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Two-particle quantum walks applied to the graph isomorphism problem
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We show that the quantum dynamics of interacting and noninteracting quantum particles are fundamentally
different in the context of solving a particular computational problem. Specifically, we consider the graph
isomorphism problem, in which one wishes to determine whether two graphs are isomorphic (related to each
other by a relabeling of the graph vertices), and focus on a class of graphs with particularly high symmetry
called strongly regular graphs (SRGs). We study the Green’s functions that characterize the dynamical evolution
single-particle and two-particle quantum walks on pairs of nonisomorphic SRGs and show that interacting
particles can distinguish nonisomorphic graphs that noninteracting particles cannot. We obtain the following
specific results. (1) We prove that quantum walks of two noninteracting particles, fermions or bosons, cannot
distinguish certain pairs of nonisomorphic SRGs. (2) We demonstrate numerically that two interacting bosons
are more powerful than single particles and two noninteracting particles, in that quantum walks of interacting
bosons distinguish all nonisomorphic pairs of SRGs that we examined. By utilizing high-throughput computing
to perform over 500 million direct comparisons between evolution operators, we checked all tabulated pairs of
nonisomorphic SRGs, including graphs with up to 64 vertices. (3) By performing a short-time expansion of
the evolution operator, we derive distinguishing operators that provide analytic insight into the power of the
interacting two-particle quantum walk.
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I. INTRODUCTION

Random walks have been applied successfully to many
problems in physics, as well as in many other disciplines,
stretching from biology to economics [1–5]. Most of these
applications use classical random walks (CRWs), in which
quantum mechanical principles are not considered. However,
more recently, researchers have found that CRWs and quantum
random walks (QRWs) can exhibit qualitatively different prop-
erties [6–8]. From a standpoint of algorithms research, these
disparities lead to situations in which algorithms implemented
by QRWs can be proven to run faster than the fastest possible
classical algorithm [9–15].

Besides being useful as theoretical models, simple QRWs
have already been experimentally implemented in externally
driven cavities [16], arrays of optical traps [17,18], NMR
systems [19], and ion traps [20,21]. This, coupled with new
ideas for realistic physical implementations of nontrivial walks
[22], indicates that studying algorithms cast as QRWs might
lead to algorithms that are both powerful and experimentally
viable.

Although QRWs are universal and therefore, in principle,
can be used to implement any quantum algorithm [23], in
practice some information-theoretic problems lend themselves
to a QRW approach more easily than others. Many of the
problems that have been investigated are expressed naturally
using graphs, sets of vertices and edges, with each edge
connecting two vertices. For example, the vertices of a graph
might be taken to represent individuals, and the edges between
them might indicate friendship. A question one could ask is
whether there is a subset of friends isolated from the rest of
the group, which translates to the graph-theoretic question
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of whether the graph is disconnected. Once the question to be
answered is posed as a question about a graph, it is investigated
by constructing a quantum Hamiltonian from that graph.
The dynamics of the system is then analyzed using quantum
mechanics and is used to make statements about the original
graph, hopefully giving insight to the answer of the original
problem.

This paper addresses the graph isomorphism (GI) problem,
where, given two graphs, one must determine whether or not
they are isomorphic (two graphs are isomorphic if one can
be obtained from the other by a relabeling of the vertices).
Although many special cases of GI have been shown to be
solvable in a time that scales as a polynomial of the number
of vertices, the best general classical algorithm to date runs in
time O(cN1/2 log N ), where c is a constant and N is the number
of vertices in the graphs being compared [24].

GI has several properties analogous to those of factoring.
First, although it appears to be difficult, it is felt that it is
unlikely to be NP-complete, since otherwise many complexity
classes believed to be distinct would collapse.1 Second, both
GI and factoring can be viewed as hidden subgroup problems.
In GI, one is looking for a hidden subgroup of the permutation
group, while in factoring, one is looking for a hidden subgroup
of the Abelian group. The success of Shor’s polynomial-time
algorithm for factoring [25] has led several researchers to
investigate a hidden-subgroup approach to GI. However, the
obstacles facing such an approach have been shown to be
formidable [26,27].

Researchers have also recently attacked GI using various
methods inspired by physical systems. Rudolph mapped the
GI problem onto a system of hard-core atoms [28]. One atom

1Specifically, it has been shown that if GI is NP-complete, the
polynomial hierarchy collapses to level 2 [42].
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was used per vertex, and atoms i and j interacted if vertices
i and j were connected by edges. He showed that pairs of
nonisomorphic graphs exist whose original adjacency matrices
have the same eigenvalues, while the induced adjacency
matrices describing transitions between three-particle states
have different eigenvalues. Gudkov and Nussinov proposed a
physically motivated classical algorithm to distinguish noni-
somorphic graphs [29]. Shiau et al. proved that the simplest
classical algorithm fails to distinguish some pairs of noni-
somorphic graphs [30] and also proved that continuous-time
one-particle QRWs cannot distinguish some non-isomorphic
graphs [30]. Douglas and Wang modified a single-particle
QRW by adding phase inhomogeneities, altering the evolution
as the particle walked through the graph [31]. Their approach
was powerful enough to successfully distinguish many families
of graphs considered to be difficult to distinguish, including
all families of strongly regular graphs (SRGs) they tried.
Most recently, Emms et al. used discrete-time QRWs to build
potential graph invariants [32,33]. Through numerical spectral
analysis, they found that these invariants could be used to
distinguish many types of graphs by breaking the eigen-
value degeneracies of families of graphs that are difficult to
distinguish.

In addition to studying single-particle QRWs, Shiau et al.
[30] performed numerical investigations of two-particle QRWs
and presented evidence that interacting bosons can distinguish
nonisomorphic pairs that single-particle walks cannot. There,
it was also found numerically that two-boson QRWs with non-
interacting particles do not distinguish some nonisomorphic
pairs of graphs. In contrast to the approaches in Refs. [31–33],
the two-particle QRW algorithm does not lower the symmetry
of the system.

In this paper, we extend the results on two-particle quantum
walks of [30] in several ways. First, we prove analytically that
quantum walks of two noninteracting bosons always fail to
distinguish nonisomorphic pairs of SRGs. This result is sur-
prising, since it has been shown in [34–36] that noninteracting
boson QRWs on graphs can give rise to effective statistical
interactions, which significantly alter the dynamics of the
system. Second, we show that analysis of the behavior of non-
interacting fermions requires a more subtle treatment than was
done in [30]; the result in [30] that some nonisomorphic SRGs
could be distinguished by two noninteracting fermions, and not
by two noninteracting bosons, arose because of an ambiguity
in the choice of basis. When the ambiguities involved with the
basis choice for fermions are accounted for, noninteracting
fermions fail to have any advantage over noninteracting
bosons. Third, we expand on the initial numerical results
in [30], exhaustively verifying, where only sampling was used
before, that two-particle interacting boson walks distinguish
all nonisomorphic pairs of SRGs that have been tabulated,
including graphs with up to 64 vertices. To accomplish this, we
used high-throughput computing techniques to perform more
than 500 million comparisons between evolution operators
of graphs. Finally, we examine the small-time expansion of
the evolution operator and use the two-particle interacting
evolution to derive candidates for graph invariants, which
appear in the fourth and sixth orders in time.

Our results demonstrate unambiguously that two-particle
bosonic quantum walks have more computational power if

the particles are interacting, because interacting walks can be
used to distinguish nonisomorphic graphs that noninteracting
particles cannot.

The paper is organized as follows. Section II introduces
relevant background and definitions to QRWs on graphs,
including a brief overview of the SRGs on which the algo-
rithms are tested and also a review of the one-particle QRW
algorithm considered in [30]. Section III proves that QRWs of
two noninteracting bosons do not distinguish nonisomorphic
SRGs with the same family parameters. Section IV analyzes
the QRW of two noninteracting fermions. It shows that
improper basis choice can lead to false distinguishment and
that, when the basis is chosen consistently, QRWs with
two noninteracting fermions are unable to distinguish some
pairs of nonisomorphic SRGs. Section V shows through
exhaustive simulation that all tabulated families of SRGs
are successfully distinguished by a two hard-core boson
QRW. In Sec. VI a short-time expansion of the evolution
operator is computed, and distinguishing operators present
in the two hard-core boson QRWs are identified. Finally,
Sec. VII summarizes and discusses the possible implica-
tions of our results for the development of algorithms
based on interacting QRWs for distinguishing nonisomorphic
graphs.

II. BACKGROUND AND DEFINITIONS

This section describes the background and definitions
necessary to study QRWs on graphs. First, we introduce
the graph-theoretic concepts we will need, including the
notions of the adjacency matrix and the spectrum of a graph.
Then we consider how to use these tools to construct a
physical process through the definition of a Hamiltonian and
Green’s functions (GFs), for both one and two particles.
Next, we detail the relevant properties of SRGs. Finally,
we review the method of [30] to use the properties of
SRGs to show that the GFs of single-particle QRWs do
not distinguish nonisomorphic SRGs with the same family
parameters.

A. Constructing walks on graphs

In this section, we describe how to form QRWs on graphs.
A graph G = (V,E) is a set of vertices V and edges E.
The vertices are usually labeled with integer indices, and
the edges are unordered pairs of vertices. Two vertices that
share an edge are called connected, while two vertices that do
not are called disconnected. The total number of neighboring
vertices of a particular vertex is called its degree. For example,
the graph G = ({1,2,3,4},{(1,2),(2,3),(3,4),(4,1)}) is a cycle
graph with four vertices. Two graphs are isomorphic if
they can be made identical by relabeling their vertices. For
example, the graph H = ({1,2,3,4},{(1,3),(3,2),(2,4),(4,1)})
is isomorphic to G, since after relabeling 2 ↔ 3, the two
graphs are equivalent.

Graphs are conveniently expressed algebraically as adja-
cency matrices. An adjacency matrix A of a graph with N

vertices is an N × N matrix in the basis of vertex labels, with
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Aij = 1 if vertices i and j are connected by an edge, and 0
otherwise. The adjacency matrix for graph G is

AG =

⎛
⎜⎜⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠ . (1)

The spectrum of a graph is the eigenvalue spectrum of its
adjacency matrix. The spectrum of G is {−2,0,2}, with 0
twofold degenerate.

To form a QRW on a graph, we first define a Hamiltonian.
We use the Hubbard model, with each site corresponding to
a graph vertex. A particle can make a transition between two
sites if the associated vertices are connected. In addition, if two
walkers happen to simultaneously occupy a site, we impose a
double-occupation energy cost U . Our Hamiltonian is

H = −
∑
i,j

Aij c
†
i cj + U

2

∑
i

(c†i ci) (c†i ci − 1), (2)

where c and c† are boson or (spinless) fermion creation

and annihilation operators. If we restrict ourselves to single-
particle states, we find matrix elements

〈i|H|j 〉 = −Aij . (3)

Hence, we can easily identify the single-particle Hamiltonian,

H1P = −A. (4)

Similarly, we can define two-particle Hamiltonians by their
matrix elements. For these, we need to use either bosonic or
fermionic basis states. The boson states are

|ij 〉B ≡
{ 1√

2
(|ij 〉 + |ji〉) : i �= j,

|ii〉 : i = j,
(5)

and the fermion states are

|ij 〉F ≡ 1√
2

(|ij 〉 − |ji〉). (6)

We now restrict ourselves to two particles, where we define
H2B and H2F to be the two-particle boson and fermion
Hamiltonians. These are special cases of Eq. (2), with matrix
elements

B〈ij |H2B |kl〉B ≡ B〈ij |H|kl〉B =

⎧⎪⎨
⎪⎩

−δikAjl − δjlAik − δilAjk − δjkAil : i �= j and k �= l,

Uδik : i = j and k = l
−1√

2
(δikAjl + δjlAik + δilAjk + δjkAil) : i = j x or k = l,

,

(7)
F 〈ij |H2F |kl〉F ≡ F 〈ij |H|kl〉F = Aikδjl + Ajlδik − Ailδjk − Ajkδil : i �= j and k �= l,

respectively, where the matrix elements are found directly from
Eq. (2) through the application of appropriate commutation
relations.

From each of these Hamiltonians, we define the QRW time-
evolution operator as

U = e−itH, (8)

where we set h̄ = 1 for notational convenience.
To study the dynamics of the system, we define the two-

particle GF, which relates the wave functions at a time t to
those at time t = 0. For two-particle position states |ψ〉 and
|ψ ′〉, it is

G[ψ(0),ψ ′(t)] = 〈ψ(0)|ψ ′(t)〉 = 〈ψ(0)|U|ψ ′(0)〉. (9)

Letting (ψ,ψ ′) run over a complete two-particle basis,
G[ψ(0),ψ ′(t)] considered at a fixed time provides us with
a set of N2(N + 1)2/4 complex numbers for bosons or
N2(N − 1)2/4 complex numbers for fermions. These lists
completely characterize the dynamics of the system. Hence,
when we analyze QRWs, we say that a particular scheme
distinguishes two graphs if their GFs supply us with two
different lists.

B. Strongly regular graphs

Our major results in this paper focus on algorithms over
SRGs, which are difficult to distinguish. In this section, we

develop the properties of SRGs we will need for our later
analysis.

An SRG is a graph in which (a) all vertices have the
same degree, (b) each pair of neighboring vertices has the
same number of shared neighbors, and (c) each pair of non-
neighboring vertices has the same number of shared neighbors.
This definition permits SRGs to be categorized into families
by four integers (N,k,λ,µ), each of which might contain many
nonisomorphic members. Here, N is the number of vertices in
each graph, k is the degree of each vertex (k regularity), λ is the
number of common neighbors shared by each pair of adjacent
vertices, and µ is the number common neighbors shared by
each pair of nonadjacent vertices.

Using the stringent constraints placed on SRGs, one can
show that, regardless of size, the spectrum of any SRG only
has three distinct values [37]:

λ0 = −k, (10)

which is nondegenerate, and

λ1,2 = −1

2
(λ − µ ±

√
N ), (11)

which are both highly degenerate. Both the value and the
degeneracy of these eigenvalues depend only on the family
parameters, so within a particular SRG family, all graphs
are cospectral [37]. Further, the spectra of the two-particle
Hamiltonians formed from SRG adjacency matrices, as
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FIG. 1. (Color online) Energy spectra for QRWs of (i) one
particle, (ii) two noninteracting fermions, (iii) two noninteracting
bosons, and (iv) two hard-core bosons in the SRG family (16,6,2,2).
Here the units are the physical coupling between nodes, which is set
to 1 in the text for simplicity. The parameters (N,k,λ,µ) define an
individual SRG family, where N is the number of vertices in each
graph, k is the degree of each vertex (k regularity), λ is the number of
common neighbors shared by each pair of adjacent vertices, and µ is
the number of common neighbors shared by each pair of nonadjacent
vertices. Both graphs in the family have the same spectra. In all four
panels, the Hamiltonian used is the Hubbard model [Eq. (2)], with
U = 0 in the noninteracting cases and U → ∞ for hard-core bosons.
Degeneracies are given to the right of each level.

described in Eq. (7), are also highly degenerate. As shown
in Fig. 1 for the family (16,6,2,2), the interacting case gives
us the largest number of distinct energy levels. These highly
degenerate spectra are one reason why distinguishing noni-
somorphic SRGs is difficult—it is known that distinguishing
nonisomorphic graphs with spectra with bounded degeneracy
can be done with polynomially bounded resources [38].

The adjacency matrix of any SRG satisfies the useful
relation [37]

A2 = (k − µ)I + µJ + (λ − µ)A, (12)

where I is the identity and J is the matrix of all 1s (Jij = 1
for all i,j ). Since J2 = NJ and I2 = I, this forms a three-
dimensional algebra, and we can write

An = αnI + βnJ + γnA, (13)

where α, β, and γ are functions only of the family parameters.
That is, all SRGs of the same family have the same coefficients.

Although many SRGs are known [39], there are substan-
tially fewer tabulated families with more than one nonisomor-
phic member. Complete and partial families of SRGs have been
tabulated through combinatorial techniques [40,41], which we
use in Sec. V to perform numerical tests of our algorithms.

C. Review of the one-particle algorithm

In this section, we review the method used in Ref. [30]
to prove that a single-particle QRW cannot distinguish

nonisomorphic members of SRG families. Formally, this
means that we must show that any two SRGs of the same
family parameters have the same single-particle GFs G1P .

First, we consider the adjacency matrix A and suppose that it
belongs to the strongly regular graph family (N,k,λ,µ). Then,
by Eq. (4), we know that the single-particle Hamiltonian is
H1P = −A, and so by Eq. (8), the QRW evolution operator is
U1P = eitA. But since A is a SRG, we make use of the algebra
defined in Eq. (13) to write

U1P = αI + βJ + γ A, (14)

where the coefficients depend only on the family parameters.
Following Shiau et al., we investigate the relevant GFs,

G1P (i,j ) = 〈i|U1P |j 〉. We first consider the diagonal elements,
each of which contains a contribution of α from I and β from
J. Note that there is no contribution from A, because it is
entirely off-diagonal. Hence, the N diagonal GFs are all equal
to α + β. For the off-diagonal elements, I never contributes
and J always does. However, A contributes to only some of the
elements. More precisely, each column in A contains exactly k

1s (entirely in the off-diagonal), since each vertex is of degree
k. Hence, there are kN off-diagonal GFs of the form β + γ ,
and the remaining N2 − N − kN are equal to β.

As can be seen from Eq. (13), α, β, and γ all depend only
on the family parameters. Therefore, the one-particle evolution
for any graph in the same family will have the same GFs, and
the algorithm based on single-particle quantum evolution fails
to distinguish any nonisomorphic SRGs that are in the same
family.

III. PROOF THAT QUANTUM RANDOM WALKS WITH
TWO NONINTERACTING BOSONS DO NOT

DISTINGUISH NONISOMORPHIC STRONGLY
REGULAR GRAPHS IN THE SAME FAMILY

We now develop exact expressions for the time-evolution
operators for two noninteracting bosons and subsequently
show that this evolution cannot be used to distinguish noniso-
morphic SRGs in the same family. Although this result may
seem expected, recent efforts [34–36] have demonstrated that
noninteracting QRWs on nontranslationally invariant graphs
lead to effective, statistical interactions, resulting in rich
physical phenomena such as Bose-Einstein condensation. The
method used here is analogous to that used in Ref. [30] to show
that one-particle QRWs cannot distinguish nonisomorphic
SRGs from the same family, but with a more complex
implementation.

First, we note that we may write the Hamiltonian for any
two-boson QRW as

H2B = − 1
2 (I + S)(A ⊕ A) + UR, (15)

where A ⊕ A = A ⊗ I + I ⊗ A is a Kronecker sum, the matrix
special case of a direct sum, and

S =
∑
i,j

|ij 〉〈ji|, R =
∑

i

|ii〉〈ii|. (16)
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The demonstration that Eq. (15) is equivalent to Eq. (7) is
given in Appendix A. For noninteracting bosons U = 0, and
the evolution operator is

U2B = e−itH2B

=
∞∑

n=0

1

n!

(
it

1

2
(I + S)(A ⊕ A)

)n

, (17)

where U2B is shorthand to refer only to the noninteracting case.
Now, by the definitions of the Kronecker sum and S, it is easy
to show that [(I + S),(A ⊕ A)] = 0. Hence,

U2B =
∞∑

n=0

1

n!

(
it

1

2

)n

(I + S)n(A ⊕ A)n. (18)

But note that S2 = I, so (I + S)n = 2n−1(I + S). It follows that

U2B = 1
2 (I + S)eitA⊕itA. (19)

Since each matrix A in the Kronecker (direct) sum exponen-
tiates in its own product space, we can write eA⊕B = eA ⊗ eB,
which leads to

U2B = 1
2 (I + S)eitA ⊗ eitA

= 1
2 (I + S)U1P ⊗ U1P , (20)

where the single-particle evolution operator U1P is defined in
Eq. (8) for H = −A. Since the boson states are symmetric
under particle interchange, we have matrix elements

B〈ij |U2B |kl〉B = B〈ij |U1P ⊗ U1P |kl〉B. (21)

Expanding this using Eq. (14), we have

B〈ij |U2B |kl〉B = B〈ij |(α2I ⊗ I + β2J ⊗ J

+ γ 2A ⊗ A + αβ(J ⊕ J) + αγ (A ⊕ A)

+βγ (J ⊗ A + A ⊗ J))|kl〉B. (22)

Now that we have determined the matrix elements of U2B ,
we can work out all the cases for Eq. (22), which are the GFs
of the system. We find that there are 22 possible values, each
of which can be written as an explicit function of α, β, and γ .
Since the values of the matrix elements are all only functions
of SRG family parameters, they are the same for all graphs
in the same SRG family. To show that the GFs are the same
across a SRG family, we also need to show that the number
of occurrences of each value is also a function only of SRG
parameters. In Appendix B we count all the types of these GFs
in terms of SRG family parameters, with the results shown in
Table I.

Because we have shown that both the values and the number
of occurrences of all of the two-particle GFs for noninteracting
bosons can be written in terms of the family parameters N , k,
λ, and µ, we demonstrated that two noninteracting bosons
cannot distinguish non-isomorphic SRGs of the same family.

IV. ANALYSIS OF THE NONINTERACTING
TWO-FERMION EVOLUTION FOR STRONGLY

REGULAR GRAPHS

In this section we consider the analogous evolution gen-
erated by two noninteracting fermions. This analysis is more

complicated than for bosons because changing the two-particle
basis can introduce sign changes. If this sign ambiguity is not
accounted for properly, the algorithm may falsely distinguish
two graphs that are actually isomorphic.

The Hamiltonian for the two-fermion QRW, H2F , is

H2F = 1
2 (I − S)(A ⊕ A), (23)

where, again, I is the identity, S is the operator that swaps the
two particles, A is the adjacency matrix of the graph, and ⊕
denotes a direct sum. We follow the same logic we did for the
bosons but let t → −t ,

U2F (−t) ≡ U2F . (24)

This way, the single-particle evolution operator U1P still has
time running forward. The matrix elements of U2F are given
by

F 〈ij |U2F |kl〉F = F 〈ij |(α2I ⊗ I + β2J ⊗ J + γ 2A ⊗ A

+αβ(J ⊕ J) + αγ (A ⊕ A)

+βγ (J ⊗ A + A ⊗ J))|kl〉F . (25)

We now show that there are sign ambiguities in UF that arise
from the choice of basis states that one uses when converting
a graph to an adjacency matrix. As an example, consider the
two isomorphic graphs shown in Fig. 2, which have adjacency
matrices

A =
⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ , B =

⎛
⎝ 0 1 1

1 0 0
1 0 0

⎞
⎠ . (26)

We wish to write down the two-particle Hamiltonians using
Eq. (7). However, we must first pick a basis. That is, for each
pair of sites |ij 〉 ≡ |ji〉, we are free to pick either ordering, but
we cannot choose both. Supposing we pick {|12〉,|13〉,|23〉};
we get

HA =
⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ , HB =

⎛
⎝ 0 1 −1

1 0 0
−1 0 0

⎞
⎠ . (27)

1

2

3

1

3

2

Case A:

Case B:

FIG. 2. Two clearly isomorphic graphs. Graph A differs from
graph B only by the labeling of vertices 2 and 3. Despite this, some
matrix elements of two-particle fermion evolution operators UF of
the two graphs have opposite signs. This result implies that using the
numerical values of these matrix elements produces a false positive:
two isomorphic graphs are falsely distinguished.
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TABLE I. Enumeration of the Green’s functions (GFs) for QRWs with two noninteracting bosons on a SRG with family parameters
(N,k,µ,λ). The Hamiltonian considered is H2B = −1/2 × (I + S)(A ⊕ A), where S swaps the two particles and A is the adjacency matrix of
the graph. Because A, I, and J form an algebra, the parameters α, β, and γ are the same for every graph in an SRG family [Eq. (13)]. The
evolution operator for noninteracting bosons, U2B = 1/2 × (I + S)U1P ⊗ U1P , contains terms bilinear in I, J, and A, with coefficients that can
be written in terms of α, β, and γ . The GFs, formed by taking matrix elements of U2B [Eq. (9)], are divided into symmetry classes (a,b),
where a indicates the number of distinct basis indices and b is the number of indices shared between the left and the right sides. For example,
〈34|BU2B |24〉B , where |ij〉B indicates identical bosons on vertices i and j , falls into the symmetry class (3,1), since it has three distinct indices
(2,3,4) and the left and right sides have one index in common (2). Since the total number of entries with any given particular value can be
counted in terms of numbers that are constant for a given set of family parameters, the GFs generated by nonisomorphic members of the same
SRG family must have the same values and the same degeneracies.

Element class Value of element Number of occurrences

(4,0) 4βγ + 2γ 2 + 2β2 1/4 × N{k2(µ + 1) + k[λ2 − λ(µ + 2) + µ − 1] − 2(N − 1)µ}
3βγ + γ 2 + 2β2 Nµ(N − k − 1)(k + λ − µ)
2βγ + 2β2 + γ 2 1/(2k) × {N (N − k − 1)[k3 − 2k2µ + (N − 1)µ2]}

2βγ + 2β2 1/k × {N (N − k − 1)[k3 − k2(2µ + 1) + (N − 1)µ2]}
βγ + 2β2 1/k × {N (k − N + 1)(k − µ)[k(2k − N + 2) − Nµ + µ]}
2β2 + γ 2 1/(4k) × (N (N − k − 1){k[−3kN + k(3k + 8)

+N 2 − 5N + 6] − 2k(k + 1)µ + (N − 1)µ2})
Subtotal 1/4 × N (N − 1)(N − 2)(N − 3)

(3,0) 4/
√

2 · βγ + 2/
√

2 · β2 + 2/
√

2 · γ 2 kN (k − λ − 1) + kNλ

2/
√

2 · βγ + 2/
√

2 · β2 2kN (N − k − 1)
2/

√
2 · β2 N (k − N + 1)(k − N + 2)

Subtotal N (N − 1)(N − 2)

(3,1) αβ + αγ + 3βγ + 2β2 + γ 2 kNλ

αβ + 2βγ + 2β2 + γ 2 N (N − 1 − k)µ
αβ + αγ + 2βγ + 2β2 2N (N − 1 − k)µ
αβ + αγ + βγ + 2β2 kN (−2k + N + λ)

αβ + βγ + 2β2 2kN (−2k + N + λ)
αβ + 2β2 N (1 + k − N )(2 + 2k − N − µ)

Subtotal N (N − 1)(N − 2)

(2,0) 2βγ + β2 + γ 2 kN

β2 N (N − k − 1)
Subtotal N (N − 1)

(2,1) 2/
√

2 · (αβ + αγ + βγ + β2) 2kN

2/
√

2 · (αβ + β2) 2N (N − k − 1)
Subtotal 2N (N − 1)

(2,2) α2 + 2αβ + 2βγ + 2β2 + γ 2 1/2 × kN

α2 + 2αβ + 2β2 1/2 × N (N − k − 1)
Subtotal 1/2 × N (N − 1)

(1,2) α2 + 2αβ + β2 N

Total 1/4 × N2(N + 1)2

Forming the evolution operators U = e−itH, we have

UA =

⎛
⎜⎜⎜⎝

(
cos(

√
2t)

2 + 1
2

)
− i sin(

√
2t)√

2

(
cos(

√
2t)

2 − 1
2

)
− i sin(

√
2t)√

2
cos(

√
2t) − i sin(

√
2t)√

2(
cos(

√
2t)

2 − 1
2

)
− i sin(

√
2t)√

2

(
cos(

√
2t)

2 + 1
2

)

⎞
⎟⎟⎟⎠ (28)

and

UB =

⎛
⎜⎜⎜⎝

cos(
√

2t) − i sin(
√

2t)√
2

i sin(
√

2t)√
2

− i sin(
√

2t)√
2

(
cos(

√
2t)

2 + 1
2

) (
1
2 − cos(

√
2t)

2

)
i sin(

√
2t)√

2

(
1
2 − cos(

√
2t)

2

) (
cos(

√
2t)

2 + 1
2

)

⎞
⎟⎟⎟⎠ . (29)

The values of the matrix elements of these two evolution
operators clearly have sign differences. If we had taken into
account that the second and third labels had been switched in
graph B, we would have chosen the basis to be {|12〉,|13〉,|32〉},
fixing the factors of −1. Unfortunately, in a situation where
we are handed two graphs and asked whether or not they
are isomorphic, we do not know a priori what the correct
basis choice should be for proper testing. Moreover, because
the number of possible basis choices is 2N , checking all of
them is not feasible. We adopt here a simple strategy that
eliminates this dependence of the sign on the choice of basis
that arises for more than one fermion; we compare the absolute
value of the elements, rather than the elements themselves. The
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TABLE II. Enumeration of the Green’s functions (GFs) for QRWs of two noninteracting fermions. The Hamiltonian for two noninteracting
fermions is H2F = 1/2 × (I − S)(A ⊕ A), where S swaps the two particles and A is the adjacency matrix of the graph. Hence, the two-Fermion
evolution operator, defined with t → −t to keep U 1P running with forward time, is U2F = 1/2(I − S)U1P ⊗ U1P . It contains terms bilinear in
I, J, and A, with coefficients written as combinations of α, β, and γ , where the parameters α, β, and γ are defined in Eq. (14). We divide the
matrix elements 〈ij |F U2F |kl〉F of the GFs into classes (a,b), where a indicates the number of distinct indices and b is the number of indices
shared between the left and the right sides. For example, 〈34|F U2F |24〉F falls into class (3,1), since it has three distinct indices (2,3,4) and the
left and right sides have the index (2) in common. The ± preceding some of the element values indicates that the count applies to all elements
with the given magnitude; this is done because the number of elements with each sign depends on the choice of a two-particle basis. The total
number of matrix elements with a given absolute value can be expressed in terms of the SRG family parameters. Therefore, we conclude that
the matrix elements of the GFs of two nonisomorphic members of the same SRG family must be equivalent up to sign differences.

Element class Value of element Number of occurrences

(4,0) 0 1/(4k) × n{−6k4 + 2k3(5n + 6µ − 7) − 4k2(n − 1)(n + 3µ − 2)
+ k(n − 1)[(n − 5)n − 6µ2 + 6] + 6(n − 1)2µ2}

±(βγ + γ 2) Nµ × (N − k − 1)(k + λ − µ)
±(γ 2 + 2βγ ) 1/k × {N (N − k − 1)[k3 − 2k2µ + (N − 1)µ2]}

±βγ 1/k × {N (k − N + 1)(k − µ)[k(2k − N + 2) − Nµ + µ]}
Subtotal 1/4 × N (N − 1)(N − 2)(N − 3)

(3,1) ±(αβ + αγ − βγ − γ 2) kNλ

±(αβ − 2βγ − γ 2) N (N − 1 − k)µ
±(αβ + αγ ) 2N (N − 1 − k)µ

±(αβ + αγ + βγ ) kN (−2k + N + λ)
±(αβ − βγ ) 2kN (−2k + N + λ)

±αβ N (1 + k − N )(2 + 2k − N − µ)
Subtotal N (N − 1)(N − 2)

(2,2) α2 + 2αβ − 2βγ − γ 2 1/2 × kN

α2 + 2αβ 1/2 × N (N − k − 1)
Subtotal 1/2 × N (N − 1)

Total 1/4 × N2(N − 1)2

absolute values of all the elements and their degeneracies are
reported in Table II. The absolute values and degeneracies can
be expressed as explicit functions of family parameters, so
we conclude that two noninteracting fermions, as well as two
noninteracting bosons, fail to distinguish nonisomorphic SRGs
from the same family. The enumeration of the three classes of
matrix elements allowed by UF are listed in Table II, where the
± symbol indicates that the count given is the total of elements
of either sign.

V. NUMERICAL TESTING OF EVOLUTIONS OF RANDOM
WALKS OF INTERACTING PARTICLES

In the preceding two sections we have proven that
QRWs with two noninteracting particles are not useful for
distinguishing nonisomorphic SRGs from the same family. In
this section we perform a systematic investigation of the ability
of QRWs of two interacting bosons to distinguish nonisomor-
phic SRGs. We go beyond the sampling performed in [30]
by exhaustively checking the two-boson interacting QRW on
all tabulated SRG families with more than one member. Our
work shows that this walk succeeded in all trials preformed,
including successfully distinguishing the (36,15,6,6) SRG
family, which has 32 548 nonisomorphic members. We used
the following procedure for each pair of graphs in each
family.

1. Begin with the (complex) evolution matrix UA.
2. Take the magnitude of each element.
3. Write all the (real) entries in a list, XA.
4. Sort the list.
5. Compare the list using

� =
∑

j

|XA[j ] − XB[j ]|. (30)

Note that for any two isomorphic graphs, � = 0, so if � �=
0, we can conclude that the graphs are not isomorphic. Table III
presents our results, which show that QRWs of two hard-core
bosons successfully distinguished all pairs of nonisomorphic
graphs in all SRG families tested.

The process of numerically checking that each pair of
nonisomorphic graphs was indeed distinguished by our al-
gorithm was computationally intensive. First, to calculate
U = e−itH, one must diagonalize H. For the N = 64 cases
we considered, since the two-particle space has dimension
64 × (64 + 1)/2 = 2080, we needed to diagonalize large,
nonsparse matrices. Further, we needed to perform many
comparisons to generate all the candidates for the minimum
�. For example, for the (36,15,6,6) family, one needs to
perform (32 548 × 32 547)/2 = 529 669 878 comparisons to
check each pairwise �. To accomplish this, we used the
Condor high-throughput computing environment running on
the University of Wisconsin’s Center for High Throughput
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TABLE III. Numerical simulations of QRWs of two hard-core
bosons on many SRG families with multiple nonisomorphic mem-
bers. The Hamiltonian used was H2B = −1/2 × (I + S)(A ⊕ A) +
UR, where S swaps the two particles, A is the adjacency matrix of
the graph, and R counts double-occupation. To evaluate the hard-core
limit, we took U → ∞. All nonisomorphic graphs in the families
indicated were compared pairwise; � is a measure of how different
the matrix elements of the evolution operator are, defined precisely in
Eq. (30). When � = 0, the list of matrix elements of the two evolution
operators being compared have the same magnitudes. Minimum
values of � were nonzero for all pairs of nonisomorphic graphs
examined.

SRG family Nonisomorphic Minimum
(N,k,µ,λ) members �

(16,6,2,0) 2 94.273
(16,9,4,6) 2 2.723
(25,12,5,6) 15 3.636
(26,10,3,4) 10 7.356
(28,12,6,4) 4 27.607
(29,14,6,7) 41 4.017
(35,18,9,9) 227 5.243
(36,14,4,6) 180 2.621
(36,15,6,6) 32,548 1.512
(37,18,8,9) 6,760 4.310
(40,12,2,4) 28 3.065
(45,12,3,3) 78 5.868
(64,18,2,6) 167 2.574

Computing cluster. The numerical error on � was between
10−14 and 10−9 for all families we analyzed.

In addition to our calculations with hard-core bosons, we
also investigated noninteracting fermions numerically using
the procedure described earlier. As discussed, comparing abso-
lute values of matrix elements eliminates the sign discrepancy
brought on by basis choice. As one expects given the results in
Sec. IV, the result � = 0 is obtained for all cases tested (the
first six SRG families appearing in Table III).

VI. SMALL-TIME EXPANSION AND POSSIBLE
DISTINGUISHING OPERATORS

In this section we attempt to gain more insight into
the behavior of the QRWs of two interacting bosons by
expanding the evolution operator for short times. By forming
such an expansion and listing all the forms that appear, we
can investigate which of these operators contribute to the
distinguishing power of the evolution operator. The operators
that contribute are called distinguishing operators, and here
we work out the first one, which appears in the fourth order
in time. We then briefly investigate a sixth-order term, which
succeeds in some instances when the fourth-order term fails.

We begin with the exact evolution operator for the interact-
ing Boson case, which is

U = e−it[− 1
2 (I+S)(A⊕A)+UR]. (31)

10-5
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0 2 4 6 8 10 12

FIG. 3. (Color online) Small-time expansion comparison for the
two nonisomorphic SRGs in the family (16,6,0,2) using the interact-
ing two-boson Hamiltonian H2B = −1/2 × (I + S)(A ⊕ A) + UR
with U = 50, evaluated with t = 0.01. The evolution operator was
expanded to the different orders in t , and �, a dimensionless
measure of differences in evolution operator matrix elements, is
plotted versus the order of the expansion. The actual value of �

obtained numerically using the full evolution operator is given by the
dashed horizontal line. The distinguishing operator U (A ⊕ A)R(A ⊕
A)2 + U (A ⊕ A)2R(A ⊕ A), where A is the adjacency matrix of the
graph and R counts double-occupation, causes the two graphs to be
distinguished at fourth order in time.

Expanding as a power series in t , we have

U =
∞∑

n=0

(−it)n

n!

(
−1

2
(I + S)(A ⊕ A) + UR

)n

. (32)

Since we know from simulation that this evolution operator
distinguishes SRGs, we expect that there will be an order in
t at which there are terms that are not functions of only the
SRG family parameters. Numerically, as shown in Fig. 3, we
calculate that in the case shown these terms first appear at
fourth order in time, so we endeavor to analyze the matrix
elements of the first five terms of the expansion for the
evolution operator:

U ∼ U0 − itU1 − t2

2
U2 + it3

6
U3 + t4

24
U4. (33)

We first expand the terms to simplify the evolution operator,
taking A ⊕ A = B.

U1 = 1
2 (I + S)(UR − B), (34)

U2 = 1
2 (I + S)(U 2R + B2 − URB − UBR), (35)

U3 = 1
2 (I + S)(U 3R + UB2R − U 2BR

−U 2RB − B3 + URB2 + UBRB), (36)
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where we used the fact that any term containing the product
RBR vanishes due to the construction of B. Finally,

U4 = 1
2 (I + S)(U 4R + U 2B2R − U 3BR − UB3R

+U 2RB2R − U 3RB − UB2RB + U 2BRB

+U 2RB2 + B4 − URB3 − UBRB2). (37)

Numerically, we determined that the fourth-order operator
that successfully distinguished (16,6,0,2), and thus could not
be counted in terms of SRG family parameters, was the
combination of UBRB2 + UB2RB. If either of these operators
is removed from the fourth-order term, � drops to 0. Upon
further investigation, graphs with more vertices, starting with
(25,12,5,6), are not necessarily distinguished by the fourth
order in t . For some, a sixth-order expansion was necessary,
where we found that at least the term B2RB3 helped to
distinguish these graphs. We tried a sampling of graphs from
the families up to N = 40 and found that this sixth-order term
succeeded in every instance we checked.

VII. DISCUSSION

This paper takes several steps toward characterizing the
additional power that quantum walks of interacting particles
have for distinguishing nonisomorphic strongly regular graphs,
compared to QRWs of noninteracting particles. We prove
analytically that QRWs of two noninteracting particles, either
bosons or fermions, cannot distinguish nonisomorphic SRGs
from the same family. We investigate numerically the quantum
time-evolution operator for a QRW with two interacting bosons
and show that the resulting GFs can be used to distinguish
all nonisomorphic pairs of SRGs that were investigated. We
perform a much more comprehensive numerical test of the
interacting particle algorithm than has been done previously
and find that QRWs of two hard-core bosons successfully
distinguish all known nonisomorphic pairs of SRGs, which
include graphs with up to 64 vertices and family sizes as large
as 32 548 nonisomorphic members.

We now discuss how our results are relevant to possible
algorithms for solving GI. If our algorithm for two hard-core
bosons does indeed distinguish arbitrary graphs, then GI is in
P, since the number of particles is fixed, and only the lattice
size increases with the number of vertices. But if GI is not in P,
then for some pair of graphs, our two-particle algorithm must
break. Hence, if such a case were identified, then one could
try increasing the particle number, which could potentially
place GI in BQP, the complexity class solvable efficiently on a
quantum computer. Unfortunately, we exhausted our test cases
(the SRGs), so we could not check this hypothesis.

Although we found that two noninteracting bosons were
not helpful for distinguishing SRGs, we suspect that at larger
numbers of noninteracting particles, QRWs might be able to
distinguish SRGs. This suspicion is due to Refs. [34–36],
where noninteracting QRWs generate an effective external
field in the statistical limit. The resulting effective particle-field
interactions might produce distinguishing power comparable
to our explicit hard-core particle-particle interaction, while
providing for an easier analysis. It would be interesting to

examine the several-particle noninteracting QRW to see if this
is indeed the case.
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APPENDIX A: CHECKING THE TWO-PARTICLE
MATRIX ELEMENTS

In this appendix we demonstrate that Eqs. (15) and (23)
are equivalent to Eq. (7) for both bosons and fermions. To
show that the boson matrix elements as given in Eq. (15) are
correct, we evaluate the three types of basis elements we have
in Eq. (15). When i �= j and k �= l, Eq. (15) yields

B〈ij |H2B |kl〉B =
( 〈ij | + 〈ji|√

2

) [
−1

2
(I + S)(A ⊕ A) + UR

]

×
( |kl〉 + |lk〉√

2

)

= −
( 〈ij | + 〈ji|√

2

)
(A ⊕ A)

( |kl〉 + |lk〉√
2

)

= −Aikδjl − Ajlδik − Ailδjk − Ajkδil .

(A1)

When i �= j but k = l, we find

B〈ij |H2B |kk〉B =
( 〈ij | + 〈ji|√

2

)

×
[
−1

2
(I + S)(A ⊕ A) + UR

]
|kk〉

= −
( 〈ij | + 〈ji|√

2

)
(A ⊕ A)|kk〉

= − 1√
2

(Aikδjk + Ajkδik + Aikδjk + Ajkδik)

= − 2√
2

(Aikδjk + Ajkδik). (A2)

When i = j and k = l, we have

B〈ii|H2B |kk〉B = 〈ii| [− 1
2 (I + S)(A ⊕ A) + UR

] |kk〉
= U 〈ii|R|kk〉
= Uδik. (A3)

These expressions are all exactly the same as we found through
the definition of the Hamiltonian in Eq. (7).
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We can work the same exercise for the fermion Hamilto-
nian, Eq. (23), as we did for the boson Hamiltonian in Eq. (A1).
The calculation for the fermions yields

F 〈ij |H2F |kl〉F = δikAlj + δjlAik − δilAjk − δjkAil, (A4)

which is identical to the result obtained from Eq. (7).

APPENDIX B: COUNTING THE ELEMENTS IN THE
NONINTERACTING BOSON EVOLUTION MATRIX

To prove that the two-particle walk cannot distinguish two
nonisomorphic SRGs, we use the method that Shiau et al.
introduced for one-particle walks; we show that all the values
and degeneracies of GFs, matrix elements of the evolution
operator, can be expressed as functions of the SRG family
parameters. For one particle, Shiau et al. [30] considered the
on-diagonal and off-diagonal matrix elements separately. For
the two-particle evolution operator U2B , we perform a similar
trick by partitioning the matrix elements according to two
parameters (a,b): the total number of distinct indices (a) and
the number of indices shared on the left and right sides (b). For
example, 〈34|U2B |24〉 falls into the element class (3,1), since
it has three distinct indices (2,3,4) and the left and right side
have one index in common (2). In total, the two-particle boson
evolution operator has seven such classes—(4,0), (3,0), (3,1),
(2,0), (2,1), (2,2), and (1,2)—which together partition the set
of matrix elements.

Within each of these classes, the various possible element
values are listed in Table I. Counting the number of occurrences
is performed by means of combinatorial sums. First, we
consider the symmetry class (4,0). Since i �= j and k �= l, we
use Eq. (5) to write the matrix elements as

〈ij |UB |kl〉 = α2(δikδjl + δilδjk) + 2β2

+ γ 2(AikAjl + AilAjk)

+αβ(δik + δjk + δil + δjl)

+αγ (δikAjl + δjkAil + δilAjk + δjlAik)

+βγ (Ajl + Ail + Ajk + Aik). (B1)

One possible value for this matrix element, 4βγ + 2γ 2 + 2β2,
occurs when Ajl = Ail = Ajk = Aik = 1. Since A is a 0 − 1
matrix, the number of ways this can occur, n(4,0)a , is given by

n(4,0)a =
∑
i<j

∑
k<l

AjlAilAjkAik

= 1

4

∑
ijkl

AjlAilAjkAik(1 − δij )(1 − δkl)

= 1

4

⎛
⎝∑

i

(A4)ii − 2
∑
ij

(A2)ij +
∑
ij

Aij

⎞
⎠ , (B2)

where the initial sum is constrained to i < j and k < l since we
are working with indistinguishable bosons and, hence, have a
space of dimension N (N + 1)/2. By repeated use of Eq. (12),
we can use the techniques of the one-particle algorithm [30] to
evaluate these sums in terms of family parameters. The values
of those pertinent to our present discussion are∑

ij

Aij = kN,

∑
ij

(A2)ij = N (k − µ) + kN (λ − µ) + N2µ,

∑
ij

(A3)ij = N{k2 + k[µ(N + µ − 2) + λ2 − 2λµ + λ]

(B3)+ (N − 1)µ(λ − µ)},∑
i

(A3)ii = kNλ,

∑
i

(A4)ii = kN (µ(k − λ − 1) + k + λ2).

Plugging in these results and using the SRG relationship (N −
k − 1)µ = k(k − λ − 1), we find

n(4,0)a = 1
4 × N{[k2(µ + 1) + k[λ2 − λ(µ + 2) + µ − 1]

− 2(N − 1)µ}. (B4)

A second possible value for this matrix element is 3βγ + γ 2 +
2β2, obtained by setting any one of Ajl ,Ail ,Ajk , or Aik to 0.
As a sum, this means that the number of occurrences, n(4,0)b,
is

n(4,0)b = 4
∑
i<j

∑
k<l

AjlAilAjk(1 − Aik)(1 − δik)

=
∑
ijkl

AjlAilAjk(1 − Aik)(1 − δik)(1 − δij )(1 − δkl)

=
∑
ij

(A3)ij −
∑

i

(A3)ii −
∑

i

(A4)ii

= Nµ(N − k − 1)(k + λ − µ), (B5)

where the initial factor of 4 is due to the four possible ways to
pick the A, and (1 − Aik)(1 − δik) constrains both i �= k and
Aik = 0. The remainder of the calculation proceeds similarly,
and the results are listed in Table I.
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