∈ �0, min

such that D ⊆ B�A. But �0, min cannot contain sets D,A such
that D�A. Hence all the sets in �0, min are minimal authorized
sets of �.

Finally, the purity of � follows from the explicit encoding
procedure given. That � is ideal follows from the fact that
each share has the same dimension as the secret.

We note that the choice of which element in the matroid
is identified with the dealer is arbitrary. In Theorem 4, for
simplicity we have assumed that the first element is the
dealer. Further, we need the representation of the matroid
before we can use it to construct the scheme. It is still open
if every identically self-dual matroid can be realized as a
self-dual code [4]. However, every self-dual code induces
a identically self-dual matroid. Consequently, we have the
following corollary, which gives us many efficient pure-state
quantum-secret-sharing schemes.

Corollary 5. Let C ⊆ Fn
q be an [n + 1,k,d]q code such that

C⊥ = C, with generator matrix GC given as

GC =
[

1 g

0 Gσ0(C)

]
and Gρ0(C) =

[
g

Gσ0(C)

]
. (22)

Then there exists an ideal pure-state quantum-secret-sharing
scheme � on n parties, whose minimal access structure is

�0, min =
{

supp(c) \ {0}
∣∣∣∣ c is a minimal codeword
of C with c0 = 1

}
.

The encoding for � is determined by the stabilizer code, with
the stabilizer matrix given by

S =
[
Gσ0(C) 0

0 Gρ0(C)⊥

]
. (23)

The encoding for a state |s〉, where s ∈ Fq , is given as

|s〉 �→
∑

x∈σ0(C)

|s · g + x〉. (24)

The reconstruction procedure for an authorized set A of �

(involving a possible renumbering of the shares so that shares
in A correspond to the first |A| parties) is the transformation on
S such that the encoded operators for the transformed stabilizer
are X

′ = X(1) ⊗ I⊗n−1 and Z
′ = Z(1) ⊗ I⊗n−1.

B. An example

We now give an example to illustrate the construction. Let
us consider the extended Hamming code given by the following
generator matrix.

GC =

⎡
⎢⎢⎣

1 1 1 1 1 1 1 1

0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 1
0 0 0 1 1 1 1 0

⎤
⎥⎥⎦ .

We can check that C is self-dual. The punctured code ρ0(C) and
the shortened code σ0(C) are given by the following generator
matrices.

Gρ0(C) =

⎡
⎢⎣

1 1 1 1 1 1 1
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 1 0

⎤
⎥⎦ .

Gσ0(C) =
⎡
⎣ 1 0 0 0 1 1 1

0 1 0 1 0 1 1
0 0 1 1 1 1 0

⎤
⎦ .

Now let us form a (CSS) stabilizer code with a stabilizer matrix
as follows.

S =
[

Gσ0(C) 0

0 ρ0(C)⊥

]
.

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 0 1 1 1 1 0

1 0 0 0 1 1 1
0 0 1 0 1 0 1 1

0 0 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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For this stabilizer code the encoding for |0〉 and |1〉 is given as
follows:

|0〉 �→ |0000000〉 + |1000111〉 + |0101011〉 + |0011110〉
+ |1101100〉 + |1011001〉 + |0110101〉 + |1110010〉,

|1〉 �→ |1111111〉 + |0111000〉 + |1010100〉 + |1100001〉
+ |0010011〉 + |0100110〉 + |1001010〉 + |0001101〉.

Observe that |s〉 �→ ∑
c∈σ0(C) |s · X + c〉, where X is in

σ0(C)⊥ \ σ0(C). Now consider a minimal codeword c in C⊥
such that c0 = 1. One such codeword is c = (1,1,1,0,0,0,0,1).
Observe that (1,1,0,0,0,0,1 | 0), that is, X1X2X7 is an encoded
operator for the stabilizer code. The support of c is given
by {0,1,2,7}. The linear combination of the columns in the
support of ρ0(c) gives us (1,0,0,0)t . Let us now transform
S, so that columns 2 and 7 are added to the first column
in S. We can achieve this if we apply a CNOT gate from
qubit 2 to 1 (i.e., the target qubit is 1), followed by a
CNOT gate from qubit 7 to qubit 1. This transforms the
stabilizer as

S �→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1

0 1 0 1 0 1 1 0
0 0 1 1 1 1 0

1 1 0 0 1 1 0

0 0 1 0 1 0 1 1

0 0 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The encoded operator (1,1,0,0,0,0,1 | 0) maps to
(1,1,0,0,0,0,1 | 0). We now transform the encoded X

operator to (1,0,0,0,0,0,0 | 0). This can be achieved by a
CNOT gate from qubit 1 to qubit 2, followed by a CNOT

gate from qubit 1 to qubit 7. Then the stabilizer gets further
transformed as

S �→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1

0 1 0 1 0 1 1 0
0 0 1 1 1 1 0

0 1 0 0 1 1 0

0 0 1 0 1 0 1 1

0 0 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Observe that, this time, only the Z part of the stabi-
lizer is transformed. Now the encoded secret is in the

state

|s〉(|000000〉 + |000111〉 + |101011〉 + |011110〉
+ |101100〉 + |011001〉 + |110101〉 + |110010〉).

The secret is completely disentangled from the rest of the
shares. Therefore, supp(c) \ {0} forms an authorized set. The
rest of the shares cannot reconstruct or extract any information
from their shares because of the no-cloning theorem. Similarly,
any minimal code word in C⊥ with c0 = 1 defines an
authorized set for the scheme. Suppose that c is a minimal
code word with c0 = 0, then it must be in σ0(C), and any
other vector whose support is the same must be in S or outside
C(S), the centralizer of S. No such operator can reveal any
information about the encoded secret since they are detectable
errors of the stabilizer code, and by definition detectable errors
reveal nothing about the encoded information.

C. Discussion

The results in this section have important benefits.
Quantum-secret-sharing schemes for general access structures
were proposed by Gottesman [15] and Smith [28], based
on monotone span programs. These constructions are not
optimal in general. Our method gives optimal schemes with
information rate 1. However, not every ideal quantum-secret-
sharing scheme can be derived by Theorem 4. For instance, the
((3,5)) threshold scheme can be realized using the [[5,1,3]]
quantum code, but it cannot be realized by the method
proposed. Furthermore, the access structure of the ((3,5))
scheme induces a matroid. It would be worth investigating
to find out how such quantum schemes can be derived from
matroids. Another interesting question would be to derive
ideal quantum-secret-sharing schemes from nonrepresentable
identically self-dual matroids.
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