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Entanglement of periodic states, the quantum Fourier transform, and Shor’s factoring algorithm
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The preprocessing stage of Shor’s algorithm generates a class of quantum states referred to as periodic states,
on which the quantum Fourier transform is applied. Such states also play an important role in other quantum
algorithms that rely on the quantum Fourier transform. Since entanglement is believed to be a necessary resource
for quantum computational speedup, we analyze the entanglement of periodic states and the way it is affected
by the quantum Fourier transform. To this end, we derive a formula that evaluates the Groverian entanglement
measure for periodic states. Using this formula, we explain the surprising result that the Groverian entanglement
of the periodic states built up during the preprocessing stage is only slightly affected by the quantum Fourier
transform.
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I. INTRODUCTION

Quantum algorithms offer a potential speedup over classical
algorithms in solving a number of problems. The origin of this
speedup is not yet fully understood, but quantum entanglement
is believed to play a crucial role [1–3]. Therefore, it is of
interest to analyze the entanglement of the quantum register
during the operation of quantum algorithms such as Grover’s
search algorithm and Shor’s factoring algorithm [4–8]. Cur-
rently, all known quantum algorithms presumed to provide an
exponential speedup over their classical counterparts rely on
the quantum Fourier transform (QFT) [9]. The most notable
among them is Shor’s factoring algorithm [10,11]. During the
operation of these algorithms, the quantum states of the register
are characterized by multipartite entanglement. Unlike the case
of bipartite entanglement [12,13], the multipartite entangle-
ment in a register of q > 2 qubits is not as well understood,
partly because no analog of the Schmidt decomposition was
found for multipartite systems.

In order to evaluate the entanglement of the state of a
quantum register, an entanglement measure is needed [14–17].
Axiomatic considerations have provided a set of properties
that entanglement measures should satisfy [14–17]. These
properties include the requirement that any entanglement
measure should vanish for product (or separable) states.
It should be invariant under local unitary operations and
should not increase as a result of any sequence of local
operations complemented by only classical communication
between the parties. Quantities that satisfy these properties
are called entanglement monotones. These properties provide
useful guidelines in the search for entanglement measures
for multipartite quantum states. Entanglement measures based
on metric properties of the Hilbert space [14,15,18] and on
polynomial invariants [19,20] were proposed and shown to
satisfy these requirements. Specific measures of multipartite
entanglement include the average bipartite measure [21], the
Groverian measure [22], and the geometric measure [23]. A
major difficulty in the evaluation of multipartite measures is
that they involve a minimization of a complicated function in
a high-dimensional space. As a result, there are no general
closed-form expressions for these measures.

The Groverian entanglement generated in Shor’s algorithm
was analyzed in Ref. [7]. It was shown that the entanglement

builds up during the preprocessing stage and that the QFT
has little effect on the Groverian measure. This is somewhat
surprising since, in general, the QFT operator tends to generate
highly entangled states when it is applied on product states [7].
Furthermore, the superior efficiency of Shor’s algorithm is
attributed to the QFT, and since entanglement is considered a
necessary resource for quantum computational speedup, one
would expect that the QFT will induce it. It seems as though
for the purpose of quantum speedup it suffices for the QFT
to simply operate on a highly entangled register rather than
generate entanglement by itself.

The states generated by the preprocessing stage of Shor’s
algorithm are called periodic states. These states consist of
an equal superposition of basis states whose indices take
the form i = jr + l, where j = 0,1,2, . . . ,r is the period
and l is referred to as a shift. It was shown by numerical
simulations that these states have the property of not being
further entangled by the QFT [7]. In this article we explain
this surprising property using an approximated formula for the
Groverian entanglement measure of periodic states.

The article is organized as follows. In Sec. II we present the
Groverian measure. The periodic states generated by the pre-
processing stage of Shor’s algorithm are described in Sec. III
and their entanglement is analyzed in Sec. IV. The effect of
the QFT on their entanglement is considered in Sec. V. The
results are discussed in Sec. VI and summarized in Sec. VII.

II. THE GROVERIAN ENTANGLEMENT MEASURE

The Groverian measure of a quantum state |ψ〉 of q qubits
is based on the maximal overlap that |ψ〉 may have with
any product state |ϕ〉 with the same number of qubits. The
smaller this overlap gets, the more entangled the quantum
state becomes. We define the square of this overlap as

Pmax(ψ) = max
|ϕ〉=|ϕ1〉⊗...⊗|ϕq 〉

|〈ϕ|ψ〉|2 , (1)

where |ϕm〉, m = 1, . . . ,q are single qubit states. This quantity
cannot be decreased by local operations and classical com-
munication between the parties holding the different qubits.
Therefore, any nonincreasing function of Pmax that vanishes
for product states (where Pmax = 1) is a valid entanglement
measure. Among all these possible measures, we have found it
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useful to use the logarithmic Groverian entanglement measure
[24]

G(ψ) = − ln [Pmax(ψ)] , (2)

to which we refer later in this article as the Groverian
measure. This measure has three important advantages over
other possible measures: (i) It is intrinsically a multipartite
measure, rather than an average over bipartite measures for
different partitions. (ii) It takes values in the range [0,∞),
providing a better resolution than measures that are limited
to the range [0,1). This is particularly important in the case
of highly entangled states with a large number of qubits.
(iii) This measure is additive in the sense that if the subsystems
A and B are not entangled with each other, then G(ψA ⊗
ψB) = G(ψA) + G(ψB).

The problem with Groverian-type entanglement measures
(and with many other proposed measures), is the difficulty
involved in calculating them for general quantum states. The
calculation of Pmax involves finding the product state |ϕ〉 for
which |〈ϕ|ψ〉|2 is maximal. The state |ϕ〉 is then referred to
as the nearest product state. This is a maximization problem
in a high-dimensional space. To evaluate the dimensionality
of this space, we first consider the two-dimensional Hilbert
space H2 of a single qubit, which has four real parameters.
The normalization and the insignificance of the global phase
make it possible to express the quantum state of a single qubit
in the form

|ϕm〉 =
√

1 − xm|0〉 + √
xmeiθm |1〉, (3)

with only two real parameters. The first parameter, xm,
represents the balance between |0〉 and |1〉 in the corresponding
qubit, and takes values in the range [0,1]. When xm = 0 the
qubit is in the |0〉 state, and when xm = 1 it is in the |1〉 state.
The second parameter is the relative phase θm. Altogether,
finding Pmax involves maximizing a suitable function in a
2q-dimensional space. This function typically exhibits a large
number of local maxima. For a large number of qubits, this cal-
culation requires significant computational resources, except
for some special quantum states for which analytical formulas
for Pmax may be found. So far, a general formula is known
only for two-qubit states (using the Schmidt decomposition)
and for a very restricted set of highly symmetric states that
generalize the GHZ and W states [6]. Recently, some attempts
were made to find formulas for the entanglement measure
of various three-qubit states [25,26]. However, so far such
formulas were found only for a restricted set of states. For
arbitrary states of more than two qubits, the Groverian measure
can only be calculated numerically.

A numerical scheme for calculating the Groverian entan-
glement is described in Ref. [7]. In each step of the scheme,
one qubit 1 � m0 � q is selected, and the parameter values for
all the other qubits in the product state are fixed. The values
of xm0 and θm0 for which the overlap with |ψ〉 is maximized
can then be found analytically. Repeating this step for every
qubit several times, a maximum for the overlap over all the
xm’s and θm’s is found. Using such a formula to locate the
maximum with respect to each qubit is much faster than
successive evaluations of the overlap in a steepest descent
method. This is due to the fact that the evaluation of the overlap
requires resources that are exponential in q. Such a series of

successive jumps in parameter space is also less likely to be
misled by local maxima than the steepest descent method.
A slight improvement to this scheme was used in Ref. [24],
where at each step an analytical maximization was preformed
over two qubits using the Schmidt decomposition. This
improved scheme is used in the present work as well. Still, the
numerical calculation of the entanglement is time consuming.
Furthermore, the lack of an analytical formula makes it difficult
to achieve a better understanding of multipartite entanglement
and its relation to quantum-computational speedup. Thus, it is
worthwhile to search for analytical formulas for the Groverian
entanglement of states that are relevant to quantum algorithms.
Such an approximated formula is derived in Sec. IV.

III. PERIODIC STATES IN SHOR’S ALGORITHM

Shor’s algorithm aims to find a factor of a given nonprime
integer N . This is done by reducing the factorization problem
to the order-finding problem [27]. In the order-finding problem
one selects an integer y which is coprime to N and finds its
order modulo N , denoted r . By recalling that the order of y

modulo N is the smallest integer such that yr = 1(modN ),
one can see that when exponentiating ya(modN ) for a =
0,1,2, . . . , the resulting series will be periodic, with a period
r . This can be done simultaneously for all values of a by
constructing a superposition of the Q = 2q computational
basis states in a quantum register with q qubits

|ψ〉 = 1√
Q

Q−1∑
a=0

|a〉. (4)

The proper choice of q is described in Ref. [10]. The result
of the modular exponentiation can be held in an auxiliary
register:

|ψ〉 = 1√
Q

Q−1∑
a=0

|a〉|yamodN〉. (5)

Measuring the auxiliary register will randomly select one
of its values, z = yl(modN ) for some 0 � l < r , and will also
filter out from the main register only those values of a for
which ya = z. Since the series ya(modN ) is periodic in a

with a period r , the values of a that remain will make out an
arithmetic progression with a common difference r , and an
initial term l. The main register will then be in a state we refer
to as the periodic state of q qubits, with period r and shift l
(following Ref. [28]):

∣∣ψq

r,l

〉 = 1√
A

A−1∑
j=0

|l + jr〉; A =
⌈

Q − l

r

⌉
. (6)

This ends the preprocessing stage of Shor’s algorithm,
and here the QFT is applied. In analogy to the discrete
Fourier transform (DFT), the QFT is used in order to reveal
periodicities in its input [1]. In particular, the amplitudes of
the state |ψq

r,l〉 make out a periodic series, and when the DFT
is applied to it, the resulting series can be approximated by a
periodic series of the same sort, that is, one in which the indices
of the nonzero terms make out an arithmetic progression. In
the resulting series, though, the common difference is Q/r ,
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the initial term is zero, and additional phases are added. This
can be seen through the exact formula for the resulting series
(yj )Q−1

j=0 , given by

yj = 1√
QA

sin (πjrA/Q)

sin (πjr/Q)
e
− j

Q
2πi[l+ 1

2 r(A−1)]. (7)

Since applying the QFT to a quantum state is equivalent to
applying the DFT to its amplitudes, the action of the QFT on
periodic states can be approximately described as∣∣ψq

r,l

〉 QFT−−−→ ∣∣ψq

Q/r,0

〉
, (8)

where relative phases are ignored. Within this approximation,
the QFT induces two changes in the periodic state, in analogy
with the DFT: the period is changed from r to Q/r , and the
shift is changed from l to 0 (Fig. 1). This removal of the shift is
the crucial effect that makes it possible to extract the period in
the next step, in which a measurement is performed. The result
of the measurement is not affected by relative phases; thus, they
can be ignored. The measurement result is an integer close to
jQ/r for some j , and dividing by Q we are left with a number
close to j/r . A continued fraction expansion can then reveal j

and r . If we had measured the state before applying the QFT,
the result would have been an integer of the form l + jr , which
does not allow finding the period without knowledge of the
shift. It is clear that periodic states are central to the success of
Shor’s algorithm, and their importance is further demonstrated
by their use in several other algorithms that make use of the
QFT, all of which belong to a class of problems derived from
the hidden subgroup problem [28].
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FIG. 1. An example of the operation of the QFT on a periodic
state. The periodic state of q = 8 qubits with period r = 13 and shift
l = 3 was transformed by the QFT. The amplitudes of the original
state are given (a), as well as the amplitudes of the resulting state
(b). The dotted vertical lines mark the multiplicands of the periods of
each state (Q/r ≈ 19.7).

IV. THE ENTANGLEMENT OF PERIODIC STATES

A. Equal superposition states

The lack of a general analytical formula for the Groverian
entanglement makes it hard to construct a model that explains
the fact that the QFT does not seem to affect the entanglement
of periodic states. Nevertheless, an approximated formula may
suffice, provided it remains close to the exact value when the
number of qubits increases. Such an approximation may be
attainable since the set of periodic states is only a restricted
set.

1. Definition of the equal superposition states

Let us first consider a somewhat less restricted set of
states, namely, states that are superpositions of any number
of computational basis states, with amplitudes that have equal
magnitudes and zero phases. Given some nonempty subset
of basis states S, we refer to their superposition as an equal
superposition state of q qubits (ES state),∣∣ψq

S

〉 = 1√|S|
∑
k∈S

|k〉; ∅ ⊂ S ⊆ {0,1, . . . ,Q − 1}, (9)

where |S| is the size of the set S. Clearly, all periodic states
are ES states. Some ES states are nonentangled, like the
computational basis states themselves. Another example is the
complete ES state |η〉, which is the superposition of all basis
states and can be written as |+〉⊗q , where

|+〉 = 1√
2

(|0〉 + |1〉) . (10)

Other ES states are maximally entangled, such as the GHZ
and W states [29].

Given any ES state, we would like to refer to the binary
representation of each k ∈ S as k = j1 . . . jq , where each jm

is either 0 or 1, and m = 1, . . . ,q is the index of the qubit.
This notation in hand, along with the notation of Eq. (3), we
can write down the overlap of the ES state with the product
state |ϕ〉 as a function of the xm’s and θm’s. It is this overlap
function we need to maximize in order to find Pmax:

f
q

S (x1, . . . ,xq ; θ1, . . . ,θq)

= 〈
ϕ
∣∣ψq

S

〉 = 1√|S|
∑

j1...jq∈S

ei
∑q

m=1 jmθm

q∏
m=1

Cm
jm

, (11)

where

Cm
j =

{√
1 − xm, j = 0,√
xm, j = 1.

(12)

To be more precise, we need to maximize P = |f q

S |2, which
is equivalent to maximizing the magnitude of the complex
function f

q

S , ignoring its phase. In fact, we can fix the relative
phases θm to zero, since Eq. (11) then becomes:

f
q

S (x1, . . . ,xq) = 1√|S|
∑

j1...jq∈S

q∏
m=1

Cm
jm

, (13)

which is clearly not smaller in magnitude. This reduces the
dimension of the search space from 2q to q (this is actually
a special case of an observation already made in Ref. [6]).
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Another simplification arises in an ES state for which there
is one qubit, 1 � m � q, that all the basis states in the
superposition “agree” on (that is, jm is the same for all k ∈ S).
This qubit is not entangled with the rest of the qubits and can
be factored out. We shall call such an ES state reducible, since
we can fix xm = jm and reduce the dimension of the search
space by one.

2. Examples: Special high symmetry states

We have so far reduced our problem to finding the values
of x1, . . . ,xq for the nearest product state |ϕ〉, to a q-qubit
nonreducible ES state |ψq

S 〉, by maximizing the overlap
function f

q

S in Eq. (13). Let us consider two special cases of
this problem, which were already analyzed in Ref. [6]. The
first one is the q-qubit GHZ state:

|GHZ〉 = |0 · · · 0〉 + |1 · · · 1〉√
2

. (14)

For the GHZ state, the nearest product state is any one of
the two basis states that comprise it:

|ϕ〉 = |0 · · · 0〉 or |ϕ〉 = |1 · · · 1〉, (15)

and for both states: Pmax(GHZ) = 1/2. The second special
case is the 2n-qubit balanced generalized W state, denoted by
|φ(n,2n)〉. It consists of all the basis states of 2n qubits that
have n zeros and n ones:

|φ(n,2n)〉 =
(

2n

n

)− 1
2 ∑

∑2n
m=1 jm=n

|j1 . . . j2n〉. (16)

In this case the nearest product state is the complete ES
state,

|ϕ〉 = |η〉, (17)

and Pmax is given by

Pmax[φ(n,2n)] = 2−2n

(
2n

n

)
≈ 1√

πn
. (18)

3. The approximated formula

Given a general ES state |ψq

S 〉, our aim is to find the nearest
product states |ϕ〉. The results presented previously motivate
us to examine two types of product states as candidate states:

(i) |ϕ〉 = |k〉 for some k ∈ S, which means that each xm is
either 0 or 1. This yields P

q

S = 1/|S|, where P
q

S is the estimated
value of P .

(ii) |ϕ〉 = |η〉 (the complete ES state), which means that
xm = 1/2 for all m’s. This yields P

q

S = |S|/Q.
Clearly, the first guess is better for a small S, and the second

guess is better for a large S. They become equally good for
|S| = √

Q. Thus, we can combine them into one improved
guess:

P
q

S =
{ 1

|S| , |S| �
√

Q,

|S|
Q

, |S| >
√

Q.
(19)

We note that P
q

S is a lower bound on Pmax(ψq

S ). We can
also present a crude argument to support the claim that P

q

S is a
good approximation for Pmax(ψq

S ). For a general product state
|ϕ〉, consider expanding it to a superposition of basis states.

In this expansion, we would like to maximize the number of
basis states |k〉 that have corresponding basis states in |ψq

S 〉
(namely, for which k ∈ S). The more such basis states, the
larger the overlap will be (ignoring, for now, the amplitudes
of the states). In the case of a small S, a single basis state is a
good guess for |ϕ〉, since trying to vary any of the xm’s away
from the edges of their range will add a lot of basis states to
the expansion, and most of them will not be members of S,
consequently decreasing P . In the case of a large S, a product
state is desired with a lot of basis states in its expansion, since
there are a lot of members in S, and in that case the complete
ES state is hard to beat.

4. A counterexample

It turns out that the approximated formula presented above
is not valid for all the ES states. A state that violates this
formula was analyzed in Ref. [6]. This is the q-qubit W state,
which consists of all the basis states that have q − 1 zeros and
a single 1:

|W 〉 = 1√
q

q−1∑
m=0

|2m〉. (20)

Since for the simple W state |S| = q, and q �
√

Q for
a large enough q (practically q � 4 is sufficient), our guess
yields one of the basis states as the nearest product state and
P

q

S = 1/q. However, it turns out that the real nearest product
state is

|ϕ〉 =
(√

q − 1

q
|0〉 +

√
1

q
|1〉

)⊗q

, (21)

which yields Pmax(W ) = [(q − 1)/q]q−1. This is not only
different from P

q

S ; it is also asymptotically different, as

P
q

S −−−→
q→∞ 0,

(22)
Pmax(W ) −−−→

q→∞
1

e
.

What property of the simple W state makes it violate the
validity of the approximation? Note that for each qubit, the
GHZ and balanced generalized W states have an equal number
of zeros and ones across all the basis states. The simple W state
obviously does not have this property. To understand why this
is important, let us reconsider the maximization problem of
finding the nearest product state |ϕ〉.

We can explore the possible product states by taking a small
variation around some basis state |k0〉. For two binary numbers
k1 and k2, let us denote the Hamming distance between them,
which is the number of bits they differ on, as d(k1,k2). We
can then divide the set S to disjoint subsets according to the
Hamming distance from k0:

S = S0 ·∪ · · · ·∪Sq,
(23)

Sm = {k ∈ S : d(k,k0) = m} .

Without loss of generality we can fix k0 = 0 (this can be
arranged by applying local NOT gates which do not affect the
entanglement nor the Hamming distances). The Hamming
distance d(k,k0) is then equal to the number of ones in k, and
a small variation around k0 means that the xm’s are small. The
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terms in Eq. (13) can then be grouped according to the subsets
of S:

f
q

S (x1, . . . ,xq) = 1√|S|
q∑

n=0

∑
j1 ···jq ∈Sn

jm1 ,...,jmn =1

√
xm1 · · · · · √xmn

×
∏

m=mi

√
1 − xm. (24)

The nth term in this expansion has n multiplicands of the
form

√
xm, so it is dominant in respect to the (n + 1)th term.

Through this expansion we see that the nearest product state is
in the close surrounding of |k0〉 only if S contains a lot of terms
within a small Hamming distance from k0. In the case of the
simple W state, all the terms in S have a Hamming distance of 1
from k0 = 0, thus maximizing the term n = 1 in the expansion.
This shows that a large value of the function f

q

S can be obtained
in the proximity of the state |0〉, and indeed this is the case.

The case of the balanced generalized W state |φ(n,2n)〉 is
different. In this case, for each basis state, there are n2 basis
states at a Hamming distance of 2 and one basis state at the
maximal Hamming distance of 2n. In analogy, the GHZ state
has a maximal Hamming distance between its two basis states.
In both states there is no specific choice of k0 for which all the
basis states are within a small Hamming distance from it. This
observation suggests that in general, for ES states that include
basis states with large Hamming distances from each other,
taking a small variation around some basis state does not aid
in finding the nearest product state.

B. Application to periodic states

Returning to periodic states, the periodic state |ψq

r,l〉 is an
ES state with

S = {l,l + r, . . . ,l + (A − 1)r}; A = |S| =
⌈

Q − l

r

⌉
.

(25)

The overlap function in Eq. (13) for this special case will
be denoted by

f
q

r,l(x1, . . . ,xq) = 1√
A

∑
j1...jq∈S

q∏
m=1

Cm
jm

. (26)

The approximated formula for Pmax, which is the square of
the maximum of the preceding function, becomes

P
q

r,l =
{

1
A
, A �

√
Q,

A
Q

, A >
√

Q.
(27)

Approximating A ≈ Q/r , we reach a simpler formula for
G

q
r , which is an approximation of the logarithmic Groverian

entanglement of periodic states G(ψq

r,l):

Gq
r =

{
− ln 1

r
, r <

√
Q,

− ln r
Q

, r �
√

Q.
(28)

Looking at G
q
r as a function of r (Fig. 2) we see that it

consists of two branches:
(i) An ascending branch, which starts at 0 when r = 1, and

rises to a maximum at r = √
Q. This branch covers the states
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FIG. 2. (Color online) Entanglement of periodic states as a
function of their period, r , for q = 8 qubits and l = 0 shift (a),
q = 8 and l = 6 (b), q = 10 and l = 0 (c), and q = 10 and l = 13
(d). The numerically calculated values are given in red circles, the
approximated (more accurate) formula is represented by blue crosses,
and the simple approximated (less accurate) formula represented by
a black line. Only odd periods were calculated. Similar results were
obtained with up to 12 qubits and all possible shifts.

with small periods, which have a large number of basis states,
and for which the complete ES state is the presumed nearest
product state.

(ii) A descending branch, which starts at the maximum and
descents back to 0 as r reaches Q. This branch covers the states
with large periods, which have a small number of basis states,
and for which a basis state is the presumed nearest product
state.

We shall now show evidence to support the validity of this
approximation. We first note that in the case of an even period,
the least significant bit has the same value for all the basis states
in the superposition, which makes the state reducible. When
factoring out the last qubit, the rest of the qubits constitute
an arithmetic progression themselves, making them a periodic
state with half the period. The value of the last bit depends on
the parity of the shift:∣∣ψq

2r,l

〉 = ∣∣ψq−1
r,�l/2�

〉 ⊗ |l mod 2〉. (29)

Therefore, the problem of finding the entanglement of a
periodic state with an even period can be reduced to the same
problem with a state that has one less qubit and half the period.
We shall concern ourselves from now on only with states that
have odd periods.

One important consequence of r being odd is that r is
coprime to 2m for every m. This means that the values of
the mth significant bit in all the basis states go through a
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2m-long cycle with an equal number of zeros and ones. If the
number of cycles is whole, then the total numbers of zeros
and ones in the mth bit are equal as well. However, in most
cases 2m does not divide A, the cycle is truncated and the
equality is only approximate. Furthermore, the values of the
n least significant bits make out an arithmetic progression
with common difference r in respect to addition modulo 2n,
which means they also go through all their possible values in
a cyclic manner. Therefore, the values of the different bits are
in general uncorrelated. This means that for any basis state
|k0〉, the number of states in S that have n bits in common
with it reduces approximately by half when n is increased by
1. This is because for each qubit m, about half of all the states
have the same value for m as |k0〉, and the same is true for
any subset that is determined by the values of n qubits. We
conclude that for a periodic state there is no basis state |k0〉
that more than any other basis state, has basis states in S within
a small Hamming distance from it. This again suggests that
the approximated formula for Pmax we have presented is valid
for periodic states, as opposed to the simple W state.

An important observation concerning Eq. (27) is that for the
descending branch, where the nearest product state |ϕ〉 is taken
to be some basis state k ∈ S, it is at least a local maximum of
the overlap function f

q

r,l . To see this, note first that there is no
basis state k′ ∈ S that differs from k on exactly one bit. If there
was such a state, the difference k − k′ would be a power of 2,
but this difference for a periodic state must be a multiplicand
of r , which is odd. For each 1 � m � q, the value of xm is
at the edge of its range (either 0 or 1), and trying to vary its
value will turn |ϕ〉 to a superposition of |k〉 and |k′〉, which
differ only on the mth bit. Since k′ /∈ S the overlap function
will necessarily decrease, and as this is so for all m orthogonal
directions, |k〉 is a local maximum. The only question left then,
for the descending branch, is whether |k〉 is a global maximum
as well.

Another justification to the approximated formula can be
presented in the form of an induction, using the following
recursive decomposition of periodic states. Considering the
basis states that make up a periodic state, we can divide them
into two subsets, according to the value of the most significant
bit. Looking at the q − 1 remaining bits, we see that each
subset makes up a component periodic state with the same
period:

∣∣ψq

r,l

〉 =
√

A0

A
|0〉 ⊗ ∣∣ψq−1

r,l

〉 +
√

A1

A
|1〉 ⊗ ∣∣ψq−1

r,l′
〉
. (30)

Here, l′ = −2q−1(mod r) is the shift of the second com-
ponent periodic state, A0 and A1 are the number of basis
states in the component states |ψq−1

r,l 〉 and |ψq−1
r,l′ 〉 respectively.

Clearly, the condition A = A0 + A1 is satisfied. When A is
even, A1 = A0 = A/2. When A is odd A1 = A0 − 1, namely
A0 = (A + 1)/2 and A1 = (A − 1)/2. Let us now assume that
the approximated formula is correct for q − 1 qubits. If the
states are in the ascending branch, then the complete ES state
is the approximated nearest product state of the component
states which make up the right-hand side of Eq. (30). Clearly
this means that it is the nearest product state of the left-hand
side as well, which is the periodic state of q qubits. On the
other hand, if the states are in the descending branch, each

of the component states has a (different) basis state as the
approximated nearest product state. In this case, choosing one
of these basis states gives the nearest product state to the state
of q qubits.

Finally, we present numerical evidence to support the
approximated formula, described in Fig. 2. This figure shows
the logarithmic Groverian entanglement of periodic states for
some values of q, r , and l, computed numerically via the
numerical scheme described in Sec. II. It also shows the
entanglement according to the approximated formula: both
the more accurate version given in Eq. (27) and the less
accurate version given in Eq. (28). As shown in the figure,
the more accurate version of the formula agrees with the
numerical results to a good precision on both branches. The
less accurate version, however, does not follow the step-
function-like behavior in the descending branch. This is clearly
due to the formula for A, which includes a ceiling function that
is smoothed out in the approximation �(Q − l)/r� ≈ Q/r .

V. ENTANGLEMENT INDUCED BY THE QFT

We have derived an approximated formula for the entangle-
ment of periodic states with the hope of better understanding
why the QFT does not increase their entanglement. First we
note that this is indeed a special property of periodic states,
since, as illustrated in Fig. 3, the QFT operator in general
changes the entanglement of quantum states. Looking again
at Eq. (8), we can see that the QFT approximately takes a
periodic state with period r and shift l to a periodic state
with period Q/r and zero shift, up to relative phases. This
was shown more rigorously in Eq. (7), where it was also
shown that the relative phases previously ignored take a very
special form. To explain this, we define a generalization of the
regular ES state, by adding relative phases that depend on a
parameter p:

∣∣ψq

S,p

〉 = 1√|S|
∑
k∈S

e
− pk

Q
2πi |k〉. (31)

In this phased ES state the relative phase of each basis state
is proportional to the index of the state. An interesting property
of this state is that it can be obtained from the corresponding
regular ES state by local unitary operations, making it locally
equivalent to the ES state:(

1 0

0 e
− 2q−1p

Q
2πi

)
⊗

(
1 0

0 e
− 2q−2p

Q
2πi

)

⊗ · · · ⊗
(

1 0
0 e

− p

Q
2πi

) ∣∣ψq

S

〉 = ∣∣ψq

S,p

〉
. (32)

Naturally, this means that both states have the same
entanglement. As seen in Eq. (7), the relative phases added
to the periodic state |ψq

r,l〉 follow precisely the same pattern,
with p = l + r(A − 1)/2. Therefore, they can be ignored for
all entanglement considerations. We are left with two changes
the QFT induces in periodic states: removing the shift and
changing the period. Interestingly, although the importance
of the QFT in Shor’s algorithm is in its canceling of the
shift (which enables one to extract the period), this change
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FIG. 3. (Color online) The average absolute value of the change
�G(ψ) in the entanglement, defined in Eq. (33), induced by the QFT
for a sample of random quantum states (a) and for periodic states
(b), as a function of the number of qubits, q. The random states are
taken from a uniform distribution on the 2q-dimensional complex
unit sphere. For the periodic states, the average is over all periodic
states with a given number of qubits. For the random states the error
bars represent one standard deviation in each direction, while for the
periodic states the distribution is extremely narrow, much narrower
than the width of the line.

is irrelevant to the state’s entanglement, as the shift does not
appear at all in the approximated formula. Therefore, we
are left only with the change of period. Looking again at
the approximated formula for the entanglement of periodic
states given in Eq. (28), we see that the values of the
two branches, 1/r and r/Q, are swapped by the operation
r → Q/r . It is now clear why G

q
r = G

q

Q/r and therefore why
G(ψq

r,l) ≈ G(ψq

Q/r,0). The QFT operator takes each periodic
state in the ascending branch to a corresponding periodic state
in the descending branch that has the same entanglement, and
vice versa (recall that the QFT operator is its own inverse).

Finally, we present numerical evidence to support the claim
that the QFT does not change the entanglement of periodic
states (for sufficiently large q). To this end we define the change
of the Groverian entanglement of a state ψ induced by the QFT

�G(ψ) = G(QFT(ψ)) − G(ψ). (33)

We examine this difference for periodic states as well as
for random states. The random states are taken from a uniform
distribution on the 2q-dimensional complex unit sphere. The
Groverian measure of random states of q qubits exhibits a
distribution that was calculated before for certain values of q

[24]. Any unitary operator U (such as the QFT), when applied
to a sample of these states, will produce states whose Groverian
measure exhibits the same distribution. Looking at values of
�G(ψ), for some states it is positive and for other states it
is negative. The average of �G(ψ) over the random states
is zero, but its distribution exhibits a certain width. In Fig. 3
we show the average of the absolute value of �G(ψ), which
is an estimate of the width of the distribution of the values
of �G(ψ). For periodic states |�G(ψ)| quickly decreases to
zero with increasing q [Fig. 3(b)], while for random states it
changes only slightly [Fig. 3(a)]. This demonstrates the special
feature of periodic states, namely, that their Groverian measure
is not affected by the QFT.

VI. DISCUSSION

The goal of the field of quantum algorithms is not only to
find quantum algorithms that present a speedup over classical
ones, but also to establish a deep understanding as to how
this speedup is made possible. Currently, the best insight
we can offer is that it is made possible by the combination
of quantum superposition and quantum interference [30,31].
Quantum superposition allows a sort of parallel computation,
as all the states in the superposition go through the same unitary
evolution in an independent manner. Since the results of each
of the states cannot be accessed directly, we cannot fully
exploit quantum parallelism. Nevertheless, through quantum
interference the different parallel paths can interact in a limited
way, allowing us to access some global properties of the
resulting states. Finding special situations where such a global
property is the solution to some computational problem (like
the period in Shor’s algorithm is the solution to the factoring
problem) is in fact the essence of quantum algorithm design.
The role of entanglement in this model of quantum speedup
is to allow quantum parallelism to reach its full extent, since
product states cover a very small range compared with all
possible superpositions [1].

To exemplify this model for specific algorithms, one must
try to distinguish the role of quantum parallelism and quantum
interference in each algorithm. In the case of Shor’s algorithm,
a superposition is built in the preprocessing stage, in a
manner that does not make use of interference (modular
exponentiation is performed on each computational basis state
separately). This superposition in fact already contains the
desired information (the period), and the QFT is merely
needed to extract this information (by canceling the shift).
Therefore, it can be argued that the preprocessing stage is
where quantum parallelism is used, and the QFT introduces
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quantum interference. This claim is supported by the fact that
the QFT does not increase the entanglement of the register.

VII. SUMMARY

We have shown that periodic states play an important role
in Shor’s factoring algorithm and pointed out that this is
also true for other quantum algorithms that rely on the QFT.
Focusing on entanglement as a necessary resource for quantum
speedup, we set as our goal to explain the result presented

in Ref. [7], according to which the QFT hardly affects the
entanglement of periodic states. For this purpose we analyzed
the entanglement of periodic states using the Groverian
entanglement measure. We derived an approximated formula
for the Groverian entanglement of periodic states and showed
evidence to support it. Using this approximated formula, we
presented a model that explains the aforementioned result.
Finally, we argued that this result and the model that explains
it strengthen our understanding as to the source of quantum
computational speedup in Shor’s algorithm and in general.
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