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Discrimination of unitary transformations in the Deutsch-Jozsa algorithm: Implications
for thermal-equilibrium-ensemble implementations
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A general framework for regarding oracle-assisted quantum algorithms as tools for discriminating among
unitary transformations is described. This framework is applied to the Deutsch-Jozsa problem and all possible
quantum algorithms which solve the problem with certainty using oracle unitaries in a particular form are
derived. It is also used to show that any quantum algorithm that solves the Deutsch-Jozsa problem starting with
a quantum system in a particular class of initial, thermal equilibrium-based states of the type encountered in
solution-state NMR can only succeed with greater probability than a classical algorithm when the problem size n

exceeds ∼105.
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I. INTRODUCTION

Quantum algorithms [1] are typically described in terms
of the evolution of the state of a quantum system under a
prescribed sequence of unitary transformations, followed by
the extraction of a problem solution from the outcome of a
measurement performed on the quantum system. While the
unitary transformations involved are clearly crucial, they are
not the primary reference point of the analysis in such a
circuit formulation of quantum algorithms; this belongs to
the state of the system. However, in the circuit formulation of
any particular quantum algorithm, the ingredient which varies
from one application of the algorithm to another (i.e., the
input) is typically a unitary transformation. Therefore, it seems
appropriate to focus on the unitaries in a quantum algorithm
and to regard the algorithm as a tool for discrimination of
unitary transformations.

This approach has been suggested before [2,3] and subject
to analysis in selected scenarios [4,5]. The purpose of the
latter articles was to extend the Deutsch-Jozsa algorithm by
investigating the possibility of discriminating among a larger
class of unitary transformations than that encountered in the
original Deutsch-Jozsa algorithm. The purpose of this article is
to further promote unitary (and state) discrimination as tools
for analyzing quantum algorithms. Specifically we consider
the Deutsch-Jozsa problem, which is to be solved with the
aid of an oracle unitary of a specific form. We ask whether
the notions of unitary discrimination can be used to reach
the standard quantum algorithm for solving the problem,
and whether they yield alternative algorithms for solving the
problem. We also ask what the implications of these notions are
for the performance of implementations of the Deutsch-Jozsa
algorithm on ensembles of quantum systems initially in noisy
mixed states such as those typically encountered in solution-
state nuclear magnetic resonance (NMR) [6–15]. Although
this is currently of most interest for solution-state NMR
implementations of quantum algorithms, ensemble quantum
computing implementations either have been proposed for
various other physical systems [16–18] or else will take effect
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for systems for which perfect pure-state preparation is not
always feasible (for example, ion traps [19]). The issues
considered in this article and the results presented here may
be relevant for these implementations as well.

The remainder of this paper is organized as follows.
Section II describes how oracle-assisted quantum algorithms
can be viewed as unitary discrimination tools. This is applied to
the Deutsch-Jozsa problem, using a particular oracle unitary,
in two distinct ways in the following sections. Section III
uses unitary and state discrimination to arrive at the set of
all algorithms which solve the Deutsch-Jozsa problem with
certainty. Section IV assumes a restricted set of possible
initial states, which are mixed, for solving the Deutsch-Jozsa
problem. We determine a lower bound on the problem size,
beneath which a classical algorithm will succeed in solving
the Deutsch-Jozsa problem with greater certainty than any
quantum algorithm.

II. DISCRIMINATION OF QUANTUM OPERATIONS
IN ORACLE ALGORITHMS

Certain computational problems, such as searching,
Simon’s problem [20], and the Deutsch-Jozsa problem [21],
are oracle assisted, meaning that they are to be solved using
a binary oracle function f : {0,1}n �→ {0,1}m, whose form
depends on the nature (and the specific instance that is
invoked) of the computational problem. The task is to solve the
problem with the fewest oracle invocations; the efficiency of
the solution is quantified by the number of oracle invocations
used. Different instances of a given problem correspond to
different oracle functions.

The associated quantum algorithms [20–23] require a
well-determined number, depending on n, of qubits prepared
in a suitable initial state |�0〉. These qubits are made to
evolve collectively in way described by a specific sequence
of unitary transformations. Ultimately a measurement yields
an outcome from which the problem solution can be extracted
with high probability. In oracle-based quantum algorithms
the oracle is invoked via evolution described by a unitary
transformation Ûf , whose form depends on the problem as
well as the particular oracle function, f , in use (i.e., the
particular instance of the problem). In the simplest cases, to
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Ûalg

FIG. 1. General structure for oracle-based quantum algorithm
where the oracle output is a single bit. The oracle is invoked M times.
The initial and final unitaries V̂0 and V̂M are not generally necessary
but will enable initialization and measurement in the computational
basis.

which we restrict our consideration, the target of the oracle is
a single binary variable, that is, m = 1. Examples include the
Deutsch-Jozsa [21] and Grover’s search algorithm [23]. For
a given type of problem, there can be different possibilities
for the number of qubits required and the structure of the
oracle unitary. We consider instances where the number of
qubits required is n. In terms of computational basis states,
|x〉 := |xn〉 ⊗ · · · ⊗ |x1〉 with xi ∈ {0,1}, we assume that the
oracle unitary operates via

Ûf |x〉 = (−1)f (x) |x〉 (1)

and this is extended linearly to all linear combinations of
computational basis states.

Applications of the oracle unitary may be interspersed with
other unitaries, V̂0, . . . ,V̂M , which are oracle independent (i.e.,
these remain fixed for all choices of oracle function f ). The
resulting algorithm has the structure illustrated in Fig. 1 and
the algorithm unitary is Ûalg = V̂MÛf · · · Ûf V̂1Ûf V̂0.

This is the most general structure for m = 1 oracle-assisted
algorithms since two successive applications of the oracle
unitary provide a trivial identity unitary. The final state |�f 〉 =
Ûalg|�0〉 depends on the particular oracle function f .

In such scenarios the input to the algorithm is the oracle
function and not the initial state. The algorithm output then
identifies or classifies the input oracle function. For example, in
the Deutsch-Jozsa problem the algorithm determines whether
the oracle function belongs to the class of constant or balanced
functions (these terms are described in the following). In the
algorithm for searching a database with one marked item,
located at s, the oracle is defined as f (x) = 0 if x �= s and
f (s) = 1. Determining s is equivalent to identifying which
of the possible oracle functions was used. Analogously, the
associated quantum algorithms amount to tools for classifying
or discriminating among the possible oracle unitaries.

The framework for unitary discrimination requires a set
of known unitaries {Û1,Û2, . . .} and associated probabilities
{p1,p2, . . .}. One party chooses one of these unitaries, Ûj ,

with probability pj and another party must determine which
unitary was selected by applying the unitary one or more times,
together with other quantum operations, to a quantum system.
Ultimately a measurement is performed on the quantum system
and the choice of unitary is inferred from the measurement
outcome. Unitary discrimination can be reduced to a quantum
state discrimination problem [5,24–26] by applying the unitary
to a standard initial state, most generally described by density
operator ρ̂0, and attempting to discriminate among the possible
resulting output states. In this article we consider cases where

the unitary is applied once only. Thus the possible output states
are ρ̂j = Ûj ρ̂0Û

†
j , occurring with probability pj , for j =

1,2, . . . . The general framework for discriminating among
states [27,28] requires a positive operator-valued measure
(POVM) with positive operator elements {π̂1,π̂2, . . .} that
satisfy

∑
j π̂j = Î and a rule for associating states with

measurement outcomes. In the minimum error discrimination
scenario, which we consider here, we are required to select one
state for each outcome and the “undecided” inference of the
unambiguous discrimination [28] scenario is not permitted.
Here it is possible to make an incorrect inference and the task
is to choose a measurement that minimizes the probability with
which such an error occurs. For unitary discrimination, both
the measurement and the initial state must be chosen so as to
minimize the error probability.

III. APPLICATION TO THE DEUTSCH-JOZSA
ALGORITHM ON ARBITRARY INITIAL STATES

The Deutsch-Jozsa problem considers oracle functions
f : {0,1}n �→ {0,1} that are required to fall into one of two
classes: constant, meaning that f returns the same value for
all possible arguments, or balanced, meaning that f returns
0 for exactly half of the arguments and 1 for the other half.
The task is to determine the function class with the minimum
number of oracle invocations. A classical algorithm proceeds
by evaluating f at randomly chosen distinct arguments. This
will succeed with certainty in all cases after N/2 + 1 oracle
invocations [21,29], where N = 2n is the number of possible
argument values. A quantum algorithm exists [21,29] and, in
its modified form [30], uses an oracle unitary of the form
given in Eq. (1) exactly once to solve the problem with
certainty [21,29], giving an exponential speed-up in terms
of n.

We aim to use the notions of unitary discrimination to arrive
at all quantum algorithms which can determine function class
with certainty while using n qubits and an oracle of the form
of Eq. (1). Since each function class is represented by many
unitaries, this requires discrimination between two quantum
operations. For each given class of functions, the quantum
operation is

ρ̂0 �→ ρ̂f :=
∑

f in class

pf Ûf ρ̂0Û
†
f , (2)

where the sum is over all possible functions in the given class
and pf is the probability with which each function could be
chosen given that the particular class is chosen. For constant
functions, Eq. (1) implies that Ûf = Î and thus

ρ̂0 �→ ρ̂f const = ρ̂0. (3)

For balanced functions, expanding in the computational basis,
ρ̂0 = ∑N−1

x,y=0 ρ0 xy |x〉〈y|, gives

ρ̂0 �→ ρ̂f bal =
∑

f balanced

pf

N−1∑
x,y=0

(−1)f (x)+f (y)ρ0 xy |x〉〈y|.

(4)
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TABLE I. Four possibilities for (−1)f (x)+f (y) for x = 0 and y = 1.

The two leftmost columns provide the possible combinations of
values returned by f. The last column lists the number of times
that each possibility occurs. For example, the balanced function for
which f (0) = f (1) = 0 must return 1 in N/2 of the remaining N − 2
arguments. The number of ways in which this arises is

(
N−2
N/2

)
. Similar

arguments apply to the other cases.

f (x = 0) f (y = 1) (−1)f (x)+f (y) Number of instances

0 0 1
(
N−2
N/2

)
0 1 −1

(
N−2

N/2−1

)
1 0 −1

(
N−2

N/2−1

)
1 1 1

(
N−2
N/2

)

which gives the density matrix elements after the balanced
function operation ρf bal xy := 〈x|ρ̂f bal|y〉 as

ρf bal xy =
∑

f balanced

pf (−1)f (x)+f (y)ρ0 xy. (5)

Thus ρf bal xx = ρ0 xx for x = 0, . . . ,N − 1. For nondiagonal
density matrix entries, the summation will be complicated by
the possibly different probabilities for each balanced function.
We shall assume that the probabilities with which each
balanced function is selected are identical. Thus pf = 1/B,

where B is the number of balanced functions. Enumerating the
number of balanced function amounts to counting the number
of ways in which N/2 of the N possible arguments which will
return 0 can be selected. Thus B = (

N

N/2

)
and

ρf bal xy = 1

B
ρ0 xy

∑
f balanced

(−1)f (x)+f (y). (6)

The sum
∑

f balanced(−1)f (x)+f (y) can be evaluated for given
values of x and y by determining for how many balanced
functions f (x) = f (y) and for how many f (x) �= f (y). If
x �= y, this is independent of the choices of x and y. This
can be established by noting that the collection of all balanced
functions can be listed by assigning 0 to N/2 of the N possible
argument “slots” and 1 to the remaining slots. The argument
values, x = 0,1,2, . . . , N − 1 in this process merely serve as
labels and interchanging two of them will not affect the sum.
Thus it suffices to compute this for x = 0 and y = 1. The four
possibilities are tabulated in Table I.

Thus, if x �= y then∑
f balanced

(−1)f (x)+f (y) = 2

[(
N − 2

N/2

)
−

(
N − 2

N/2 − 1

)]

= −
(

N − 2

N/2

)
2

N/2 − 1

= − B

N − 1
, (7)

where B is the number of balanced functions and the last two
lines follow from algebraic manipulations of combinatorials.
Equations (6) and (7) imply that, if x �= y,

ρf bal xy = − 1

N − 1
ρ0 xy. (8)

The cases of all values of x and y are then summarized as

ρ̂f bal = 1

N − 1

(
−ρ̂0 + N

N−1∑
x=0

P̂x ρ̂0P̂x

)
, (9)

where P̂x := |x〉〈x|.
Minimum error discrimination between the two density op-

erators ρ̂f const and ρ̂f bal requires a POVM with two outcomes
and two positive operator elements π̂const and π̂bal, where
π̂const + π̂bal = Î . The probability with which an incorrect
inference is made is

perror = pbalTr[ρ̂f balπ̂const] + pconstTr[ρ̂f constπ̂bal], (10)

where pconst (pbal) is the probability of selecting a function
from the constant (balanced) class. A standard derivation [26]
gives

perror = 1
2 (1 − ‖pconstρ̂f const − pbalρ̂f bal‖), (11)

where the trace norm satisfies

‖Â‖ := Tr[
√

Â†Â ] =
∑

i

σi(Â), (12)

with {σi(A)} being the singular values of Â. The trace norm is
clearly invariant under unitary transformations in the sense
that, if V̂ is any unitary, then ‖Â‖ = ‖V̂ ÂV̂ †‖. Although
Eqs. (10) and (11) are equivalent, they have distinct uses in
terms of determining conditions under which the algorithm
will succeed. As we shall show, Eq. (11) yields the optimal
initial state and Eq. (10) gives the optimal measurement for
success.

Equation (11) implies that the quantum algorithm
for solving the Deutsch-Jozsa problem will succeed
with certainty when ‖pconstρ̂f const − pbalρ̂f bal‖ = 1. Note
that ‖pconstρ̂f const‖ = pconst and ‖pbalρ̂f bal‖ = pbal, giving
‖pconstρ̂f const‖ + ‖pbalρ̂f bal‖ = pbal + pconst = 1. Thus the
quantum algorithm will succeed with certainty if and
only if

‖pconstρ̂f const − pbalρ̂f bal‖ = ‖pconstρ̂f const‖ + ‖pbalρ̂f bal‖.
(13)

In this context, an important general result [31] is that if Â

and B̂ are positive semidefinite operators then ‖Â − B̂‖ =
‖Â‖ + ‖B̂‖ if and only if Â and B̂ have orthogonal support.
The support of a positive semidefinite operator is the subspace
spanned by its eigenstates which correspond to nonzero
eigenvalues. Thus the quantum algorithm will succeed with
certainty if and only if the operators ρ̂f const and ρ̂f bal have
orthogonal support, or equivalently

ρ̂f constρ̂f bal = ρ̂f balρ̂f const = 0. (14)

Defining �̂ := ∑N−1
x=0 P̂x ρ̂0P̂x , which is easily shown to be

a positive operator, and using Eqs (3), (9) and (14) gives

[ρ̂0,�̂] = 0, (15)

N�̂ρ̂0 = ρ̂2
0 . (16)
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Equation (15) implies that ρ̂0 and �̂ can be simultaneously
diagonalized. Denote the associated basis of eigenstates by
{|φj 〉 | j = 1, . . . ,N}. Thus

ρ̂0 =
L∑

j=1

rj |φj 〉〈φj |, (17)

where L > 0 is the number of nonzero eigenvalues of ρ̂0 and
0 < rj�1 satisfy

∑L
j=1 rj = 1. Likewise

�̂ =
N∑

j=1

λj |φj 〉〈φj |, (18)

where λj�0. Equation (16) implies that Nλjrj = r2
j for j =

1, . . . ,L and this gives

λj = rj

N
(19)

for j = 1, . . . ,L. Additionally,

�̂ =
N−1∑
x=0

P̂x

L∑
j=1

rj |φj 〉〈φj |P̂x (20)

=
N−1∑
x=0

P̂x

L∑
j=1

rj |φj (x)|2, (21)

where φj (x) := 〈x|φj 〉. Thus Eq. (18) gives

λk =
N−1∑
x=0

L∑
j=1

rj |φk(x)|2|φj (x)|2 (22)

and, when combined with Eq. (19), this gives

rk

N
=

N−1∑
x=0

L∑
j=1

rj |φk(x)|2|φj (x)|2 (23)

for k�L. The fact that L > 0 implies that r1 �= 0. Thus

r1

N
= r1

N−1∑
x=0

|φ1(x)|4 +
N−1∑
x=0

L∑
j=2

rj |φk(x)|2|φj (x)|2, (24)

where the second term on the right is defined to mean 0
when L = 1. The second term on the right of Eq. (24) is
non-negative. The first term contains

∑N−1
x=0 |φ1(x)|4, which is

subject to the constraint that
∑N−1

x=0 |φ1(x)|2 = 1. A Lagrange
multiplier approach shows that

∑N−1
x=0 |φ1(x)|4�1/N , provided

that 0�|φ1(x)|2�1, which is always satisfied. This minimum
is attained when |φ1(x)|2 = 1/N (or equivalently φ1(x) =
eiθx /

√
N, where θx is real) for x = 0, . . . , N − 1. Thus the

second term on the right of Eq. (24) is identically zero
and L = 1. Thus the quantum algorithm will succeed with
certainty if and only if the input is a pure state, that is (dropping
the subscript and changing notation to be consistent with
Fig. 1),

ρ̂0 = |�0〉〈�0|. (25)

The pure state must be such that it produces a minimum for
the first term on the right of Eq. (24) and thus

|�0〉 = 1√
N

N−1∑
x=0

eiθx |x〉. (26)

Equation (10) and the positivity of the POVM elements
and density operators requires that for the algorithm to
succeed with certainty the measurement operators must
satisfy Tr[ρ̂f balπ̂const] = Tr[ρ̂f constπ̂bal] = 0. But π̂const = Î −
π̂bal implies implies that this requirement is equivalent to
Tr[ρ̂f constπ̂const] = Tr[ρ̂f balπ̂bal] = 1. The fact that the density
operators and the measurement operators are positive semidef-
inite and that their eigenvalues fall in the range [0,1] then
implies that π̂const must be the projector onto the support of
ρ̂f const. The associated POVM elements are

π̂const = |�0〉〈�0|, (27a)
π̂bal = Î − |�0〉〈�0|. (27b)

Equations (26) and (27) give the initial states and mea-
surements for a general quantum algorithm which solves
the Deutsch-Jozsa problem using a single invocation of an
oracle unitary of Eq. (1) and no ancillary qubits. The standard
algorithm, for which |�0〉 = 1√

N

∑N−1
x=0 |x〉, is one example

of this [29,30]. Also the general algorithm will successfully
identify the function class regardless of the probabilities with
which the various admissible functions are selected. This can
be verified by applying the algorithm unitary transformations
for the various admissible functions to the initial state of
Eq. (26), computing the final state, and using the POVM
operators of Eq. (27) to determine probabilities of the two
possible outcomes.

IV. APPLICATION TO THE DEUTSCH-JOZSA
ALGORITHM ON MIXED INITIAL STATES

In some proposed implementations of quantum computing,
such as solution-state NMR [6–15], the initial state of the
quantum system is mixed and therefore the problem cannot
be solved with certainty by using the scheme of Fig. 1. The
notion of minimum error discrimination between quantum
operations can be applied to bound the success probability
of any algorithm on such mixed input states. For a general
mixed state, Eqs. (3), (9), and (11) imply

perror = 1

2

(
1 −

∥∥∥∥
(

pconst + pbal

N − 1

)
ρ̂0 − pbalN

N − 1
�̂

∥∥∥∥
)

.

(28)

We consider the special case where pconst = pbal = 1/2 and
thus

perror = 1

2

[
1 − N

2(N − 1)
‖ρ̂0 − �̂‖

]
. (29)

Attempting to apply the triangle inequality to the trace
norm and using the facts that ‖ρ̂0‖ = ‖�̂‖ = 1 results in an
inequality which is always satisfied.

However, in some circumstances a similar approach can
yield meaningful bounds. Specifically we consider situations
in which an ensemble of quantum systems is first allowed
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to reach thermal equilibrium followed by application of a
preparatory, oracle-independent unitary. The resulting state
constitutes the initial state for the system. We shall assume
that the system consists of n qubits and has a Hamiltonian

Ĥ =
n∑

i=1

h̄ωi

2
σ̂ (i)

z +
n∑

i<j

h̄πJij

2
σ̂ (i)

z ⊗ σ̂ (j )
z , (30)

where ωi is the precession frequency of the ith qubit and
Jij is the coupling between the ith and j th qubits (which is
typical for solution-state NMR [6,7]). The thermal equilibrium
density operator is ρ̂th = e−βĤ /Z, where β = 1/kT and Z =
Tr[e−βĤ ]. We shall assume that Jij � ωk and we shall ignore
coupling terms in the density operator, which is constructed
from

e−βĤ ≈ e− ∑n
i=1 αi σ̂

(i)
z , (31)

where αi := h̄ωi/2kT . Our final assumption is that αi � 1.

(In typical solution-state NMR scenarios, ωi ∼ 500 MHz and
T ∼ 300 K so that αi ∼ 10−5.) Thus

ρ̂th ≈ 1

N
Î − ρ̂dev. (32)

where the deviation density operator is ρ̂dev :=∑n
i=1 αiσ̂

(i)
z /N. Note that Trρ̂dev = 0. Given the thermal

equilibrium state as an initial state of the system, there is a
range of possible quantum operations that can be applied
prior to the first invocation of the oracle. These could contain
nonunitary operations; examples include pseudopure-state
preparation [6,7] or algorithmic cooling [32,33]. Our aim is
to focus on scenarios in which such nonunitary operations
are avoided and we only consider scenarios where operations
applied prior to the first oracle invocation are unitary without
involving any ancillary systems.

Here the most general initial state of the n-qubit system
is represented by ρ̂0 = V̂ ρ̂thV̂

†, where V̂ is the preparatory
unitary operation. Then

ρ̂0 = 1

N
Î − ρ̂ ′

dev, (33)

where ρ̂ ′
dev = V̂ ρ̂devV̂

† and

�̂ = 1

N
Î −

N−1∑
x=0

P̂x ρ̂
′
devP̂x . (34)

Define �̂′
dev := ∑N−1

x=0 P̂x ρ̂
′
devP̂x . Thus

perror = 1

2

[
1 − N

2(N − 1)
‖ρ̂ ′

dev − �̂′
dev‖

]
. (35)

The triangle inequality yields

perror �
1

2

[
1 − N

2(N − 1)
(‖ρ̂ ′

dev‖ + ‖�̂′
dev‖)

]
. (36)

The diagonal nature of �̂′
dev gives

‖�̂′
dev‖ =

N−1∑
x=0

|〈x|ρ̂ ′
dev|x〉|. (37)

Denote the eigenstates and eigenvalues of ρ̂ ′
dev by {|χi〉 | i =

1, . . . , N} and {ci | i = 1, . . . , N}, respectively. Then

‖�̂′
dev‖ =

N−1∑
x=0

N∑
i=0

|ci ||〈x|χi〉|2

=
N∑

i=0

|ci |
N−1∑
x=0

|〈x|χi〉|2

=
N∑

i=0

|ci | = ‖ρ̂ ′
dev‖. (38)

Thus

perror �
1

2

[
1 − N

(N − 1)
‖ρ̂ ′

dev‖
]

. (39)

The unitary invariance of the trace norm implies
that ‖ρ̂ ′

dev‖ = ‖ρ̂dev‖. The singular values of ρ̂dev are
{|α1 + α2 + · · · αn|/N,| − α1 + α2 + · · · αn|/N,|α1 − α2 +
· · · αn|/N, . . .}. Without loss of generality assume that
α1�α2�α3 · · · � 0. Then each singular value is bounded from
above by nα1/N and

‖ρ̂ ′
dev‖�nα1. (40)

Thus

perror �
1

2

(
1 − Nnα1

N − 1

)
. (41)

Defining ε := Nnα1/(N − 1) gives perror � (1 − ε)/2. This
gives the failure probability for an application of the algorithm
to a single ensemble member and it indicates a nondeter-
ministic output. The algorithm may be run repeatedly using
the same unitary on a large number of independent quantum
systems, all initially described by the same density operator,
and this will ultimately increase the chances of successfully
identifying the oracle class. However, this must be compared
to a classical probabilistic algorithm. Such an analysis has
been done in the case of a pseudopure-state input [34]. Here
the quantum algorithm is reconfigured, using a single ancillary
qubit to which the function class is written whenever a correct
pure-state input is used. For mixed input states, it is possible
that an erroneous function class may be written to this ancillary
qubit. Over an entire ensemble, the function class is inferred
by effectively taking a “majority vote” of computational basis
measurement outcomes on the ancillary qubits for individual
ensemble members. The probability of successful inference
only depends on the ensemble size and the probabilities with
which each of the two possible measurement outcomes occur;
the initial state merely determines these probabilities in terms
of ε. This is to be compared with a classical probabilistic
algorithm. The results are that, for large ensemble size (i.e.,
in the limit as this becomes infinite), the quantum algorithm
succeeds with larger probability than the classical probabilistic
algorithm if ε >

√
3/4. For the quantum algorithm to succeed

with greater probability than the classical algorithm, this
implies

α1 >
√

3/4
N − 1

N

1

n
(42)
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or, alternatively,

n >
√

3/4
N − 1

N

1

α1
. (43)

In typical solution-state NMR situations α1 ∼ 10−5 and thus

n >
√

3/4
N − 1

N
105. (44)

Thus with current solution-state NMR technology and an
implementation of the algorithm which starts with the thermal
equilibrium state, uses no ancillary qubits, and only uses
the oracle unitary of Eq. (1) plus any other unitaries, the
minimum number of qubits required for the quantum algorithm
to succeed with greater probability than any classical algorithm
is approximately 105. Current implementations of the Deutsch-
Jozsa algorithm have not even exceeded n = 10.

V. CONCLUSION

In conclusion the usefulness of the notion that quantum
algorithms are tools for discriminating among oracle unitary
transformations has been demonstrated. For the Deutsch-Jozsa
problem, applying techniques associated with unitary discrim-
ination results in the complete set of quantum algorithms which
can solve the problem with certainty; these have a structure
similar to that of the standard version of the algorithm. We have
also explored the issue of solving the Deutsch-Jozsa problem
when the initial state of the quantum system is selected from
a restricted set. For the case of a thermal equilibrium state
followed by an arbitrary oracle-independent unitary, this yields
a lower bound on the number of function arguments such that
the quantum algorithm succeeds with greater probability than

any classical algorithm. This is several orders of magnitude
larger than that which has been implemented experimentally
to date.

It should be pointed out that in the analysis here cer-
tain constraints are assumed. First, the oracle unitary of
Eq. (1), which operates on n qubits, was assumed. However,
some versions of the algorithm require n argument qubits
plus one ancilla qubit and use an oracle unitary defined by
Ûf |x〉|y〉 := |x〉|y ⊕ f (x)〉 (where the rightmost system in
this notation is the single ancilla qubit and the leftmost is
the n argument qubits) [21]. The unitary considered in the
analysis here can be reached from this by fixing the ancilla
qubit in a special state, converting the problem to one of
phase estimation [29]. Whether this yields a larger set of
quantum algorithms which solves the problem with certainty
or reduces the lower bound in the thermal equilibrium state
scenario is open to investigation. Second, it is known that using
ancilla qubits entangled with “system” qubits enhances the
possibility of successful discrimination among unitaries [25]
and it is conceivable that this could also yield a larger set of
quantum algorithms and improved lower bounds in the thermal
equilibrium case. Finally, in the thermal equilibrium scenario,
relaxation to the thermal equilibrium state could be followed
by a nonunitary quantum operation [35] and bounds in any
such cases have not been assessed.
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