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Efficient quantum repeater based on deterministic Rydberg gates
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We propose an efficient quantum repeater architecture with mesoscopic atomic ensembles, where the Rydberg
blockade is employed for deterministic local entanglement generation, entanglement swapping, and entanglement
purification. Compared to a conventional atomic-ensemble-based quantum repeater, the entanglement distribution
rate is improved by up to two orders of magnitude with the help of the deterministic Rydberg gate. This quantum
repeater scheme is robust and fast, and thus opens up a way for practical long-distance quantum communication.
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I. INTRODUCTION

Quantum information can be transmitted directly over
distances above some hundred kilometers only at unpractically
low rates due to loss and decoherence. In order to remedy
this limitation, the concept of a quantum repeater has been
introduced [1], where quantum entanglement is distributed
over small distances, stored in quantum memories, purified,
and swapped in a nested architecture [2]. A quantum repeater
can in principle be implemented only with atomic ensembles
and linear optics [3]. However, despite significant progress
during the last years on both the theoretical [4–6] and
experimental side [7,8] (see [9,10] for recent reviews), the
entanglement distribution rate achievable in such an architec-
ture is still much too inefficient to be of practical interest,
even under ideal conditions. This is predominantly due to the
fact that linear optical methods only allow for a probabilistic
entanglement manipulation, posing severe limitations on the
overall success probability and, therefore, on the rate of
entanglement distribution.

In this paper, we introduce a deterministic quantum repeater
protocol using quantum gates for entanglement swapping
and purification. The quantum gates rely on the Rydberg
blockade effect in mesoscopic atomic ensembles [11] and the
remarkable recent advances in exploiting this effect for quan-
tum information processing [12–16]. Deterministic operation
provides an enhancement of two orders of magnitude in the rate
of entanglement distribution compared with the best quantum
repeater based on linear optics [5]. For realistic local errors
around 10−3–10−2, this quantum repeater architecture yields
a rate of about 10 ebits per s. We thus show that deterministic
quantum repeaters based on Rydberg gates open up an avenue
for high-rate, long-distance quantum communication.

Deterministic quantum gates based on trapped ions were
recently explored in [17] in the context of quantum repeaters.
However, this requires strong coupling between single ions
and high-finesse cavities, which is still challenging for current
technology. The use of Rydberg gates in quantum repeaters
was first proposed in [18]. In this protocol, the distribution
of entanglement at the fundamental repeater level is still
probabilistic as it is based on the absorption of photons which
are lost in the channel in most cases. The gate operation
therefore has to rely on postselection, just as the conventional
protocols based on linear optics [9]. In contrast, the quantum
repeater architecture introduced here is deterministic, does not

require strong coupling between atoms and light, and is robust
against path length fluctuations.

In our protocol, mesoscopic atomic ensembles of the size
of a few micrometers are exploited as a quantum memory. If
the atoms in such ensembles are laser excited to high-lying
Rydberg states, strong and long-range van der Waals or
dipole-dipole interactions give rise to the Rydberg blockade,
which prevents the excitation of more than one Rydberg atom
within a volume, which is smaller than the blockade radius
[11,16]. Based on the large nonlinearity associated with the
blockade effect, deterministic entangling quantum gates can be
performed between collective excited states in one or different
atomic ensembles by applying a series of collective and
single-atom laser pulses [12]. Our protocol starts with local and
deterministic entanglement generation in one atomic ensemble
with the help of a collective Rydberg gate. The entanglement
is then linked between neighboring sites by linear optical
methods, where two-photon interference is explored. Further
entanglement swapping and entanglement purification are
implemented based on Rydberg gates between two nearest-
memory atomic ensembles at one site. The protocol presented
here is improved in three respects compared with conventional
schemes: (i) local entanglement manipulation is performed
deterministically, (ii) the number of times required to convert
atomic states into photons is reduced to a minimum, and (iii)
the detection step in entanglement swapping and entanglement
purification can be performed with the help of field ionization,
thereby significantly increasing the detection efficiency.

II. BASIC PROTOCOL

We envision a setup with mesoscopic cold atomic ensem-
bles with a diameter of several microns. The relevant energy
levels are shown in Fig. 1(a) and comprise an electronic
ground-state manifold with five sublevels, |g〉, |s〉, |s ′〉, |t〉,
and |t ′〉, and two Rydberg states which we denote by |r〉 and
|r ′〉. Initially all the atoms are prepared in the ground state,
|g〉. We assume these sublevels can be addressed individually
and that atoms in the two Rydberg states experience strong
interactions.

In our scheme, we first generate a qubit-type entanglement
in one atomic ensemble, which can be done as follows [see
Fig. 1(a)]:

i. A collective π pulse (Rabi frequency �N ∝ √
N ) and a

single-atom π pulse are applied sequentially to create one
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FIG. 1. (Color online) Schematic view of the quantum repeater
protocol with mesoscopic atomic ensembles based on a Rydberg
gate, including local entanglement generation, entanglement linking,
entanglement swapping, and entanglement purification.

collective excitation, transferring |0〉 → |r〉 → |s〉, where
|0〉 = |g, . . . ,g〉, and |x〉 = 1√

N

∑N
i=1 |g, . . . ,g,xi,g, . . . ,g〉,

where x = r,r ′,s,t,s ′, or t ′ represents the collective state. In the
intermediate step, the Rydberg blockade prevents excitation of
more than one atom.

ii. We create a second collective excitation |t′〉 with the
same method.

iii. A single-atom π/2 pulse transfers |s〉 to (|s〉 + |r〉)/√2.

iv. A single-atom π pulse excites |t′〉 to |r′〉. Due to dipole
blockade, we obtain (|s〉|r′〉 + |r〉|t′〉)/√2.

v. Finally, we apply two single-atom π pulses to bring
|r′〉 to |s′〉, and |r〉 to |t〉, and obtain the desired Bell state
(|s〉|s′〉 + |t〉|t′〉)/√2.

In a second step, all pairs of nearest communication sites
are linked using methods from linear optics [4,5]: After the
generation of local entanglement at sites, say, A and B, light
pulses are read and applied to convert the collective excitations
in |s′〉 and |t′〉 into photons with different polarization (e.g., |H 〉
and |V 〉, respectively) such that the whole system is described
by (|sA〉|HA〉 + |tA〉|VA〉)(|sB〉|HB〉 + |tB〉|VB〉)/2. The two
photons from both sites are directed to the middle point and
detected in a Bell state analyzer composed of a polarizing
beam splitter and single-photon detectors [4], where two of
the Bell states, for example, (|HA〉|HB〉 ± |VA〉|VB〉)/√2, are
identified [see Fig. 1(b)]. Once a two-photon coincidence
count between the single-photon detectors (e.g., D1 and
D4) is registered, entanglement is generated between two
memory qubits at neighboring sites, described by |φ〉A,B =
(|sA〉|sB〉 + |tA〉|tB〉)/√2. This process is heralded, with a
success probability of p = 1

2η2
r η

2
pdη

2
att, where ηr is the retrieval

efficiency, ηpd is the photon detection efficiency, and ηatt =
e−L0/(2Latt) denotes the loss in the photonic channel where Latt

is the attenuation length. If no coincidence is registered, the
local entanglement generation and linking steps are repeated
until success is achieved.

Finally, after neighboring communication sites are linked,
we can connect them by entanglement swapping. Suppose
we have generated entanglement |φ〉ABu

and |φ〉BdC between

TABLE I. Truth table of the CNOT gate operation between two
ensembles located at the same communication site, required for
entanglement swapping. The steps involving the Rydberg blockade
mechanism are denoted by ⇒.

sBu
sBd

→rBu
sBd

⇒rBu
sBd

→rBu
sBd

⇒rBu
sBd

→sBu
sBd

sBu
tBd

→rBu
tBd

→rBu
tBd

⇒rBu
tBd

→rBu
tBd

→sBu
tBd

tBu
sBd

→tBu
sBd

→tBu
rBd

→tBu
tBd

→tBu
tBd

→tBu
tBd

tBu
tBd

→tBu
tBd

→tBu
tBd

→tBu
rBd

→tBu
sBd

→tBu
sBd

atomic ensembles A and Bu, and Bd and C, as shown in
Fig. 1(c). The two atomic ensembles at site B are placed close
to each other within the blockade radius, so that we can perform
a two-qubit gate between them. To implement entanglement
swapping, we first apply a controlled-NOT (CNOT) gate between
the memory qubits stored in atomic ensembles Bu and Bd ,
which can be done by a series of single-atom π pulses [19]:
(i) a π pulse excites |sBu

〉 to |rBu
〉, (ii) a π pulse brings |sBd

〉
to |rBd

〉, (iii) a π pulse transfers |rBd
〉 and |tBd

〉, (iv) a π pulse
transfers |rBd

〉 to |sBd
〉, and (v) a final π pulse returns |rBu

〉 to
|sBu

〉. The corresponding truth table is shown in Table I.
After applying the CNOT gate, we measure the mem-

ory qubits in the ensembles Bu and Bd in four states,
|+Bu

〉|sBd
〉, |−Bu

〉|sBd
〉, |+Bu

〉|tBd
〉, and |−Bu

〉|tBd
〉, where

|±Bu
〉 = (|sBu

〉 ± |tBu
〉)/√2, in order to project the memory

qubits at sites A and C into the desired entangled state. In
contrast to conventional schemes where the collective excita-
tions are converted into photons for the detection, we suggest
measuring the quantum state by transferring the excitation to a
Rydberg state, field-ionizing the atom, and detecting the ions.
Detection of single Rydberg atoms has been demonstrated in a
photon counting experiment with near-unity detection efficien-
cies ηd [20]. After the detection, the states are projected into
(|sA〉|sC〉 + |tA〉|tC〉)/√2, up to a local unitary transformation.

The communication distance can be extended further by
entanglement swapping. Since entanglement swapping is
deterministic, the entanglement distribution rate is similar to
that of a quantum repeater based on trapped ions [17]. For
L = 2nL0, the total time needed can be approximated by

Ttot ≈
n∏

i=0

αi

Tcc

p
≈

∏n
i=1 αi

2n−1c

3L

η2
r η

2
pde

−L/(2nLatt)
, (1)

where Tcc = L0
c

is the classical communication time with c the
light speed, p = 1

2η2
r η

2
pdη

2
t , and α0/p are the average of times

that must be repeated before entanglement is successfully
linked over the entire distance, with a numerical result of
α0 ≈ 3 for p � 1.1 The coefficients αi 	=0 > 1 denote the
average number of attempts needed to implement entangle-
ment swapping due to nonunity detection efficiency.

1We first randomly generate m numbers according to a Bernoulli
distribution with a success probability of p. We then generate m′

numbers according to a Bernoulli distribution, where m′ = m − k

with k the number of “1” events in the last step. This procedure is
repeated until finally m′ = 0. The average number of times needed
gives α0/p. The coefficients αi 	=0 are determined similarly.
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III. ERROR ANALYSIS AND PURIFICATION

Let us now take into account local manipulation errors,
which have been neglected in the discussion so far. The
intrinsic errors in local manipulation are mainly induced by
decay of the atoms when they are excited to Rydberg states, the
imperfect Rydberg blockade induced by finite dipole-dipole
shifts [19], and the imprecision of the collective pulses caused
by an uncertainty of the atom number N . The decay of
the Rydberg states causes decoherence errors proportional
to the Rydberg states’ decay rate γ and inversely propor-
tional to the Rabi frequency of the collective pulses �N

or single-atom pulses �s . The finite value of the Rydberg
interaction energy shift �dd (imperfect blockade) will cause
several kinds of errors. The first error is that two excitations
may be generated in the atomic ensembles and thus cause
losses. Second, the adiabatic elimination of the doubly excited
Rydberg states will cause an ac Stark shift on the single-atom
excitation states, thus causing dephasing errors. These errors
in the local entanglement generation step are of the order
�2

N,s/�
2
dd and can be estimated as

Eloc = 1 − Floc = 2
γπ

�N

+ γπ

�s

+ 4
�2

N

�2
dd

+ 2
�2

s

�2
dd

, (2)

with Floc the fidelity of the locally achieved entanglement. The
imprecision of the collective π pulses is on the order of 1/N

for an uncertainty of the atom numbers
√

N . For N > 100,
this error is less than 1% and can be safely neglected. In
Fig. 2(a), we plot the optimized local errors Eloc versus �dd

for τ = 1/(2πγ ) = 200 and 300 µs (and �N = �s). One can
see that the local error is only a few percent for a dipole shift
of �dd = 20–100 MHz.

Local imperfections are mainly decoherence, dephasing,
and loss errors. We can thus neglect spin-flip errors and
describe the local entanglement by a mixed entangled state

ρ = [1 − (p1 + p0)]ρ2 + p1ρ1 + p0ρ0, (3)

where ρ2 = Floc|φ+〉〈φ+| + (1 − Floc)|φ−〉〈φ−| with |φ±〉 =
(|sA〉|sB〉 ± |tA〉|tB〉)/√2; p1 ∼ (�N/�dd )2 and p0 ∼
(�s/�dd )2 are the small probabilities that erroneously gen-
erate a single excitation and vacuum contribution ρ1 and
ρ0, respectively, which are created due to double excitations
(imperfect Rydberg blockade).

After linking the neighboring sites, we obtain a density
matrix

ρ0 = [1 − O(p1)]ρ0
2 + O(p1)ρ1, (4)

up to the first order of O(p1), with a success probability of
p ≈ 1

2η2
r η

2
pde

−L0/Latt [1 − O(p1)], where ρ0
2 = F0|φ+〉〈φ+| +

(1 − F0)|φ−〉〈φ−| up to a local unitary transformation, with
F0 = F 2

loc + (1 − Floc)2. The errors in the photonic channel are
neglected since two-photon interference is used. The errors in
the subsequent entanglement swapping step are similar to those
of the local entanglement generation and can be estimated
using the average error of the CNOT gate,

ECNOT = 1 − FCNOT = 2γπ

�s

+ 3�2
s

2�2
dd

. (5)

Figure 2(a) shows the optimized swapping errors ECNOT versus
�dd for τ = 1/(2πγ ) = 200 and 300 µs. The entanglement

FIG. 2. (a) Average errors in local entanglement generation (gray)
and entanglement swapping (black) versus dipole-dipole shift. The
dashed and solid curves are for τ = 200 and 300 µs, respectively.
(b) Performance of the quantum repeater. The solid curve represents
the result without entanglement purification, which requires local
errors on the order of 10−3. The dashed and dot-dashed lines are the
results for Floc = FCNOT = 0.99 and 0.98, where active entanglement
purification is implemented twice and four times, respectively, when
the fidelity is no larger than 0.9. The final fidelity is higher than 0.94
and the probability of getting the entangled state is larger than 0.95
in both cases. The dotted line is the result of the best-known protocol
with atomic ensembles and linear optics proposed in [5].

swapping errors are smaller than for the generation of
local entanglement since no collective pulses with associated
generation of collective excitations are required.

After n-step entanglement swapping, the mixed entangled
state reads

ρn = [1 − O(p1)]ρn
2 + O(p1)ρ1, (6)

where ρn
2 = Fn|φ+〉〈φ+| + (1 − Fn)|φ−〉〈φ−|. The fidelity

can be approximated by Fn = [F 2
n−1 + (1 − Fn−1)2]FCNOT, for

FCNOT close to 1. Note that the probability of obtaining the two
excitations is independent of n, thanks to the use of qubit-type
entanglement and the detection of two excitations in each step
[4]. The success probability of each entanglement swapping
step is p ≈ [1 − O(2p1)]η2

d , where we have assumed for
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simplicity that the probability to obtain a double Rydberg
excitation during the entanglement swapping, (�s/�dd )2, is
on the order of O(p1).

The local errors will accumulate during the entanglement
connection [1]. A straightforward calculation shows that, for
n = 4 and Floc = FCNOT = 0.99, the final fidelity drops to
F4 = 0.69. Therefore, entanglement purification has to be per-
formed, which can be achieved by employing two CNOT gates
[21]. Assume we have generated two pairs of mixed entangled
states between Au and Cu, and Ad and Cd , described by ρi . We
first apply a π/2 Raman pulse coupling |s〉 and |t〉 to change
the two excitation component to ρi′

2 = Fi |φ+〉〈φ+| + (1 −
Fi)|ψ+〉〈ψ+| with |ψ+〉 = (|sAu,d

〉|tCu,d
〉 + |tAu,d

〉|sCu,d
〉)/√2.

We then perform two local CNOT gates with Au and Cu as
the control qubit and Ad and Cd as the target qubits, where
we have assumed the two atomic ensembles at one site are
located within the blockade radius. After the CNOT gates, we
measure the target qubits in ensembles Ad and Cd in the |s〉
and |t〉 basis. If both qubits are in the |s〉 or the |t〉 state, the
memory qubits in Au and Cu are kept, otherwise the results
are discarded. After entanglement purification, we obtain a
mixed state ρ

p

2 = Fp|φ+〉〈φ+| + (1 − Fp)|ψ+〉〈ψ+|, where
the leakage to other states is neglected for large values of
FCNOT, and the achieved fidelity can be estimated as Fp =

F 2
i

F 2
i +(1−Fi )2 F

2
CNOT. The success probability of purification is

p ≈ [F 2
i + (1 − Fi)2]η2

d . After entanglement purification, the
total density matrix can be described by

ρ = [
1 − O

(
p1/F

2
i

)]
ρ

p

2 + O
(
p1/F

2
i

)
ρ1, (7)

where we have assumed that the one excitation term only
contributes a false signal.

The main result of our work is illustrated in Fig. 2(b),
where the performance of the quantum repeater is plotted as
a function of the communication distance for n = 4, ηr =
ηpd = 0.9, ηd = 0.95, Latt = 22 km, and c = 2 × 105 km/s
in fibers. For comparison, we also show the performance
of the best-known atomic-ensemble-based repeater protocol
without purification [5]. It can be seen that the entanglement
distribution rate is enhanced by up to two orders of magnitude.
For L = 1000 km, the total time needed is on the order of a
few hundred milliseconds.

IV. IMPLEMENTATION

The presented quantum repeater can be implemented using
cold alkali metal atoms. Individual addressing of different
sublevels can be achieved by choosing suitable laser polar-
ization and applying a constant magnetic field. The atoms

may be trapped in a one-dimensional optical lattice generated
by two counterpropagating laser beams, where in each well a
mesoscopic atomic ensemble can be trapped and the size and
distance of the wells can be controlled by tuning the angle
between the trapping light fields [22].

In our protocol, we suggest the use of isotropic repulsive
van der Waals interactions by exciting the atoms to Rydberg to
s states with a principal quantum number n around 70. In this
case, the interaction energy between two atoms at a distance
of r can be approximated by V = −c1

n12

r6 + c′
1

n16

r8 [23], with
c1 < 0 and c′

1 > 0, where interactions proportional to 1/r10

are neglected. The interactions are repulsive for large r and
attractive for small r , yielding a critical distance rc where
the repulsive shift is maximal. We use rc to estimate the
minimum distance required to ensure repulsive interatomic
interactions, and we find, for Rb, c1 = −0.85 and c′

1 = 0.8,
and n = 70, a critical distance rc = 0.3 µm, corresponding
to a density of 1/(r3

c ) = 3.7 × 1013 cm−3. For a fixed density,
one is interested in maximizing the number N of atoms within
the blockade radius for high photon retrieval efficiencies and
uncertainty in the atom number. As illustrated in Fig. 2(a), an
interaction energy shift �dd > 20 MHz allows for local errors
of less than 2%. This yields a maximum Rydberg blockade
radius Rb ≈ (− c1n

12

�dd
)1/6; a more accurate calculation using

the interaction energy in [23] gives Rb < 6 µm for n = 70.
Thereby, a diameter of 2–3 µm is sufficient for achieving
high-fidelity local operations. [A density of 3 × 1013 cm−3 and
a volume of (2 µm)3 would allow for about N = 240 atoms per
ensemble.] With the help of a bad cavity, the retrieval efficiency
can be estimated as ηr = C

C+1 , where C = Nc2
r

24F

2πk2w2
0

with k

the wave number of the emitted photon and cr the transition
coefficient [24]. For a finesse of F = 100, cavity mode width
w0 = 5 µm, cr = 1

3 , and k = 2π/µm, we can obtain a high
retrieval efficiency of 0.91.

Finally, to implement long-distance quantum communi-
cation over 1000 km, the coherence times of the quantum
memory have to be on the order of a few hundred milliseconds.
This should be achievable for an atomic memory with cold
atoms, where a storage time of about 1 s for classical light has
been achieved [25].

Note added. We are aware of an independent and similar
work by Han et al. [26].
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