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Encoding many qubits in a rotor
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We propose a scheme for encoding many qubits in a single rotor, that is, a continuous and periodic degree of
freedom. A key feature of this scheme is its ability to manipulate and entangle the encoded qubits with a single
operation on the system. We also show, using quantum error-correcting codes, how to protect the qubits against
small errors in angular position and momentum which may affect the rotor. We then discuss the feasibility of this
scheme and suggest several candidates for its implementation. The proposed scheme is immediately generalizable
to qudits of any finite dimension.
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I. INTRODUCTION

Quantum information processing, quantum simulation, and
quantum communication require the individual manipulation
and the coupling of quantum bits (qubits). Early candidates
for qubits were two-dimensional physical systems, like the
polarization of a photon or the spin of an electron, in which
the state of the system directly represents the state of the
qubit. Later, higher dimensional systems like atoms have
been considered. There, a qubit is encoded in two energy
levels while the remaining dimensions are ignored [1]. Infinite
dimensional systems have been studied too. For instance, the
encoding of a single qubit (actually qudit, a d-dimensional
version of a qubit) in continuous variables and harmonic
oscillators has been described in [2] and [3]. Importantly, a
common feature of all these encodings is the use of a single
degree of freedom to encode a single qubit.

An interesting alternative is to use a single degree of
freedom to encode many qubits. Let us consider an infinite
dimensional system which can be decomposed into a qubit
subsystem and a system isomorphic to the original system
itself, a feature only possible for infinite dimensional systems.
Then the same decomposition can be repeated over and
over again to obtain as many qubits as desired. This is
the core idea of this article. We show how to encode N

qubits (qudits) in a rotor, that is, a single continuous and
periodic degree of freedom. The N qubits can be individually
manipulated and coupled. Remarkably, the advantage of this
approach is that a single unitary transformation acting on the
rotor can simultaneously rotate and entangle many qubits.
Limitations will, however, inevitably appear with the physical
implementation. Furthermore, an encoding is practicable only
if it can tolerate small errors affecting the physical system.
Therefore, we use the stabilizer formalism [4,5] to construct
qubits that are robust against small errors in angular position
and momentum. We then investigate practical approximations
of our scheme and finally suggest a few implementations.

In Sec. II we briefly describe a quantum mechanical rotor
and a qubit. We present in Sec. III a simple encoding to embed
many qubits in a single rotor. We also give the corresponding
universal set of quantum gates. In Sec. IV we provide a more
general quantum error-correcting code to protect many qubits
against small errors in angular position and momentum. It
turns out that the protected qubits require an unlimited amount

of energy. Thus we consider realistic approximations of the
unphysical encoded qubits in Sec. V. We then suggest in
Sec. VI possible implementations in quantum optics, atom
optics, and molecular physics. We briefly discuss the qudit
case in Sec. VII. We finally conclude in Sec. VIII.

II. DESCRIPTIONS OF A ROTOR AND A QUBIT

In quantum mechanics the angular momentum L for
rotation around a fixed axis is a self-adjoint operator with a
discrete and infinite spectrum. As we will see, this discreteness
represents a very natural basis to encode qubits.

We label the eigenstates of the operator L with an integer
� = 0, ±1, ±2, . . . as

L|�〉 = �|�〉. (1)

In this angular momentum basis {|�〉}, the orthogonality and
completeness relations take the simple form

〈�|�′〉 = δ�,�′ and
∞∑

�=−∞
|�〉〈�| = 1. (2)

We further define the Fourier transform basis {|θ〉} of {|�〉} as

|θ〉 =
∞∑

�=−∞
e−i�θ |�〉, (3)

so that the two bases are mutually unbiased, that is,

〈θ |�〉 = ei�θ . (4)

The angular position basis {|θ〉} is continuous and 2π periodic,
|θ + 2π〉 = |θ〉. Accordingly, we have

〈θ |θ ′〉 = 2πδ(2π)(θ − θ ′) and
∫

(2π)

dθ

2π
|θ〉〈θ | = 1, (5)

where δ(2π)(φ) is the 2π -periodic delta function defined
as

∑∞
k=−∞ δ(φ − 2πk) and the integration is over any 2π

interval.
Let us now consider the operator eiαL, with real α. Its action

on a ket |θ〉 reads

eiαL|θ〉 = |θ − α〉. (6)

The operator eiαL is therefore called the shift operator in
angular position. It follows from the fact that � is an integer
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that e2iπL = 1. We proceed to introduce V , the shift operator
in angular momentum. It is defined through its action on
{|�〉} as

V |�〉 = |� + 1〉. (7)

Note for completeness that

eiαL|�〉 = eiα�|�〉 and V |θ〉 = eiθ |θ〉. (8)

The two operators eiαL and V obey the Weyl commutation
relation

eiαLV = V eiαLeiα. (9)

This property together with e2iπL = 1 define the so-called
Weyl pair or Schwinger operators of a rotor. The notion of
a Weyl pair is closely related to the Heisenberg-Weyl and
generalized Pauli groups [6].

A quantum mechanical system is entirely characterized by
its Weyl pair. First, each Weyl pair fully defines the Hilbert
space of the system. Second, the Weyl pair is algebraically
complete, that is, any operator acting on the system can be
expressed in terms of these two operators only. This makes the
Weyl pair extremely useful for discussing the properties of a
quantum mechanical system [7,8].

As for the rotor we can introduce the Weyl pair (Z,X) of a
qubit. The operators Z and X are both unitary and Hermitian
and such that

Z2 = X2 = 1 and ZX = −XZ. (10)

By construction, Z and X are Fourier transforms of each other
and each is the shift operator on the eigenbasis of the other.

Let us clarify here an important issue related to qubit
encoding. For practical reasons, the involution property of the
qubit Weyl pair might be withdrawn leading to the definition
of a pseudoqubit. For example, one could only require Z2 and
X2 to equal the projection operator onto the qubit subspace as
seen in [2]. In this article, we focus our attention on genuine
qubits for which the Hilbert space is the tensor product of the
qubit space times the space for all other degrees of freedom.

III. FROM A ROTOR TO MANY QUBITS

For the sake of clarity we proceed in two steps. First,
we show how to encode a single qubit on the basis of
the angular momentum. This encoding can be schematically
summarized as rotor = qubit ⊗ rotor. Our mapping corre-
sponds to a splitting of the angular momentum space into
two isomorphic subspaces. One subspace corresponds to even
angular momenta while the second subspace is associated
with odd angular momenta. Such a decomposition is formally
explained below but can be intuitively understood in terms of
splitting the Fourier series of a 2π -periodic function into even
and odd parts. The splitting effectively provides a qubit while
each partial 2π -periodic Fourier series leads to a complete
π -periodic Fourier series, that is, a new rotor. Second, we
use the same procedure and this remarkable tensor product
structure to further split the remaining rotor. We can repeatedly
factorize the remaining rotor degree of freedom and so create
more and more qubit degrees of freedom. We shall now begin
with a single qubit.

TABLE I. A qubit and a residual rotor. In this simplest case,
the encoding corresponds to the parity of the angular momentum
eigenstate |�〉. The residual rotor is obtained by concatenating two
adjacent angular momentum eigenstates.

L . . . −4 −3 −2 −1 0 1 2 3 4 . . .

Z . . . 0 1 0 1 0 1 0 1 0 . . .

L1 . . . −2 −2 −1 −1 0 0 1 1 2 . . .

A. Encoding a qubit in a rotor

We want to encode a qubit subsystem in a rotor. Mathemat-
ically, we use the Weyl pair (eiαL,V ) of the rotor to define the
Weyl pair (Z,X) of a qubit. Specifically, we choose the two
unitary and Hermitian operators Z and X [9] as

Z = eiπL = (−1)L,
(11)

X = 1
2 [(1 + Z)V † + V (1 + Z)].

They obey the relation of (10) and hence they form the Weyl
pair of a qubit. Note, furthermore, that the trace of Z and the
trace of X vanish, as in the two-dimensional case. The action of
the operator Z is simple to understand as illustrated in Table I.
It only considers the parity of the eigenstate |�〉. The total
Hilbert space is split into two eigenspaces, one with eigenvalue
+1 corresponding to even angular momenta and one with
eigenvalue −1 for the odd angular momenta. Since the operator
Z is infinitely degenerate, at least another operator is necessary
to obtain a complete set of commuting operators (CSCO) of
the original rotor. Since two adjacent angular momenta are
already discriminated by Z, the second operator of the CSCO
can view them as identical. This can be done with the operator
L1 = �L/2�, where �x� denotes the floor function, that is,
the largest integer that does not exceed x. This is shown in
Table I. Here, we attach the index 1 to discriminate between
the original rotor and what will be found to be a residual
rotor. The two operators Z and L1 commute and one can write
� = p + 2��/2� where ��/2� is the eigenvalue of L1 and p

such that z = (−1)p where z is the eigenvalue of Z. Thus Z

and L1 form a CSCO of the original rotor and completely
specify the state of the system. We now have two alternative
bases for the Hilbert space of the original rotor, either the
eigenbasis {|�〉} of the operator L or the eigenbasis {|p,�1〉} of
the CSCO (Z,L1). It remains to identify these two independent
degrees of freedom and to make sure that their manipulation
does not affect the other degree of freedom. In other words,
first, we have to identify the two Weyl pairs of the two degrees
of freedom and, second, not only Z and L1 have to commute
but also their corresponding Weyl partners.

For the operator Z, the Weyl pair is that of a qubit. With
respect to the operator L1, one can substitute it with the
operator eiαL1 as they share the same eigenbasis. This suggests
that we consider the pair (eiαL1 ,V1), where V1 = V 2. The
commutation relation of these two unitary operators is

eiαL1V1 = V1e
iαL1eiα, (12)

and e2iπL1 = 1. They form the Weyl pair of a rotor. As
expected, this rotor is 2π periodic. Indeed, one can introduce
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the eigenvalue θ1 of V1 by V1|p,θ1〉 = eiθ1 |p,θ1〉, and verify
that

|0,θ1〉 = 1

2
(|θ〉 + |θ + π〉) = |0,θ1 + 2π〉,

(13)

|1,θ1〉 = eiθ

2
(|θ〉 − |θ + π〉) = |1,θ1 + 2π〉,

where θ = θ1/2. However, as noted earlier for the Fourier
series of a 2π -periodic function, the ket |θ〉 can be decomposed
as

|θ〉 = |0,θ1〉 + e−iθ1/2|1,θ1〉, (14)

where the kets |0,θ1〉 and |1,θ1〉 are π periodic in θ .
Finally, one can compute the four commutators [Z,eiαL1 ],

[Z,V1], [X,eiαL1 ], and [X,V1] and ascertain that they vanish.
Consequently, the rotor has been decomposed into a qubit
subsystem and another rotor. It is crucial to notice the tensor
product structure of this mapping which, as mentioned above,
can be cast as rotor = qubit ⊗ rotor. In mathematical terms
this translates as H � C2 ⊗ H, where H denotes the Hilbert
space of the rotor. Here the qubit is encoded as a subsystem
rather than as a subspace. The advantage of encoding in a
subspace or in a subsystem may appear when considering a
peculiar error model, a specific task to perform or, of course,
practical considerations.

Now we can write the logical qubit basis states as

|0,ψ0〉 =
∑
� even

α0�|�〉 and |1,ψ1〉 =
∑
� odd

α1�|�〉, (15)

where the coefficient α0l and α1l are complex numbers such
that

∑
� even |α0�|2 = ∑

� odd |α1�|2 = 1 but otherwise unre-
stricted. The ket is labeled with the parity of the eigenvalue
of the Z operator while ψ0 and ψ1 specify the state of the
residual rotor, here assumed to be in a pure state. There is a
freedom in the choice of the residual rotor states or equivalently
in the coefficients αi�, i = 0,1. This is a consequence of
the infinitely degenerate spectrum of the operator Z. We
will use this freedom to our advantage. More specifically,
we will exploit the degeneracy in two ways: first to encode
many qubits, second, to protect these qubits against errors in
the angular position and momentum. The encoding of many
qubits is investigated in the remainder of this section while
their protection against errors in realistic realizations will be
thoroughly studied in Sec. IV.

B. Encoding many qubits in a rotor

A consequence of the tensor product structure is to allow
the encoding of many more logical qubits. Indeed nothing
prevents us from exploiting the same encoding on the residual
rotor to obtain two qubits, then three, and even more. It should
be clear that the above encoding allows one, in principle,
to encode as many qubits as desired. The limitation will, of
course, come from the physical implementation as the more
qubits we encode, the larger the accessible angular momenta
must be.

We shall now pay due attention to the Weyl pairs of different
qubits. First, we add an index j , j = 1, . . . ,N , to the operators
Z and X to specify which qubit is considered. The encoding
of three qubits is exemplified in Table II. This new mapping

TABLE II. Encoding of three qubits in a rotor. Here, three qubits
are encoded by repeatedly factorizing the rotor degree of freedom.
The residual rotor is obtained by concatenating 23 adjacent angular
momentum eigenstates.

L . . . −4 −3 −2 −1 0 1 2 3 4 . . .

Z1 . . . 0 1 0 1 0 1 0 1 0 . . .

Z2 . . . 0 0 1 1 0 0 1 1 0 . . .

Z3 . . . 1 1 1 1 0 0 0 0 1 . . .

L3 . . . −1 −1 −1 −1 0 0 0 0 0 . . .

can be compared to the standard binary mapping recalled in
Table III. For the binary mapping, the encoding of the first qubit
is antisymmetric with respect to � = 0 while the encoding of
all the remaining qubits is symmetric with respect to � = 0.
This is in strong contrast with the new proposed mapping
which is invariant under translation of 2n angular momenta,
where n is the number of qubits. For example, the encoding
presented in Table II is invariant under translation of eight
angular momenta. By construction, we can write the respective
Weyl operators Zj and Xj for the j th qubit as

Zj = (−1)�L/2j−1�,
(16)

Xj = 1
2 [(1 + Zj )V †2j−1 + V 2j−1

(1 + Zj )].

The total Hilbert space is here again divided into two
eigenspaces, corresponding to even and odd values of
��/2j−1�, respectively. Evidently, the single qubit in Sec. III A
corresponds to the first qubit j = 1. Furthermore, the Weyl
pair of the residual rotor after encoding N qubits is given by
(eiα�L/2N �,V 2N

). To illustrate the mapping presented above,
let us explicitly write down the computational basis of the
two-qubit subspace:

|00,ψ00〉 =
∞∑

�=−∞
α00�|4�〉,

|01,ψ01〉 =
∞∑

�=−∞
α01�|1 + 4�〉,

(17)

|10,ψ10〉 =
∞∑

�=−∞
α10�|2 + 4�〉,

|11,ψ11〉 =
∞∑

�=−∞
α11�|3 + 4�〉,

with the proper normalization
∑∞

�=−∞ |αjk�|2 = 1, for
j,k = 0,1. As already mentioned, the freedom in the residual

TABLE III. Binary encoding of three qubits. This encoding differs
from the encoding presented in Table II.

L . . . −4 −3 −2 −1 0 1 2 3 4 . . .

Z1 . . . 1 1 1 1 0 0 0 0 0 . . .

Z2 . . . 0 1 0 1 0 1 0 1 0 . . .

Z3 . . . 0 1 1 0 0 0 1 1 0 . . .
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rotor states will be used to ensure protection against shifts in
angular position and momentum.

We finally complete the set of single qubit operations, which
can be constructed from Zj and Xj , with an entangling two-
qubit gate to obtain a universal set of quantum gates. We choose
the phase-shift gate R as the entangling two-qubit operation.
This unitary transformation can be simply expressed in the
{|�〉} basis as

Rjk =
∞∑

�=−∞

(
1 + (−1)�j

2
+ 1 − (−1)�j

2
(−1)�k

)
|�〉〈�|

= Rkj , (18)

where the indexes j and k denote the two qubits concerned by
the gate so that �j = ��/2j−1� and �k = ��/2k−1�.

IV. PROTECTION OF MANY QUBITS

The qubits encoded in this manner are vulnerable to errors.
In the case of a single qubit, the logical qubits |0〉 and |1〉 are
encoded in even angular momenta and odd angular momenta,
respectively. Therefore, a state |0〉 affected by a unit shift
� → � + 1 will not be distinguishable from an unaffected state
|1〉, as can be seen for Eq. (15). Distinguishability between
|0〉 and |1〉 is then lost and it is thus necessary to provide an
encoding which protects the logical qubits against small errors.

In a very enlightening presentation [2], Gottesman et al.
use the stabilizer formalism to protect a qudit (subspace)
embedded in a infinite-dimensional space. Here, we exploit
the same technique to protect not only one but many qubits
(subsystems). Actually we will show in Sec. VII that our results
also apply to qudits. The technique used in [2] slightly differs
from the common use of the stabilizer formalism where k

logical qubits are encoded in K � k physical qubits [4,10].
But the basic ideas are the same.

In a nutshell the stabilizer formalism works as follows. We
consider a set of orthogonal states that we want to protect
against errors and call this subspace the code space. Within
this code space, each state or code word is identified by the
eigenvalue of a suitable operator. Errors are represented by
unitary transformations that move the code space to another
subspace. The different subspaces corresponding to different
errors have to be distinguishable to allow correction. There-
fore, they must be orthogonal. A simple solution to impose
this orthogonality is to associate each subspace with a different
eigenvalue of a suitably chosen set of unitary transformations.
Eigenspaces are orthogonal and can therefore be perfectly
distinguished. This chosen set of unitary transformations is
the so-called stabilizer. By convention we identify the code
space as the +1 eigenspace of the stabilizer. The errors will
then move the code words from the +1 eigenspace to another,
therefore orthogonal, eigenspace of the stabilizer. In this ideal
case the error is identified by reading out the eigenvalues of
the stabilizer. Correction is then performed by applying the
inverse operator of the identified error. The +1 eigenspace is
stabilized and contains our protected states.

Here we are interested in two types of errors: continuous
drifts for the angular position and discrete shifts for the angular

momentum. They can be written in terms of the shift operators
as

Eθ (ε) = eiεL and EL(e) = V e, (19)

where ε is real and e is an integer. To detect these two types of
errors, two commuting unitary transformations are required.
They also take the form of shift operators. An n-dimensional
subspace of a rotor can be protected against shifts in angular
momentum and angular position using the stabilizer [2]

Sθ = V m and SL = e2iπ n
m

L, (20)

where m is a free parameter related to the maximum amount of
correctable errors. Sθ will be used to read off the amplitude ε

of the error in θ , while SL will be used to read off the amplitude
e of the error in L. The above stabilizer can correct drifts in
angular position up to |ε| < π/m and shifts in momentum up
to |e| < m/(2n). For simplicity we now define 	θ > 0 and
	L > 0 as the maximal correctable error in θ and L. For a
fixed n, an increase in m will lead to an increase of 	L but
a decrease of 	θ . A tradeoff follows, depending on which
type of error is more critical for a given implementation or
application. The stabilized space is composed of n code words
or protected states:

|k[n],1,1〉 = √
m

∞∑
�=−∞

|m(k/n + �)〉, (21)

where k is an integer. Note that the factor
√

m is for
convenience. We use the label k[n] to emphasize that only
k modulo n is relevant as can be seen from the above
definition. The label 1,1 refers to the stabilizer’s eigenvalues.
Let us also note that m/n has to be an integer to ensure the
existence of an n-dimensional stabilized space. Otherwise,
only the state |0[n],1,1〉 = √

m
∑∞

�=−∞ |m�〉 among the n

states |k[n],1,1〉 is well defined. We denote this integer by
r . In the angular momentum basis, the code words are equally
weighted superpositions of shifted states. The code words take
the form of a finite sum in the angular position basis,

|k[n],1,1〉 = 1√
m

m−1∑
j=0

e−2iπkj/n

∣∣∣∣θ = 2π

m
j

〉
, (22)

where the phases are powers of the nth root of unity.
Since we want to protect N qubits, we have to identify the

n-dimensional protected subsystem with the space spanned by
the N qubits. Technically, not only the dimensions have to
match (i.e., n = 2N ), but also the qubit operators Zj and Xj

have to commute with the other qubits’ operators (Zk and Xk ,
k �= j ) as well as with the stabilizer. A suitable encoding is
provided by the following pairs:

Zj = (−1)�L/(2j−1r)�,
(23)

Xj = 1
2 [(1 + Zj )V †2j−1r + V 2j−1r (1 + Zj )].

The CSCO of the original rotor now is (Z1, . . . ,ZN,SL,Sθ ).
To prove it, let us consider an alternative writing of the basis
{|�〉}.

The eigenvalues of Zj are of the form (−1)pj where
pj = 0,1. The eigenvalues of SL are of the form e2iπq/r where
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TABLE IV. CSCO for two qubits and m = 6. Here, the quantum
numbers p1, p2, q, and ��/m� of the operators Z1, Z2, SL, and �L/m�
uniquely specify the angular momentum eigenstate |�〉.

L . . . 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Z1 . . . 0 0 0 1 1 1 0 0 0 1 1 1 0 . . .

Z2 . . . 0 0 0 0 0 0 1 1 1 1 1 1 0 . . .

SL . . . 0 1 2 0 1 2 0 1 2 0 1 2 0 . . .

�L/m� . . . 0 0 0 0 0 0 0 0 0 0 0 0 1 . . .

q = 0, . . . , r − 1 while the eigenvalues of �L/m� are ��/m�.
The identity

� =
N∑

j=1

pj 2j−1r + q + ��/m�m, (24)

therefore, provides a relabeling of the kets |�〉 in terms of
the quantum numbers pj , q, and ��/m�. It follows that the
operators (Z1, . . . ,ZN,SL,Sθ ) commute and form a CSCO
of the original rotor. Since V m and �L/m� span the same
subspace, the set (Z1, . . . ,ZN,SL,Sθ ) is a CSCO of the rotor,
too.

An example of such CSCO is illustrated in Table IV for
two qubits and m = 6. For an easier reading of this table, the
eigenvalues of the operators Zj and SL are labeled by the
powers pj and q instead of the eigenvalues themselves. For
instance the eigenvalues of SL for two qubits and m = 6 are
1,e2iπ/3,e−2iπ/3 but we chose to label them as 0,1,2.

One must not fail to note that (eiα�L/m�,V m) constitutes
the Weyl pair of a rotor so that the last degree of freedom
corresponds to a residual rotor. Moreover, Xj commute with
eiα�L/m� and V m, with the other qubits’ Weyl pairs as well as
with SL, so that we can finally write

rotor = qubits ⊗ (error in �) ⊗ rotor. (25)

As a result, we can still encode more qubits from the residual
rotor and the situation is similar to that of Sec. III. In principle
we could also look at the Weyl pair associated with SL and
name the corresponding degree of freedom, however, this is
irrelevant to the present study.

The encoding of Eq. (23) allows error correction in angular
momentum up to 	L < r/2. Thus, we can choose to define
r from the maximal number of correctable errors, that is,
r = 2	L + 1. An even r is also conceivable, however, the
resulting encoding would be less compact and will there-
fore require one to access greater angular momenta. The
simple encoding provided in Sec. III is just a special case
where 	L = 0 (r = 1) and would correspond to the stabilizer
element SL = 1 (m = n). The general protected qubits are then
given by

|k[n],1,1〉 =
√

2N (2	L + 1)
∞∑

�=−∞
|(2	L + 1)(k + 2N�)〉.

(26)

Since the protected states are N protected qubits, it is useful
to label them with the eigenvalues of the operators Zj . In
the following we drop the eigenvalues of the stabilizer to
lighten the notation. Let us illustrate what we have learned

with three examples. First, we can consider a single qubit with
no protection against shift in the angular momentum, that is,
N = 1,	L = 0,	θ < π/2. The computational basis is then
given by

|0〉 =
√

2
∞∑

�=−∞
|2�〉,

(27)

|1〉 =
√

2
∞∑

�=−∞
|1 + 2�〉.

Equivalently, these states can be written in the angular position
basis,

|0〉 = 1√
2

(|θ = 0〉 + |θ = π〉),
(28)

|1〉 = 1√
2

(|θ = 0〉 − |θ = π〉).

For a single qubit with protection against a unit shift in
angular momentum (	L = 1 and 	θ < π/6), we obtain the
two protected states

|0〉 =
√

6
∞∑

�=−∞
|6�〉,

(29)

|1〉 =
√

6
∞∑

�=−∞
|3 + 6�〉.

A more interesting instance is concerned with two qubits. If
we ask for protection against unit shifts in angular momentum
(	L = 1 and 	θ < π/12), we end up with

|00〉 = 2
√

3
∞∑

�=−∞
|12�〉,

|10〉 = 2
√

3
∞∑

�=−∞
|3 + 12�〉,

(30)

|01〉 = 2
√

3
∞∑

�=−∞
|6 + 12�〉,

|11〉 = 2
√

3
∞∑

�=−∞
|9 + 12�〉.

As already mentioned earlier, these ideal code words are
unphysical. This can be seen for example in Eqs. (27) and
(28). These states take the form of an infinite sum of equally
weighted angular momenta and are perfectly localized in
angular position. In the following section, we will investigate
physical approximations of the ideal protected qubits.

V. PHYSICAL APPROXIMATIONS

The code words and, in particular, the protected qubits
are infinitely squeezed states in angular position. With im-
plementation in mind we should investigate the behavior of
realistic approximations of the protected qubits. These are
the physical approximations. Clearly, finite squeezing will
inevitably lead to additional errors. Sometimes these errors
are within the range of correctable errors; sometimes they are
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not. We calculate the probability of noncorrectable errors for
physical approximations of the protected qubits.

We consider four physical approximations. Two approxi-
mations pattern a finite squeezing in position. The first one
relies on a truncated Gaussian wave function [11] while the
second is a power of cosine wave function. The remaining
two approximations are better envisioned in the angular
momentum basis. One approximation resorts to a Gaussian
envelope for the infinite sum of angular momenta, whereas the
last instance focuses on a finite sum which we name grating.
We study analytically the truncated Gaussian approximation
and provide numerical plots for the three other approximations.

A. Error probability

We want to define the probability of noncorrectable errors.
For simplicity we first restrict ourselves to a single qubit
only protected against drifts in angular position (	L = 0 and
	θ = π/2). But the generality of the arguments remains and
the formulas derived below are immediately generalized to
larger N and 	L. In view of Eq. (28), the errors are specified
on the two basis states |θ = 0〉 and |θ = π〉. Moreover,
measurements are here performed modulo π in order to avoid
destroying the superposition. Since only an error smaller
than 	θ can be corrected while the approximated basis state
spreads all over the range [0,2π ], some noncorrectable errors
happen. For the approximated state |0̃〉 � |θ = 0〉, any value
of the angular position measured in the range [−π/2,π/2] can
be corrected while values within [−π, −π/2] and [π/2,π ]
cannot. For the approximated state |π̃〉 � |θ = π〉, the situa-
tion is opposite. Any value of the angular position measured
within [−π, −π/2] and [π/2,π ] can be corrected while
values in [−π/2,π/2] cannot. This naturally leads to the
classical probability of error for the approximated states |0̃〉
and |π̃〉,

pe(0) =
∫ − π

2

−π

dθ |〈θ |0̃〉|2 +
∫ π

π
2

dθ |〈θ |0̃〉|2,
(31)

pe(π ) =
∫ π

2

− π
2

dθ |〈θ |π̃〉|2.

Taking into account the symmetry of the wave function, we
end up with

pe(0) = pe(π ) = 2
∫ π

2

0
dθ |〈θ |π̃〉|2. (32)

We can now define the probability of error for any
state diagonal in {|0̃〉,|π̃〉}. For a given density matrix
ρ = α0|0̃〉〈0̃| + απ |π̃〉〈π̃ | with α0 + απ = 1, the error prob-
ability is

pe(ρ) = α0pe(0) + απpe(π ). (33)

This immediately leads to

pe(ρ) = 2
∫ π

2

0
dθ |〈θ |π̃〉|2. (34)

Any equally weighted classical mixture of the logical states
|0〉 = (|0̃〉 + |π̃〉)/√2 and |1〉 = (|0̃〉 − |π̃〉)/√2 is diagonal in
{|0̃〉,|π̃〉}. Indeed, the off-diagonal elements nicely vanish.

However, we cannot apply the above definition to more
general mixtures (α0 and α1 different from one-half) where
the off-diagonal terms |0̃〉〈π̃ | and |π̃〉〈0̃| do not vanish.
Nevertheless, since the error is defined in the {|θ〉} basis we
can reasonably extend the definition of the error probability to
states diagonal in the {|θ〉} basis.

Any good approximate state should have a sharp peak and
fast decreasing tails. Therefore, a well-approximated state
should have nearly vanishing cross terms 〈θ |0̃〉〈π̃ |θ〉 and
〈θ |π̃〉〈0̃|θ〉, leading to an almost diagonal state in the {|θ〉}
basis. Under this constraint, the error probability for any
approximated states is still given by Eq. (34).

The generalization to any number of qubits and any 	L is
immediately given by

pe(ρ) = 2
∫ π(1− 1

m
)

0
dθ |〈θ |π̃〉|2. (35)

In the general case, the measurement of the angular position
is modulo 2π/m to avoid destroying the superposition of
Eq. (22). We compute the probability of error for the so-called
truncated Gaussian states and numerically evaluate it for the
three other approximations.

B. Truncated Gaussian states

The wave function of a truncated Gaussian state centered
at θ0 and with a degree of squeezing ξ is given by

�ξ (θ − θ0) = ξ
√

2π√
Cξ

e− ξ2

2 (θ−θ0)2
, (36)

where θ0 is in [0,2π ] and θ0 − π < θ < θ0 + π . The normal-
ization is Cξ = ξ

√
π erf(πξ ), where

erf(x) = 2√
π

∫ x

0
dt e−t2

(37)

denotes the error function. As required, in the limit of infinite
squeezing the non-normalized wave function tends to 2π

times the delta function. Note that formally the truncated
Gaussian function is not 2π periodic unlike the bracket
〈θ |θ0〉 = 2πδ(2π)(θ − θ0), however, we only consider this
function in the range θ0 − π < θ < θ0 + π . In the limit of no
squeezing the truncated Gaussian wave function reduces to the
unit constant. Moreover, the overlap 〈θ |0̃〉〈π̃ |θ〉 decreases as ξ

increases. Together with Eq. (35), these properties imply that
the error probability vanishes in the limit of infinite squeezing
while, in the limit of no squeezing, the error probability tends to
the probability of a pure guess, that is, 1 − 1/[2N (2	L + 1)].

Using Eqs. (35) and (36), the probability of error for the
truncated Gaussian reads

p1qubit
e = 1 − erf(πξ/2)

erf(πξ )
(38)

for a single qubit. More generally, the error probability for N

qubits is

pN qubits
e = 1 − erf[πξ/2N (2	L + 1)]

erf(πξ )
. (39)

When ξ is of the order of m = 2N , the error probability p
N qubits
e

is close to 10−5 for arbitrary N . In the limit of large squeezing
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FIG. 1. Error probability for the truncated Gaussian in the case
of 1, 5, and 20 encoded qubits and protection against a single shift in
angular momentum. When the physical parameter ξ is much larger
than the dimension of the qubits subspace 2N , the error probability
decays faster than a Gaussian. When ξ and 2N are of the same order,
the error probability is close to 10−5.

(i.e., ξ � m), p
N qubits
e scales as me−( πξ

m
)2
/(π3/2ξ ). The error

probability is plotted in terms of the degree of squeezing ξ in
Fig. 1 for 1, 5, and 20 qubits and 	L = 1.

C. Other approximations

Here, we consider the three remaining approximations. We
only give their definitions and plot their error probabilities in
terms of the relevant physical parameter for one and five qubits
and 	L = 1.

First, the power of cosine wave function is defined as

�γ (θ − θ0) = 2π√
Cγ

[
cos

(
θ − θ0

2

)]γ

, (40)

with the suitable normalization Cγ . Here, p
N qubits
e is close to

1 when γ and m are of the same order. Therefore, the power
γ should be much larger than m to keep the level of error
reasonably low. The graphs of the error probability in terms of
the power γ for one and five qubits are shown in Fig. 2.

Second, the error probability for the Gaussian envelope,

�σ (θ − θ0) = 1√
Cσ

∞∑
�=−∞

e−�2/(2σ 2)ei�(θ−θ0), (41)

where Cσ is the required normalization, is plotted in terms of
the width σ in Fig. 3. Similarly to the truncated Gaussian case,
the error probability for the Gaussian envelope is close to 10−5

for σ and m of the same order. Finally, the error probability
for the grating,

�LM
(θ − θ0) = 1√

2LM + 1

LM∑
�=−LM

ei�(θ−θ0), (42)

is represented in terms of the number of slits LM in Fig. 4.
Note that the range of this plot starts at 0 (i.e., LM = 1) and
the spacing between two points is not constant since LM has
to be an integer. The error probability p

N qubits
e tends to 10−1

for when LM and m are of the same order. Consequently, the

0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

pe

log2 γ

1 5

FIG. 2. Error probability for the power of cosine in the case of 1
and 5 encoded qubits and protection against a single shift in angular
momentum. When the physical parameter γ and the dimension of
the qubits subspace 2N are of the same order, the error probability is
close to 1. A reasonable approximation therefore requires γ � 2N .

number of slits must be much larger than m to obtain a low
probability of error.

VI. IMPLEMENTATION

We discuss a possible implementation of a quantum rotor
in quantum optics and briefly mention two other realizations
using atom optics and molecular physics.

In quantum optics, the orbital angular momentum of
light can be used as a quantum rotor. It has been shown
that any light beam with an amplitude distribution of the
form u(r,θ,z) = u0(r,z)ei�θ , where � is an integer, carries a
quantized orbital angular momentum around the beam axis
z [12]. Physically, the distribution u(r,θ,z) = u0(r,z)ei�θ can
be obtained using a Laguerre-Gaussian (LG) light beam.
There, each photon carries an angular momentum �h̄. In
this context, the angular momentum is also called the LG
mode. With today’s technology LG modes can be easily
produced and manipulated [13,14]. For the proposed encoding,

2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

pe

log2 σ

1 5

FIG. 3. Error probability for the Gaussian envelope in the case of
1 and 5 encoded qubits and protection against a single shift in angular
momentum. As for the truncated Gaussian, the error probability is
close to 10−5 when the physical parameter σ and the dimension of
the qubits subspace 2N are of the same order.
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FIG. 4. Error probability for the grating in the case of 1 and
5 encoded qubits and protection against a single shift in angular
momentum. For a number of slits LM of the order of the dimension
of the qubits subspace 2N , the error probability is close to 10−1.
Consequently, the number of slits must be much larger than 2N to
obtain a satisfactory approximation.

an infinite superposition of LG modes is required. Such a
superposition can be experimentally realized, for example,
by using a single LG mode state with the propagation
axis suitably displaced [15]. Obviously, in any experimental
scheme, only a superposition of a finite number of modes is
achieved and approximations, like the grating or the Gaussian
envelope presented in the Sec. V, have to be taken into
account. Any operation on the encoded qubits can then be
realized with holograms, lenses, and linear optical elements
and the measurements are carried out with well-established
interferometric technologies.

Let us first consider the encoding of a single qubit with
	L = 0. In this simplest case, the states of the computational
basis are superpositions of either even or odd modes. To
address the even and odd modes we use the sorting technique
introduced in [13] where a Mach-Zehnder interferometer with
a Dove prism inserted into each arm is used, as shown in
Fig. 5(a). By fixing the relative angle between the two Dove
prisms to π/2 and correctly adjusting the path length of the
interferometer, one can ensure that even modes appear in
one port while odd modes appear in the other port of the
interferometer. The qubit operation (e.g., Z) is realized by
applying a π -phase shift to the odd modes, while the qubit
operation X is realized by passing the even modes through a
hologram which increases all the momenta by one unit, and
passing the odd modes through a hologram which decreases
all the momenta by one unit. Finally, after applying the desired
operations, the two arms can be recombined.

To encode two qubits with 	L = 0, we sort the beam into
four ports, as illustrated in Fig. 5(b). The first port corresponds
to orbital angular momenta 0 modulo 4, the second port
corresponds to 1 modulo 4, and similarly for the third and
fourth ports. This sorting is done by cascading Mach-Zehnder
interferometers (with a Dove prism inserted into each arm) and
holograms. The first interferometer sorts between even and odd
angular momenta. The sorted modes are then passed through
a second stage where they are sorted further. In this second
stage, the relative angle between the two Dove prisms is π/4.

ψ
α=π/2

α=π/4

Δl= −1

α=π/4

Δl= +1 holograms

l = 0 mod 2 

l = 1 mod 2 

l = 2 mod 4 

l = 0 mod 4 

l = 1 mod 4 

l = 3 mod 4 

(a) Dove prisms

hologram

4

(b) Possible implementation

BS

BS α

FIG. 5. Possible experimental setup. (a) A Mach-Zehnder inter-
ferometer with two Dove prisms at each arm is used to sort angular
momentum states. By fixing the relative angle between the prisms to
α = π/2, one can sort even and odd angular momenta, as described
in [13]. (b) To encode two qubits with 	L = 0, we sort the beam into
four ports where each port corresponds to orbital angular momenta
modulo 4. The sorting is done with Mach-Zehnder interferometers
with a Dove prism inserted into each arm and holograms. Once the
modes are sorted, desired operations on the first and the second
encoded qubits can be simultaneously performed.

Even modes directly go through the interferometer, while odd
modes go through an interferometer sandwiched between a
unit-decreasing hologram and two unit-increasing holograms
(one for each output arm). Once the modes are sorted according
to their modes modulo 4, desired operations on the first and
the second qubits can be simultaneously performed. Moreover,
we can apply an entangling operation, such as a controlled-not
(C-NOT) gate. Further studies would be required to include the
measurement of the stabilizer. Let us emphasize the peculiarity
of the present approach with respect to two well-known
alternatives that might seem at first sight equivalent. To encode,
say, two qubits in optical modes, one could use four orbital
angular momenta or even four spatial modes. Mathematically,
the three encodings are very different. Indeed, as already
mentioned, the present encoding corresponds to a two-qubit
subsystem, that is, rotor = qubit ⊗ qubit ⊗ rotor, while the
encoding using four angular momenta is a two-qubit subspace,
that is, rotor = (qubit ⊗ qubit) ⊕ rest, and the four spatial
modes form a qudit system (i.e., 4 = qubit ⊗ qubit).

We now mention two other implementations. An alternative
to photons is the use of one or many cold neutral atoms
in a circular magneto-optical trap [16,17]. A magnetic field
and several lasers are used to create a ring-shaped potential
where the atoms sit. Then the atoms are manipulated with laser
pulses. Another option is concerned with ultracold molecules,
typically carbon-based molecules with a quantized rotational
motion [18,19]. Promising molecules are polar diatomic
molecules trapped in an optical lattice or a solid matrix [20,21].
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The three directions cited above are three possible options
for implementing a rotor operating in the quantum regime.
They would deserve additional investigations.

VII. ENCODING QUDITS IN A ROTOR

In Secs. III and IV we have presented a systematic way to
encode and protect N qubits in a rotor. This construction can
immediately be generalized to qudits. In this section we briefly
summarize the relevant results.

We can define the dth root of unity ω = e2iπ/d , where
d stands for the dimension of the qudit. The Weyl pair
(Z(d)

j ,X
(d)
j ), j = 1, . . . ,N , where N specifies the number of

qudits, takes the form [8]

Z
(d)
j = ω�L/(dj−1(2	L+1))�,

X
(d)
j = V dj−1(2	L+1) − (

1 − V †dj−1(2	L+1)
)

(43)

×P
Z

(d)
j ,1V

dj−1(2	L+1),

where P
Z

(d)
j ,1 is the projector onto the eigenspace of Z

(d)
j with

eigenvalue +1. One can check that we still have the required
tensor product structure rotor = qudits ⊗ (error in �) ⊗ rotor
between the encoded qudits, the errors in the angular momen-
tum and the residual rotor. More specifically, the Weyl pair
of the residual rotor is (eiα�L/(dN (2	L+1))�,V dN (2	L+1)) and the
commutators between the Weyl pairs of the qubits, SL and the
Weyl pair of the residual rotor vanish.

The stabilizer is SL = e2iπnL/m and Sθ = V m, where now
n = dN and m = dN (2	L + 1). The protected qudits are still
given by Eqs. (21) and (22).

VIII. CONCLUSION

We have presented a scheme to encode many genuine qubit
subsystems in a rotor. We have shown how to manipulate
and entangle them. We have also considered a quantum error-
correcting code to protect the many qubits against small errors
in angular position and momentum. The whole scheme is ac-
tually generalizable to qudits of any finite dimension. Further-
more, we have considered physical approximations of the ideal
scheme and their consecutive error probabilities. We have then
turned to implementations and proposed several directions.

Theoretically, the advantage of encoding many qubits
in a single degree of freedom is to allow their individual
manipulation with a single unitary transformation. Thus,
complex entangled states like cluster states can, in principle, be
realized with a single manipulation of the rotor. In this article,
good care has been taken to encode genuine qubits subsystems
in a rotor. A benefit is the freedom to use the remaining rotor to
extract new qubits. Another advantage, inherent to the tensor
product structure, is the possibility to correct errors. However,
the distinction between genuine qubits and pseudoqubits may
become blurred after implementation. Nonetheless, one might
wonder whether genuine qubits and pseudoqubits exhibit a
difference not only in terms of error model but also in
operational terms. In other words, is there any task that can be
performed with genuine qubits but that cannot be preformed
equally well, or not at all, with pseudoqubits?

The challenges finally lie in the implementation. The
scalability of the proposed scheme is directly related to the
accuracy the rotor can be manipulated with. Therefore, with
today’s technology, it seems reasonable to reach a dozen of
encoded qubits. This would already allow the simulation of
small quantum systems.

Let us conclude with a few comments on the orbital
angular momentum of light. Unlike earlier proposals, the full
continuous variable character of this degree of freedom is
used, resulting in many genuine qubit subsystems. Moreover,
qubits encoded in light are interesting not only because they
are manipulated solely with linear optical elements but also
because they are flying qubits. Thus, one might conceive a
computation taking place during the travel time between two
remote places.
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