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We address the study of controllability of a closed quantum system whose dynamical Lie algebra is generated
by adjacency matrices of graphs. We characterize a large family of graphs that renders a system controllable.
The key property is a graph-theoretic feature consisting of a particularly disordered cycle structure. Disregarding
efficiency of control functions, but choosing subfamilies of sparse graphs, the results translate into continuous-time
quantum walks for universal computation.
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I. INTRODUCTION

The study of classical control theory is ubiquitous across
engineering disciplines. The concept of controllability at the
quantum level is a fundamental notion which expresses the
ability of implementing any dynamics in a given quantum-
mechanical setup (see [1] for an introductory monograph).
From the practical point of view, the successful realization of
quantum devices for a variety of information processing tasks
strongly depends on the ability of manipulating systems with
sufficient freedom. The design of protocols to control closed
quantum systems mainly deals with schemes for efficient
controllability by acting on subspaces [2].

A large number of systems have been shown to exhibit
characteristics that allow controllability. For example, almost
any pair of Hamiltonians that can be coherently applied to
a finite-dimensional quantum system renders it controllable,
and almost any quantum logic gate is universal [3]. However,
controllability of large systems does not directly give an
efficient implementation of control functions and, therefore,
processes such as universal quantum computation. Moreover,
control criteria are generally not computable for large systems
and are not immediately scalable with the system size
[4].

Here we consider controllability in relation to a class of
dynamics that can be interpreted as Schrödinger evolutions
of a particle hopping between the vertices of a graph. The
corresponding Hamiltonians are matrices with nonzero entries
only where transitions are permitted by the graph structure.
This class naturally embraces continuous-time quantum walks
(QWs) [5], and the evolution of a single (or multiple [6])
excitation subspace for systems of spin-half particles with
various kinds of interaction (e.g., XY , XYZ, etc.) [7]. QWs
have been shown to build gates by scattering off a set of small
graphs attached to wires representing basis states [8]. QWs
give examples of matrices for sufficient control, when we can
arbitrarily modify edge weights (or, equivalently, strength of
couplings) [9].

During our discussion, an n-level system is controllable
by a given set of Hamiltonians (possibly acting on specific
subsystems only) if every element of the unitary group
U (n) can be approximated by the matrices of the subgroup
obtained via the dynamical Lie algebra of the set. This general

definition is useful to isolate the main difference between the
notions of controllability and universality. For instance, global
evolution of a spin system may require complex protocols to
implement two-qubit gates on distant sites, even if it permits
complete controllability.

The specific problem addressed here is the following: we
study controllability by the alternate application of two Hamil-
tonians. One of the Hamiltonians describes a nearest-neighbor
interaction defined by some graph. The other Hamiltonian
is a projector given by the characteristic vector of a subset of
vertices. This describes an interaction between every two spins
associated to the elements of the subset.

Our main result is to characterize a large family of
graphs that give a pair of Hamiltonians implementing any
quantum dynamics, thereby rendering a system controllable
(Sec. II). The result can be seen as an analog of the Burgarth-
Giovannetti infectivity criterion [10] in this setting involving
two Hamiltonians. A comparison with the infectivity criterion,
possibly with the use of the notion of zero forcing [11], remains
an open question. It is also an open problem to determine the
necessity of our condition.

The proofs follow easily from facts of Lie theory and alge-
braic properties of graphs. The members of this family present
a particularly disordered cycle structure [12]. Specifically we
require that the number of cycles of a certain length, starting
from different vertices, cannot be written as a sum of the
numbers of smaller cycles. We show that this is a property
responsible for controllability when the Hamiltonian is the ad-
jacency matrix of the graph. Indeed, we use powers of the
adjacency matrix. These encode the cycles of a graph (see
the definition of a walk matrix that follows). In analogy with
a known result in quantum control theory of spin systems,
the path graph turns out to be arguably the simplest example
[1,4]. The setting is directly equivalent to a single excitation
evolving on an XY spin chain with constant couplings
(here XY means XX + YY , à la Bose [13]). The path is a
connected graph with a minimal number of edges; therefore,
it corresponds to a very sparse Hamiltonian. This is a fact
that should be taken into account, since sparse Hamilto-
nians can be simulated efficiently in a quantum computer
[14].

In general, if we focus only on the dynamics restricted
to the n-dimensional subspace, the physical device for
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implementation consists of any machine realizing QWs (e.g.,
an optical waveguide lattice [15]). While we do not modify
the circuitry for different tasks, an external clock is necessary,
since we need to know the time of application of each Hamil-
tonian, even if the resulting operation is just a phase factor. We
give evidence that our property is almost certain (Sec. II). This
is parallel to the fact that almost every (generic) Hamiltonian
gives sufficient control. For many types of graphs, the construc-
tion of an infinite family with a typical property may not be
straightforward (e.g., expanders, small-diameter graphs, etc.).
We present a method to construct infinite families of graphs
(without special constraints) that satisfy our required property
(Sec. III).

The results of the paper may translate into valuable
information in the perspective of designing schemes for
scalable quantum computation via local control (e.g., help
in the selection of the systems, the engineering of control
functions, etc.; see [2,4] for extended treatments of this topic).
From a wider angle, the results consist of a step toward a better
and more general understanding of quantum evolution on
networks. Additionally, we introduce concepts that propose an
interface between control theory and graph theory. Section II
contains the general result, examples are given in Sec. III, and
we draw some brief conclusions and state open problems in
Sec. IV.

II. CONTROLLABILITY

Let X = (V (X),E(X)) be a (simple) graph with a set of
n vertices V (X) and a set of edges E(X) ⊆ V (X) × V (X) −
{{i,i} : i ∈ V (X)}. The adjacency matrix of X, denoted by
A(X), is an n × n matrix with A(X)i,j = 1 if {i,j} ∈ E(X) and
A(X)i,j = 0, otherwise. The walk matrix of a graph contains
information about its cycle structure [16]. Let X be a graph on
n vertices and let z ∈ Rn. We define and denote by Wz(X) =
(z A(X)z · · · A(X)n−1z) an n × n matrix with entries in Z�0

associated to X. When z is the characteristic vector of some
set S ⊆ V (X), the matrix Wz(X) is called a walk matrix of X

with respect to S. In this case, we may write WS(X) instead
of Wz(X). Let X be a graph on n vertices and let z ∈ Rn. The
pair (X,z) is said to be controllable if the matrix Wz(X) is
invertible [i.e., det(Wz(X)) �= 0]. When z is the characteristic
vector of some set S ⊆ V (X), we may write (X,S) instead of
(X,z). The definition of a controllable graph arises as a special
case of a controllable pair. Let X be a graph and let 1 be the
all-ones vector. This is also the characteristic vector of V (X).
The graph X is said be controllable if (X,1) [or, equivalently,
(X,V (X))] is controllable.

Let us recall that a walk of length l in a graph X is a
sequence of vertices 1,2, . . . ,l,l + 1, such that {i,i + 1} ∈
E(X), for every 1 � i � l. The ij th entry of the walk matrix,
[W1(X)]i,j = ∑n

j=1 Al−1
i,j (X), counts the number of all walks

of length l − 1 from vertex i. Let d(i) := |{j : {i,j} ∈ E(X)}|
be the degreeof a vertex i. A graph X is regular if d(i) is
constant over V (X). Notice that a controllable graph cannot
be regular. In fact, the walk matrix of a regular graph
has rank 1, because 1 is one of its eigenvectors. One can
verify by exhaustive search that there are no controllable
graphs on n � 5 vertices. Figure 1 contains drawings of all
connected (nonisomorphic) controllable graphs on six vertices.

FIG. 1. Drawings of all connected nonisomorphic controllable
graphs on six vertices. The vector (d(i) : i ∈ V (X)) is the degree
sequence of X. The degree sequences of these graphs are particularly
irregular. Top row, from left to right: (1,2,2,2,3,4), (1,1,2,3,3,4),
(1,1,2,2,3,3), and (1,2,2,3,4,4). Bottom row, from left to right:
(1,2,2,3,3,3), (2,2,2,3,3,4), (1,2,3,3,3,4), and (2,2,3,3,4,4). There are
exactly 8, 85, and 2275 (connected) controllable graphs on 6, 7, and
8 vertices, respectively.

Numerics show that the ratio (number of graphs)/(number of
controllable graphs) decreases with n (see caption of Fig. 1
for small examples). We expect that, asymptotically, almost
surely every graph is controllable, also considering that the
automorphisms fixing the vertices of a controllable graph are
trivial.

A (continuous-time) quantum walk on a graph X, starting
from a state |ψ0〉 ∈ Cn, is the process induced by the rule
UM(X)(t)|ψ0〉 �→ |ψt 〉, where UM(X)(t) := e−iM(X)t (t ∈ R+)
and M(X) is a symmetric matrix with nonzero entries corre-
sponding to the edges of X (e.g., adjacency matrix, combina-
torial Laplacian, etc.). A probability distribution supported by
V (X) is obtained by performing a projective measurement on
the state |ψt 〉. The matrix M(X) can also be seen as governing
the dynamics of a system of spin-half particles restricted to a
single excitation subspace. The dimension of such a subspace
is in fact n. Here we work with adjacency matrices only, but the
results described are valid for any symmetric matrix. Studies of
perfect state transfer and entanglement transfer in spin systems
are often carried out with respect to this restriction [7]. QWs
and their discrete analogs (e.g., coined quantum walks, scalar
quantum walks, etc.) have found a number of algorithmic
applications. The reviews [5] give a detailed perspective on
this and related topics.

When choosing Hamiltonians of the form of M(X), the
question to ask about controllability is the following: can
we obtain any quantum dynamics on an n-level system by
performing repeated applications of QWs? Moreover, how
much can we limit our resources (e.g., number of non-
null interactions, number of different Hamiltonians, etc.)?
In particular, can we use just a single QW (i.e., a fixed
graph) plus an extra operation acting on a subspace of a
relatively small dimension? The last question is linked to core
questions in quantum control theory, where we are interested
in driving global dynamics by directly modifying only a
limited portion of the system under a parsimony criterion. In
the quantum-mechanical setup, controllability occurs together
with the ability of constructing with reasonable accuracy any
unitary matrix of the appropriate dimension (see Chap. 3 of
[1]). The corresponding property is expressed if we guarantee
density in U (n) of the group of unitaries realized as sequences
of QWs. Lemma 1 describes a relation between controllable
pairs and Lie algebras.
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Lemma 1. Let X be a graph and let z be the characteristic
vector of a set S ⊆ V (X). Let us define the symmetric (0,1)-
matrix L = zzT . If (X,S) is a controllable pair then the real Lie
algebra generated by the matrices A(X) and L is Matn×n(R),
the algebra of all n × n real matrices. The real Lie algebra
generated by iA(X) and iL is the vector space of all skew-
Hermitian matrices.

Proof. We prove by induction on k that the Lie algebra
generated by A = A(X) and L contains the matrices Ak−iLAi ,
with i = 0, . . . , k. The first claim in the lemma follows at once
from this. We note that there are integers cr such that LArL =
crL. If our Lie algebra contains the matrices Ak−iLAi , then
it contains the Lie products Ak+1−iLAi − Ak−iLAi+1, with
i = 0, . . . , k, and the partial sums Ak+1−iLAi − LAk+1, for all
i. In particular, it contains Ak+1L − LAk+1−i and, therefore,
also

LAk+1L − L2Ak+1 − Ak+1L2 + LAk+1L

= 2ck+1L − c0(Ak+1L + LAk+1)

for all i. From this, it follows that it contains LAk+1

and, therefore, all the monomials Ak+1−iLAi . Let us now
consider the second claim of the lemma. We say a matrix
is a commutator of degree r + 1 if it can be written as
AX − XA or LX − XL for some commutator of degree r ,
where the commutators of degree zero are the matrices in
the span of A and L. Since A and L are symmetric, we
see that all commutators of even weight are symmetric and
all commutators of odd weight are skew-symmetric. The
intersection of the space of symmetric matrices with the space
of skew-symmetric matrices is the zero subspace, from which
we deduce that the even-weight commutators span the space
of real symmetric matrices and the odd-weight commutators
span the space of skew-symmetric matrices. This implies that
the even-weight commutators in iA and iL span the space
of skew-symmetric matrices, with dimension (n2 − n)/2,
while the odd-weight commutators span a complementary
space of dimension (n2 + n)/2. This proves our second
claim. �

We remark that it is not hard to show that the matrices(
0 1

0 0

)
and

(
0 0

1 0

)

generate Mat2×2(R), but the real Lie algebra they generate is
s�(2,R) rather than g�(2,R). Lemma 1 is reminiscent of the
Lie algebra rank condition in quantum control theory. The
following result gives a sufficient condition to render a system
controllable by a QW.

Theorem 1. Let X be a graph and let z be the characteristic
vector of a set S ⊆ V (X). If (X,S) is a controllable pair then
the unitary matrices UA(X)(s) = e−iA(X)s and UL(t) = e−iLt ,
s,t ∈ R�0, generate a dense subgroup of the unitary group
U (n), n � 2.

Proof. Let G be the closed subgroup generated by the given
elements. Then it is a Lie subgroup of U (n), and its tangent
space is the Lie algebra generated by iA(X) and iL. Since X

is controllable, by Lemma 1, this Lie algebra is the space of
all skew-Hermitian matrices, which is the tangent space to the
unitary group U (n). It follows that G = U (n). �

If S = V (X) then z = 1 and the Hamiltonian L = J , the
all-ones matrix. For its unitary, we have UJ (t)k,l = 1

n
(n +

e−int − 1) if k = l and UJ (t)k,l = 1
n

(e−nit − 1) otherwise. In
fact, UM (t) is a polynomial in M with degree at most the degree
of the minimal polynomial of M . Among adjacency matrices,
this is the fullest possible Hamiltonian. Its implementation
has been discussed in several works [17]. The matrix UJ (t)
is essentially the same as the Grover operator used in
quantum search algorithms [18]. Turning our attention to
different characteristic vectors, we can prove a similar result
concerning the path graph. We denote by Pn the path of
length n − 1, that is, the graph on n vertices {1,2, . . . ,n} and
edges {1,2},{2,3}, . . . ,{n − 1,n} (where 1 and n are called
end vertices). Weighted paths are often used to model one-
dimensional (1D) spin chains. A control criterion concerning
the global space of 1D spin chains has been isolated in
[4]. Controllability of these systems and scalable quantum
computation has also been discussed in [4].

Corollary 1. Let Pn be the path on n vertices. The unitary
matrix UA(Pn)(s) = e−iA(Pn)s together with the diagonal unitary
matrix Ue1e

T
1
(t) = e−ie1e

T
1 t = [e−it ,1, . . . ,1], s,t ∈ R�0, where

e1 = (1,0, . . . ,0)T generates a dense subgroup of the unitary
group U (n), with n � 2.

Proof. We need to prove that W (Pn) =
(e1 A(Pn)e1 · · ·A(Pn)n−1e1) is invertible. Observe that the
first entry of the vector Al(Pn)e1 is a Catalan number Cl/2 =

2
l+2 ( l

l/2 ) if l is even and zero otherwise; the second entry

behaves similarly, with C(l+1)/2 = 2
l+3 ( l+1

(l+1)/2 ), but for l

odd [19]. For example, the first two rows of W (P7) are
(1,0,1,0,2,0,5) and (0,1,0,2,0,5,0). Moreover, the matrix
W (Pn) is upper triangular. Since Ck � ∑k

i=0 Ci , for every
k � 3, it follows that the rows of W (Pn) are linearly
independent. �

III. EXAMPLES

Given S ⊆ V (X), the cone of X relative to S is the graph
X̂S such that V (X̂S) = V (X) ∪ {0}, for a new vertex 0, and
E(X̂S) = E(X) ∪ {{0,i} : i ∈ S}. We denote by X\i the graph
obtained from X by deleting the vertex i and all its incident
edges.

Theorem 2. Given a graph X and a vertex 1 ∈ V (X), the
pair (X̂1,{0}) is controllable if (X,{1}) is.

Proof. We show that if u ∈ V (Z) for some graph Z,
then (Z,{u}) is controllable if and only if the characteristic
polynomials (of the adjacency matrices) φ(Z,t) and φ(Z\u,t)
are coprime. From the properties of X̂1, one can prove that
φ(X̂1,t) = tφ(X,t) − φ(X\1,t). From this, we deduce that if
φ(X,t) and φ(X\1,t) are coprime then so are φ(X̂1,t) and
φ(X,t). Now we derive our characterization of controllability.
Assume n = |V (X)|. Let e1 be the first vector of the standard
basis, and let Eθ denote the idempotent in the spectral
decomposition of A = A(X) that corresponds to θ (see [20],
pp. 186–187); it follows that

φ(X\1,t)

φ(X,t)
= [(tI − A)−1]1,1 =

∑
θ

(t − θ )−1eT
1 Eθe1.

We observe that the number of poles in the rational function
here is equal to the number of eigenvalues θ such that
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eT
1 Eθe1 �= 0; in other words, it is equal to the number of

eigenvalues θ such that the projection Eθe1 �= 0. Note also
that this number is n if and only if φ(X,t) and φ(X\1,t) are
coprime. To complete the argument, consider the walk matrix
We1 (X). By spectral decomposition (again), Are1 = ∑

θ Eθe1,
from which it follows that the column space of We1 (X) lies in
the span of the nonzero vectors Eθe1. Since each projection
Eθ is a polynomial in A, we conclude that rk(W ) is equal to
the number of eigenvalues θ of X such that Eθe1 �= 0. This
proves our characterization. �

A method based on the theorem can be used to construct
infinite families of controllable graphs, as follows.

Corollary 2. Let (X,S) be a controllable pair. If Y is the
graph obtained by joining one end vertex of the path to each
vertex in S, then Y is controllable.

IV. CONCLUSIONS

We have considered controllability and QWs. As a technical
tool, we have introduced the combinatorial notion of a
controllable pair. A graph and a subset of its vertices form
a controllable pair, when the structure of the graph exhibits
a certain type of disorder. The disorder is expressed by
the cycle structure of the graph, encoded in the entries of
powers of the adjacency matrix. We have proved that a QW
involving a such a pair renders a system controllable. By
this result, we can in principle perform universal quantum
computation as an alternating sequence of QWs on two graphs,
or on the same graph, but interspersed with phase factors.
Including fault tolerance in this picture would encounter hard
obstacles because of the sensitivity to phenomena linked to
decoherence and Anderson localization [21]. An issue related
to the more abstract aspects is the lack of transparency
when trying to design algorithms with a logic that requires
operations on specific subsystems. We conclude by stating four
problems:

1. Let G be a subgroup of U (n) which fixes |ψ〉 ∈ Cn

(n � 3) and let V ∈ U (n) − G. Then, the group 〈G,V 〉 [i.e.,
the subgroup of U (n) generated by G and V ] is dense in
U (n) (see, e.g., Lemma 20 in [22]). Is there an analog to this
statement for dynamical Lie algebras generated by adjacency
matrices? In particular, let z be the characteristic vector of
S ⊆ V (X) and let P be a permutation matrix corresponding
to an automorphism of X. When Pz = z, it follows that
PWS(X) = WS(X) and then P = I because det(WS(X)) �= 0.
This means that the automorphisms of X fixing S are trivial
if (X,S) is controllable. Is this the most general condition for
controllability?

2. Can we lift the combinatorial criterion for controllability
introduced in this paper to general criteria for controllability
of spin systems?

3. In the study of controllability by adjacency matrices,
when the time of application of each Hamiltonian is con-
strained, determining relations between quantum control by
nearest-neighbor interaction on graphs and classical simulata-
bility of the associated dynamics is an open problem.

4. What can be said about controllability by acting only
on a connected induced subgraph? If the number of vertices
is constrained, the optimum may be difficult to compute. This
would be parallel to the Burgarth-Giovannetti criterion, whose
optimum is difficult even to approximate [23].
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