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Calculation of the convex roof for an open entangled harmonic oscillator system
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We explicitly calculate the time dependence of entanglement via the convex roof extension for a system
of noninteracting harmonic oscillators. These oscillators interact only indirectly with each other by way of a
zero-temperature bath. The initial state of the oscillators is taken to be that of an entangled Schrödinger-cat state.
This type of initial condition leads to superexponential decay of the entanglement when the initial state has the
same symmetry as the interaction Hamiltonian.
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I. INTRODUCTION

Two central issues in the field of quantum entanglement
concern quantifying the degree of entanglement in an open
system and protecting the system’s entanglement from the
external environment. Quantifying entanglement is important
in devising potential applications for entanglement. Protecting
entanglement is essential for actualization of entanglement as
a resource.

In protecting entanglement, mathematically at least, there
is a satisfying beginning, namely, starting with a Hamiltonian
that possesses some type of symmetry [1–4]. Then the Hilbert
space will split into a decohering part and a decoherence-free
part. The decohering part will contain initial states that possess
the symmetry of the Hamiltonian, and the decoherence-free
part will contain initial states that do not possess this symmetry.
Experimentally, such decoherence-free subspaces have been
realized [5–7].

In quantifying entanglement the mathematical situation is
less satisfying. Entanglement for pure states in the bipartite
case is adequately described by the entropy [8,9]. For bipartite
mixed states the situation is settled for qubits with Wootters’
concurrence [10,11]. As the partition number and level struc-
ture of the system increases there become increasingly many
(in fact exponentially so) different types of entanglement under
local unitary operations [12–17]. The number of proposed
entanglement measures has likewise proliferated [18–23]. For
mixed states there is an added complication. Even after one
settles on an appropriate measure of entanglement for pure
states, mixed states require the application of the convex roof
extension.

The convex roof entails a decomposition of the density
matrix into pure states. Each possible decomposition is in a
one-to-one correspondence with some unitary matrix [24]. The
convex roof thus relies on searching the Lie group SU(K) for
the decomposition that gives minimal entanglement. Here, K

can theoretically be as large as the square of the rank of the
density matrix [25]. For example, for a three-level tripartite
system the density matrix could have rank as high as 27. Then,
we might have to search a Lie group as large as SU(272), which
has a dimension of 274 − 1. Thus, in the general case it is
numerically impractical to compute the convex roof. This has
led to a great number of articles that give analytical estimates
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for the convex roof [26–31], but where actual calculation is
limited to the two-level bipartite case or in the tripartite case to
rank 2, 3, or 4 density matrices for a two-level system [32–34]
with special mixtures. All these sources deal with discrete
systems. In this article we perform a convex roof calculation
for a tripartite three-level continuous variable system.

It turns out that the well-studied model [35–40] of a system
of harmonic oscillators prepared initially in a Schrödinger cat
state and interacting only via a zero-temperature bath can have
the convex roof extension evaluated by a modest numerical
calculation. This is a nice model to study because its time
dependence can be solved explicitly and the Hamiltonian has
well-defined symmetry. The Hilbert space thus separates into
decohering and decoherence-free subspaces. At first sight, it
seems the convex roof in such a model would be quite difficult
to calculate because in this case we are dealing with continuous
variable entanglement. However, by utilizing the symmetry of
the Hamiltonian in the choice of initial state, one can reduce
the continuous system to one with effectively a finite number
of levels [41]. Under such a change of basis, the convex
roof is in fact numerically computable with modest resources.
This happens because the rank of the density matrix is much
smaller than the maximally possible value. This means that the
range of Lie groups one has to search starts at a much lower
dimension. Furthermore, numerical results strongly suggest
that the convex roof is attained at the minimum of this range
of Lie groups for this particular model. This suggests that while
the calculation of the convex roof appears quite formidable in
theory, in practice for many systems, numerically computing
the convex roof is not terribly difficult.

Our model, in full generality, has an arbitrary number of
levels and parties. In calculating the convex roof, we chose
as our measure for pure states the entanglement monotone of
Barnum, Knill, Ortiz, and Viola [42–46], which we abbreviate
as BKOV. We do not claim that this measure is more or
less appropriate than any other measure. It is known that
it cannot distinguish the product of two Bell states from
a four-party Greenberger-Horne-Zeilinger (GHZ) state [47].
These product-entangled states do not occur in our model.
Because of the symmetry of our interaction Hamiltonian and
our initial conditions, we sample only a particular set of states
in going from initial to final states. We are not concerned
about the entanglement of states we do not sample. Therefore,
BKOV, because it is the only measure to our knowledge that
can be applied to systems with no level or party number
restriction, seems appropriate. It gives reasonable results for
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our model. However, we point out that the particular measure
is unimportant for this proof of principle. One chooses the
measure one feels is most appropriate and then proceeds to
calculate its convex roof.

In what follows, we present our version of the previously
described model. We find the time dependence of the system
and bath operators in the Markov approximation. Next, we
determine the decohering and decohrence-free subspaces of
the Hilbert space. After tracing out the bath, we transform the
system to a new basis that gives us a finite dimensional Hilbert
space. Finally, we numerically calculate the convex roof for
the system oscillators when the initial state is a Schrödinger
cat in a decohering subspace of the overall Hilbert space.

II. MODEL HAMILTONIAN

Consider a set of N oscillators, which we will call the
system oscillators in what follows. We will assume that these
system oscillators do not interact directly with each other, but
rather indirectly via a reservoir of a countably infinite set of
bath oscillators. The system Hamiltonian is then given by

H =
N−1∑
p=0

h̄ωâ†
pâp +

∞∑
B=0

h̄ωBb̂
†
B
b̂B

+
∞∑

B=0

κB

⎛
⎝b̂†

B

N−1∑
p=0

âp + H.c.

⎞
⎠ , (1)

where κB denotes a different coupling constant between each
bath oscillator and the system oscillators. We also assume
symmetric coupling of the system oscillators to the bath. In
the case in which the reservoir is the electromagnetic field,
this is the Dicke long wavelength limit. With this coupling
scheme, the system evolves into nonsymmetric states (see [48]
for details). For this model we can assume that some or all
of the system oscillators are initially excited, while the bath
oscillators are all initially in their ground state. This situation
is illustrated by the following initial state:

|�(0)〉 = N
M−1∑
σ=0

|ψσ 〉, (2)

where

|ψσ (0)〉 =
⎡
⎣N−1⊗

p=0

|ασ,p(0)〉
⎤
⎦⊗

[⊗
B

|βσ,B(0)〉
]

. (3)

Here |ασ,p(0)〉 and |βσ,B(0)〉 are coherent states, including the
possibility of the vacuum state.

Notice that |�(0)〉 is a continuous variable multipartite
entangled Schrödinger-cat state provided M � 1. This is
because each party is a superposition of M different coherent
states. Being in a superposition of coherent states, that is,
a Schrödinger-cat state, is necessary for the entanglement.
Furthermore, if we trace out the bath oscillators, then we see
that the initial system state is the pure entangled Schrödinger-
cat state,

|�(0)〉 = N
M−1∑
σ=0

⎡
⎣N−1⊗

p=0

|ασ,p(0)〉
⎤
⎦ . (4)

For large α this state approaches a GHZ state, and so in that
sense the entanglement is maximal. We wish to explore the
decay of this entanglement with time

The time dependence of this state can be found by solving
the Heisenberg equations of motion for the time dependence
of the operators âσ,p(t) and b̂σ,B (t). This is most easily done
by performing the change of variables,

Âp = 1√
N

N−1∑
q=0

âqe
2πipq/N , (5)

for 0 � p � N − 1. The Heisenberg equations of motion now
take the form

˙̂Ap = −iωÂp − iδp,0

√
N
∑
B

κBb̂B, (6)

˙̂bB = −iωBb̂B − i
√

NκBÂ0. (7)

In making this change of variables, we have used the symmetry
of the coupling between each system oscillator and the bath.

We can immediately solve Eq. (6) for the case p > 0 to get

Âp(t) = Âp(0)e−iωt , p > 0 (8)

and formally integrate Eq. (7) to get

b̂B(t) = b̂B(0)e−iω
B

t − i
√

NκB

∫ t

0
dt ′e−iω

B
(t−t ′)Â0(t ′). (9)

Substituting Eq. (9) into Eq. (6) we get

˙̂A0(t) = −iωÂ0 − i
√

N
∑
B

κBb̂B(0)e−iω
B

t

−N
∑
B

κ2
B

∫ t

0
dt ′e−iω

B
(t−t ′)Â0(t ′). (10)

Next, we allow our bath modes to become a continuum
introducing an appropriate density of states:

˙̂A0(t) = −iωÂ0 − i
√

N
∑
B

κBb̂B(0)e−iω
B

t

−N

∫ ∞

0
dωB
(ωB)κ2(ωB)

∫ t

0
dt ′e−iω

B
(t−t ′)Â0(t ′).

(11)

Applying the standard Markov approximation argument [49],
and ignoring the Lamb shift, we arrive at our final equation:

˙̂A0(t) = −iωÂ0 − i
√

N
∑
B

κBb̂B(0)e−iω
B

t

−πNÂ0(t)
(ω)κ2(ω). (12)

This equation can be easily integrated to get

Â0(t) = Â0(0)e−(iω+Nγ )t − i
√

N
∑
B

κBb̂B(0)

× e−iω
B

t − e−(iω+Nγ )t

i(ω − ω
B
) + Nγ

, (13)

where γ = π
(ω)κ2(ω) is the reservoir damping constant for
a single oscillator.
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We can now transform back to the âp variables using the
inverse transform

âp = 1√
N

N−1∑
q=0

Âqe
−2πipq/N . (14)

As the bath oscillators are initially in their ground state, we
can discard terms of the form b̂B(0) in our expression for â(t)
and b̂(t). The result is

âp(t) = âp(0)e−iωt + e−iωt

N
(e−Nγ t − 1)

N−1∑
q=0

âq(0), (15)

and

b̂B(t) = κ
B

⎡
⎣ 1√

N

N−1∑
p=0

âp(0)

⎤
⎦ e−(iω+Nγ )t − e−iω

B
t

(ω − ω
B
) − iNγ

. (16)

We note that if

â(t)|α(0)〉 = α(t)|α(0)〉 (17)

in the Heisenberg picture, then

â(0)|α(t)〉 = α(t)|α(t)〉 (18)

in the Schrödinger picture.
Applying â(t) and b̂(t) to the initial state [Eq. (3)], we get

âp(t)|ψσ (0)〉

= e−iωt

⎡
⎣ασ,p(0) + 1

N
(e−Nγ t − 1)

N−1∑
q=0

ασ,q(0)

⎤
⎦ |ψσ (0)〉

≡ ασ,p(t)|ψσ (0)〉 (19)

and

b̂B(t)|ψσ (0)〉

= κ
B

1√
N

⎡
⎣N−1∑

p=0

ασ,p(0)

⎤
⎦ e−(iω+Nγ )t − e−iω

B
t

(ω − ω
B
) − iNγ

|ψσ (0)〉

≡ βσ,B(t)|ψσ (0)〉, (20)

respectively. So |ψσ (0)〉 satisfies the conditions of Eq. (17).
Knowing its time dependence of course gives us the time
dependence of the full wave function in Eq. (2). Thus,

|ψσ (t)〉 =
⎡
⎣N−1⊗

p=0

|ασ,p(t)〉
⎤
⎦⊗

[⊗
B

|βσ,B(t)〉
]

. (21)

and

|�(t)〉 = N
M−1∑
σ=0

|ψσ (t)〉. (22)

III. INITIAL CONDITIONS

Consider the case in which we have N system oscillators
and P of these are initially excited. When an oscillator is
excited, we take it to be in a generalized Schrödinger-cat

superposition that is symmetric in phase around the phase-
space orbit [41]. We then have

|ασ,p(0)〉 =

⎧⎪⎨
⎪⎩

|µe2πiσ/M〉 when p = 0,

|µe2πiσ/M+iθp 〉 when 1 � p < P,

|0〉 otherwise,

(23)

where the θp are arbitrary angles for now. From Eq. (19) the
resulting α eigenvalues for the system oscillators are now

ασ,p(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩



[
1 + (e−Nγ t − 1)

(
1+∑P−1

q=1 eiθq

)
N

]
,

p = 0,



[
eiθp + (e−Nγ t − 1)

(
1+∑P−1

q=1 eiθq

)
N

]
,

1 � p < P,

(e−Nγ t − 1)

(
1+∑P−1

q=1 eiθq

)
N

,

p � P,

(24)

where

 = e−iωtµe2πiσ/M. (25)

There is a special initial state that is decoupled from the bath
and for that we must have

1 +
P−1∑
q=1

eiθq = 0, (26)

which implies that the bath eigenvalues remain zero as well.
The preceding condition is satisfied, for example, when θq =
2πSq/P for integer S with S �= 0. Different integer values
of S mod P define orthogonal decoherence-free subspaces of
the Hilbert space. In this case the given symmetry decouples
the system oscillators from the bath, and there is no decay
of the original pure state.

It is not hard to see as well that for maximal decoherence
we must have P = N and

1 +
N−1∑
q=1

eiθq = N. (27)

This requires that eiθq = 1. That is, all the oscillators are in
the same state, and we have the case of superradiance with
maximal cooperativity [50]. The amplitudes of the ασ,p(t) take
the form

ασ,p(t) = µe−iωt e2πiσ/Me−Nγ t ; (28)

that is, the system oscillator amplitudes decay away completely
as t → ∞.

IV. REDUCED DENSITY MATRIX

We are interested in the time evolution of the entanglement
of the system oscillators in the superradiant case. As a first
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step we compute the reduced density matrix as a function of
time. Tracing over the bath, the reduced density matrix for the
system oscillators is given by

ρ̂
S

= N 2
M−1∑
σ,ς=0

N−1⊗
p=0

|ασ,p〉〈ας,p|
∏
B

〈βς,B |βσ,B〉, (29)

with normalizationN 2 calculated from the unit trace condition

1 = N 2
M−1∑
σ,ς=0

∏
p=0

〈ασ,p|ας,p〉
∏
B

〈βσ,B |βς,B〉. (30)

Now,∏
B

〈βσ,B |βς,B〉

=
∏
B

exp{−N |µ̄|2[1 − e−2πi(σ−ς)/M ]|fB(t)|2}

= exp

{
−N |µ̄|2[1 − e−2πi(σ−ς)/M ]

∑
B

|fB(t)|2
}

, (31)

where

µ̄ ≡
(
1 +∑P−1

q=1 eiθq
)

N
µ (32)

and

|fB(t)|2 = |κ
B
|2
{

e−2Nγ t − 2e−Nγ t cos[(ω − ω
B
)t] + 1

(ω − ω
B
)2 + N2γ 2

}
≡ |κ

B
|2F

B
. (33)

We can approximate the sum over all fB as follows:

∑
B

|fB(t)|2 =
∫ ∞

−∞

̂(ω

B
)|fB(ω

B
,t)|2dω

B

≈ 
(ω)|κ(ω)|2
∫ ∞

−∞
F

B
dω

B

= π

Nγ

(ω)|κ(ω)|2(1 − e−2Nγ t ). (34)

Using our definition of γ , we find∑
B

|fB(t)|2 = 1

N
(1 − e−2Nγ t ). (35)

Finally, we have∏
B

〈βσ,B|βς,B〉 = exp{−|µ̄|2[1 − e−2πi(σ−ς)/M ](1 − e−2Nγ t )}.

(36)

Of special importance in this equation for what follows
will be the off-diagonal bath inner-product (ODBIP) terms,
that is, those for which σ �= ς . This is because the degree of
coherence between the system terms depends on the amount
of overlap of the different bath terms [51].

We can check that Eq. (36) holds at t = 0,∏
B

〈βσ,B |βς,B〉 = 1, (37)

and that

ρ̂
S
(0) = N 2

M−1∑
σ,ς=0

N−1⊗
p

|ασ,p〉〈ας,p|

=
(
N

M−1∑
σ=0

N−1⊗
p

|ασ,p〉
)⎛⎝N

M−1∑
ς=0

N−1⊗
q

〈ας,q |
⎞
⎠ ; (38)

that is, the state is pure at time t = 0.
From

N−1∏
p=0

〈ασ,p|ας,p〉 = exp{−|µ̄|2e−2Nγ t [1 − e−2πi(σ−ς)/M ]}N

= exp{−N |µ̄|2e−2Nγ t [1 − e−2πi(σ−ς)/M ]},
(39)

we have that the normalization N 2 is given by

1

N 2
= tr{ρ̂

S
(t)}

N 2

=
M−1∑
σ,ς=0

exp{−[1 + (N − 1)e−2Nγ t ]|µ̄|2

× [1 − e−2πi(σ−ς)/M ]}. (40)

When |µ̄| >∼ 2, the real part of the ODBIP terms decay
extremely rapidly from 1 to e−1 in the period

0 � t � −1

2Nγ
loge

(
1 − 1

|µ̄|2
)

.

This is due to the exp[1 − exp(−2Nγ t)] dependence on t in
the exponent of Eq. (36). The final factor,

G = exp{−|µ̄|2[1 − cos(2πi(σ − ς )/M)]} ≡ e−g,

is more than an order of magnitude smaller than one.
Practically, this gives a superexponential decay rate for the
coherence. We call this superexponential because

Re

{∏
B

〈βσ,B|βς,B〉
}

= e−g exp(ge−2Nγ t ). (41)

For small t and large g this decay rate is much faster
than the exp(−Nγ t) decay rate for the system oscillator
amplitudes.

During this period the reduced density matrix decays to

ρ̂
S
(t) = N 2

M−1∑
σ=0

N−1⊗
p=0

|ασ,p(t)〉〈ασ,p(t)|. (42)

This density matrix is mixed.
The system amplitude undergoes decay at the slower

exponential rate. In the situation of Eq. (27), where all the
oscillators are initially excited with the same phase, all the
system oscillators reduce to the ground state in a time t >∼ 1

Nγ

and the quantum state of the system becomes pure again. In
this case, we see that in Eq. (40) the dominant terms in the sum
are the ones where ς = σ . There are M such terms, so that

1

N 2
∼ M. (43)
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V. A BASIS AND MEASURE FOR EVALUATING
ENTANGLEMENT

The state of the system in each party is specified by M

coherent states that depend on time as given by Eq. (28).
To evaluate the entanglement of the system, an orthonormal
basis for these coherent states is required. We form a minimal
dynamic orthonormal basis, that is, a basis that evolves with
time, by transforming from the |ασ,p〉 basis to the orthonormal
|Vσ,p〉 basis given in [41]. From [41, Eq. (22)] we have

|ασ,p〉 = 1

M

M−1∑
ς=0

Nς exp(2πiσς/M)|Vς,p〉, (44)

where the orthonormal |Vς,p〉 basis is given in [41], Eq. (23)]
by

|Vς,p〉 = 1

Nς

M−1∑
σ=0

exp(−2πiσς/M)|λp(t)e2πiσ/M〉, (45)

and the normalization factors Nσ are given by

N 2
σ =M

M−1∑
ς=0

[(e−2πiς/M )σ exp{|λp(t)|2[exp(2πiς/M) − 1]}].

(46)

Transformation to this basis is possible by virtue of the
symmetry we specified for our initial conditions. Because
all coherent states decay in identical fashion, this symmetry
is preserved for all time. This time-independent symmetry
enables us to rewrite the state of the system, given by M

independent coherent states in each party, in terms of an
orthonormal basis with M elements for each party. The system
is thus represented as a well defined M-level, N -partite system.
This allows us to apply various discrete entanglement measures
to our system. For example, for the superradiant case, when
t = 0, we see that we have a maximally entangled (in the
GHZ sense) state. The BKOV measure [42,43] is defined for
multipartite, multilevel systems and it sets the GHZ state as
the maximally entangled state. So we analyze the entanglement
using the BKOV measure. Since our reduced density matrices
are mixed, we calculate the convex roof extension (CRE) of
the BKOV measure.

VI. CONVEX ROOF CALCULATION

Calculating the CRE of a pure state entanglement measure
requires writing the density matrix in the form

ρ̂ =
∑

σ

pσ |�σ 〉〈�σ |, (47)

where
∑

pσ = 1 and the |�σ 〉 represent pure states. This
decomposition is not unique, and indeed is parametrized by the
special unitary groups SU(K) [24]. In the case where the �σ

are orthogonal, the pσ are the eigenvalues of the density matrix,
and the decomposition is called the eigendecomposition [52].
For a general density matrix, written with respect to an
orthonormal basis, rewriting ρ̂ in the form of Eq. (47) so
that each term in the decomposition is orthogonal requires that
we diagonalize the given density matrix. In the case where
the density matrix ρ̂ has degenerate eigenvalues, this implies

that the diagonalizing matrix D is not unique. The number of
positive eigenvalues of ρ̂ is the rank.

Given an orthogonal decomposition of ρ̂, we can evaluate
the entanglement of this decomposition by taking the value∑

σ

pσ × entanglement(|�σ 〉); (48)

that is, one evaluates the entanglement of each pure state |�σ 〉
and multiplies by the weighting factor pσ and then sums the
terms. To calculate the entanglement of ρ̂, one must repeat
this step for all possible decompositions of ρ̂, and take the
minimum value. This means taking the value∑

σ

qσ × entanglement(|�σ 〉), (49)

where

⎛
⎜⎝

√
q0 |�0〉

...√
q

K−1 |�K−1〉

⎞
⎟⎠ = T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
p0 |�0〉

...√
prank{ρ̂}−1 |�rank{ρ̂}−1〉

0rank{ρ̂}
...

0
K−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(50)

Here
∑K−1

ς=0 qς = 1 and T is a K × rank{ρ̂} size submatrix of
a unitary matrix U ∈ SU(K).

We illustrate with an example. We consider the density
matrix of the form

ρ̂ = 1

4

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎞
⎟⎟⎠ , (51)

given in the

|00〉, |01〉, |10〉, |11〉 (52)

basis. Since this matrix is bipartite two level, one could apply
the concurrence to verify that ρ̂ has zero entanglement. Instead,
we will find the entanglement of ρ̂ by taking the convex roof
directly. The matrix that diagonalizes this density matrix is
given by

D = 1√
2

⎛
⎜⎜⎜⎝

0 1 0 1

1 0 1 0

1 0 −1 0

0 1 0 −1

⎞
⎟⎟⎟⎠ , (53)

so that

ρ̂ = D

⎛
⎜⎜⎜⎝

1
2 0 0 0

0 1
2 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ D† (54)
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and the diagonal basis is given by⎛
⎜⎜⎜⎝

|�0〉
|�1〉
|�2〉
|�3〉

⎞
⎟⎟⎟⎠ = D†

⎛
⎜⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎟⎠ . (55)

One way to write this, which is useful for the general
case, is

|�σ 〉 =
3∑

m=0

D†
σm|m〉, (56)

where we have numbered the basis elements as

|0〉 ≡ |00〉, |1〉 ≡ |01〉, |2〉 ≡ |10〉, |3〉 ≡ |11〉. (57)

Our decomposition is of the form

ρ̂ = 1
2 |�0〉〈�0| + 1

2 |�1〉〈�1|, (58)

where

|�0〉 =
√

1
2 (|01〉 + |10〉),

(59)
|�1〉 =

√
1
2 (|00〉 + |11〉).

Obviously, both |�0〉 and |�1〉 are Bell states, so any
entanglement measure on this decomposition will give full
entanglement.

To do better, we try T = U ∈ SU (2). Then we have

ρ̂ = q0|�0〉〈�0| + q1|�1〉〈�1|, (60)

where (√
q0|�0〉√
q1|�1〉

)
=
(

U00 U01

U10 U11

)(√
p0|�0〉√
p1|�1〉

)
. (61)

Since p0 = 1
2 = p1, it is clear that we also have q0 = 1

2 = q1,
so ( |�0〉

|�1〉
)

=
(

U00 U01

U10 U11

)( |�0〉
|�1〉

)
. (62)

If we let

U =
√

1

2

(
1 1

−1 1

)
, (63)

then

|�0〉 = 1
2 (|00〉 + |11〉 + |01〉 + |10〉)

= 1
2 (|0〉 + |1〉) ⊗ (|0〉 + |1〉) (64)

and

|�1〉 = 1
2 (|00〉 − |11〉 − |01〉 + |10〉)

= 1
2 (|0〉 − |1〉) ⊗ (|0〉 − |1〉). (65)

Therefore, the entanglement of both |�0〉 and |�1〉 is zero. So
the entanglement of this decomposition gives zero. Since you
can’t get less than zero, the entanglement of this mixed state
is zero.

For a general density matrix,

|�ς 〉〈�ς | = 1

qς

L−1∑
m,n=0

Pς,m,n |m〉〈n|

= 1

qς

rank{ρ̂}−1∑
σ,�=0

UςσU †
�ς

√
pσ

√
p�

×
L−1∑

m,n=0

D†
σmDn� |m〉〈n|, (66)

where we have generalized the notation of Eqs. (56) and (57) so
that D is a matrix of size L × L used to diagonalize the density
matrix ρ̂ and we have introduced the term Pς,m,n . According
to the prescription in Eq. (49), the entanglement measure
is applied to the pure state terms |�ς 〉〈�ς |. The BKOV
entanglement measure consists of terms of the form [44]

[tr{|�ς 〉〈�ς |Eα }]2 = 1

q2
ς

[
tr

{
L−1∑

m,n=0

Pς,m,n |m〉〈n|Eα

}]2

,

(67)

where the Eα are Hermitian matrices that collectively form
the basis for the Lie algebra (multiplied by i = √−1 )
required for the BKOV measure.

The BKOV entanglement of the decomposition is then of
the form

Bdecomp(U)

= 1 −
∑
α,ς

1

qς

(U)

[
tr

{
L−1∑

m,n=0

Pς,m,n (U)|m〉〈n|Eα

}]2

.

(68)

The Pς,m,n terms are homogeneous functions of the matrix
elements of U and U†. These terms can then be viewed
as homogeneous polynomials of degree two in R2K2

but
constrained to the compact subset SU(K) ⊂ CK2

. The Pς,m,n

terms are squared, so we have a homogeneous polynomial of
degree four in the numerator. The denominator is,

qς =
rank{ρ̂}−1∑

σ=0

pσ |Uςσ |2, (69)

which is a homogeneous polynomial of degree two. So, 1 −
Bdecomp is a ratio of homogeneous polynomials, of degree four
in the numerator and of degree two in the denominator.

The only known bound on decompositions is that for a den-
sity matrix of rank{ρ̂}, decompositions from SU([rank{ρ̂}]2)
suffices for evaluating the convex roof [25,28]. For the density
matrix ρ̂

S
that we gave in Sec. IV, we find that this limit is

much too large. Numerical calculation indicates that, as in
the previous example, we can always choose K = rank{ρ̂

S
}.

Choosing K > rank{ρ̂
S
}, that is, finer decompositions, is

unnecessary for our model. If the rank of the density matrix is
low, say 2 or 3, this makes the convex roof calculation tractable.

Knowing that we need only consider decompositions of the
density matrix corresponding to unitary matrices of SU(K)
with K = rank{ρ̂

S
}, we still need to search all of SU(K). How-

ever, as we have just seen, the BKOV entanglement measure
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is a ratio of two homogeneous polynomials. Furthermore, the
denominator is never zero when restricted to SU(K). Since
SU(K) is compact, our problem is to minimize such a function
on a compact set. We can thus expect that the entanglement
as a function of decompositions should be reasonably well
behaved. So a search of SU(K) for the minimum BKOV
entanglement can be quite coarse.

To search SU(K), we first parametrize the K2 − 1 di-
mensional Lie group with a hypercube. The method of
parametrization has been inductively worked out for arbitrary
K in [52]. For SU(2) this parametrization is given by

U = exp(iσzα1) exp(iσyα2) exp(iσzα3), (70)

where the σ ’s are the Pauli matrices, and the 0 � α’s � 2π

are the variables in the parametrization.
Likewise, using the same notation used in [52], we have

that the parametrization for SU(3) is given by

U = eiλ3α1eiλ2α2eiλ3α3eiλ5α4eiλ3α5eiλ2α6eiλ3α7eiλ8α8 , (71)

where

λ3 =

⎛
⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎠ , λ8 =

⎛
⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎠ , (72)

λ2 =

⎛
⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎠ , λ5 =

⎛
⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎠ (73)

are four matrices of the Lie algebra su(3) and the 0 � α’s � 2π

are again the variables in the parametrization. The formulas
get progressively longer for higher K , so we refer the reader
to the source [52].

Next, we remark that examination of the formula for
entanglement strongly suggests that the minimum over de-
compositions U should be quite broad and multidimensional.
This implies that a very simple algorithm should suffice in
finding the minimum. The algorithm we use is a much simpler
version of the one given in [53]. First, we form an evenly spaced
grid of 2n points in the hypercube that parametrizes SU(K).
It is usually sufficient to choose n < K2 − 1 = dimension of
SU(K). So, for example, while 23 grid points would subdivide
the parameter space of SU(2), which is three dimensional,
into eight equal-size volumes, this level of refinement is
unnecessary. A grid of 22 points dividing the parameter space
into four volumes suffices for our algorithm. The grid points
could be (0,0,0), (π,0,0), (0,π,0), and (π,π,0), with the
understanding that 2π is identified with 0 in the parameter
space given in [52].

In the gridding scheme we use in this article, the first K2 − 2
coordinates take on the two possible values, 0 or π , along each
axis αi . The last coordinate has only one possible value, which
is 0. If we are using decompostions from SU(3), then a grid
with 27 points would have coordinates 0 or π along seven
of the axes and the value 0 on the eighth axis. The reason
for gridding up the parameter space to begin with is to avoid
local minima and areas where the entanglement measure has
no gradient. Since the BKOV entanglement measure is a ratio
of homogeneous polynomials on a compact set, we do not
expect many local extrema. In fact, we have found that for

our model, alternative local minima show up only when the
number of grid points for SU(K) are below 2dim {SU(K)}/2. So
the calculation need not be very computer intensive.

In the next step of our algorithm, we calculate the
entanglement of the decomposition at each grid point. At each
grid point we then move 5◦ along each axis to determine
if the entanglement function decreases. If it does not, the
“ball” stops rolling. So, for example, a point in SU(3) has 16
possible directions corresponding to the positive and negative
directions on the eight axes. Starting at the grid point, one
moves incrementally in each direction to determine which axis
gives the minimal entanglement. When that axis is determined,
a new starting point is set along that axis and the comparison
of all directions is repeated. When movement along the axes
no longer decreases the entanglement we have the minimal
entanglement associated to the original grid point.

Finally, we collect the minima calculated for each grid
point. The minimum of this set we take to be our best
approximation of the correct answer. More grid points, or a
finer search at each grid point, will lead to finer approximations
of the answer. Conversely, we find that alternative local minima
do not show up until our step spacing gets as large as 30◦ or
the number of grid points is smaller than 2dim {SU(K)}/2.

VII. RESULTS OF THE NUMERICAL CALCULATIONS

We now present our results of the numerical calculation of
the CRE. In this section we will only consider the superradiant
case where all the system oscillators are initially excited with
the same phase so that µ̄ = µ in Eq. (32). Our calculations
of BKOV entanglement are all done with the following Lie
algebra,

g =
N−1⊕
p=0

su(Lp ), (74)

where N is the number of parties on our system, su(Lp ) is the
Lie algebra of Lp × Lp traceless anti-Hermitian matrices, and
Lp is the dimension of the pth party.

In Fig. 1 we compare the CRE of the BKOV measure
to Wootter’s concurrence C [11] and the convex roof of the
entanglement of formation F . Recall that the convex roof of
the entanglement of formation is related to the concurrence via
the relations [10]

F(C) = h

(
1 + √

1 − C2

2

)
, (75)

where

h(x) = −x log2(x) − (1 − x) log2(1 − x). (76)

While all three measures give different results between zero
and complete entanglement, they all demonstrate the same
generic decay. The graphs also demonstrate the similarity
between F and BKOV as bipartite measures. Of course, with
increasing µ, the increasing steepness of the entanglement
decay guarantees that all three measures converge in value.
Plotted as well, for time comparison, is the function e−2γ t ,
which gives the amplitude decay of the oscillator in Eq. (28).
For large µ the decay is exponentially faster than the amplitude
decay. This effect is due to dephasing of the Schrödinger
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FIG. 1. Entanglement vs time (0 � 3γ t � 0.9), comparing three
different measures, for a Schrödinger-cat state in a bipartite two-level
Hilbert space. The entanglement of the density matrix in Eq. (29) is
compared using three different measures for the case M = N = 2
and S = 0. Graphs marked with the letter c denote the concurrence
measure. Graphs marked with the letter f denote the entanglement of
formation derived from the concurrence. Finally, graphs marked by
the letter e denote our calculation of the convex roof of BKOV using
SU(2) decompositions. The subscripts to the letters denote the cases
of µ = 1 and 4. The decay e−2γ t of the system oscillator amplitude
is displayed as well for time comparison.

cat, where different time scales for dephasing and amplitude
decay were first noted by [37,54]. In the context of bipartite
discrete systems, this effect was again noted in the context
of entanglement by [55]. Rapid mixing is the effect we expect
from a bath and we see that for moderately large µ, this mixing
leads to rapid decay of entanglement. On the other hand, for
small µ, the decay in entanglement is of the same order of
magnitude as the amplitude decay. The mixing of the state by
the bath has a less dramatic effect on the entanglement.

The preceding observations suggest that large-amplitude
entangled Schrödinger-cat states have quite different dynami-
cal evolution than small-amplitude Schrödinger-cat states. By
large-amplitude Schrödinger-cat state we mean a superposition
of coherent states where the coherent state amplitude is much
larger than one, and an entangled cat is an entangled state. A
small-amplitude Schrödinger-cat state is then a superposition
of coherent states where the coherent state amplitude is less
than, or close to, one. Then we observe that the evolution of
large-amplitude entangled Schrödinger-cat states takes place
on a different time scale than for small-amplitude Schrödinger-
cat states. The former has a time scale governed by the decay
of correlations in the reservoir while the latter has time scale
governed by the decay of the system oscillator amplitudes.

Next, we numerically calculate the CRE for a tripartite
system, that is, N = 3 in Eq. (29). We first consider the case
where M = 2, so that in our circular basis [Eq. (45)], the
number of levels in each of the three parties is two. In Figs. 2
and 3 we plot the CRE of BKOV vs the 3-tangle [19] and
the π -tangle [56]. For values of µ > 1, we see from Fig. 2
that the three measures coincide for our model, with very
slight separation (BKOV on top, 3-tangle at bottom) when
µ = 5

4 . This confirms our statement in the Introduction that
our states are GHZ-like, as the 3-tangle only measures GHZ-
type entanglement [19,57]. When µ � 1, the three measures
disagree, as seen in Fig. 3. The π -tangle and BKOV are similar
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FIG. 2. Entanglement vs time (0 � 3γ t � 0.045), comparing
three different measures, for a large-amplitude Schrödinger-cat state
in a tripartite two-level Hilbert space. BKOV entanglement vs
π -tangle vs 3-tangle for µ = 5

4 (e5/4), 2 (e2), 4 (e4), and 8 (e8) in the
case of N = 3 and M = 2. The calculation of BKOV is done using
decompositions U ∈ SU(2) because this is the approximate rank of
ρ̂

S
. Note that the three measures overlap with a very slight difference

noticeable for µ = 5/4.

but differ increasingly from the 3-tangle as µ gets smaller. The
conclusion is that for small µ our states are not GHZ-like.

Next, we consider the case where M = 3, so that in our
circular basis [Eq. (45)], the number of levels in each of
the three parties is three. In Fig. 4 we plot our calculation
of the CRE of BKOV using decompositions from SU(2) when
the rank of the reduced density matrix is 2 and SU(3) when
the rank is 3. The rank was determined by considering only
eigenvalues above a cutoff of 10−4. Since the trace must be
one, this guarantees that the eigenvalues discarded are several
orders of magnitude smaller than the largest eigenvalue. From
the figure we see that for values of µ � 2 the decay of
entanglement is much more rapid, in fact exponentially so,
compared to the oscillator amplitude decay rate e−3γ t .

We can do this calculation because the rank of the density
matrix in this case can be approximated as 2 or 3. Furthermore,
only decompositions through SU(2) or SU(3), depending on
the rank, are necessary in our case. Higher-order unitary
matrices offer no significant improvement.
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FIG. 3. Entanglement vs time (0 � 3γ t � 0.045), comparing
three different measures, for a small-amplitude Schrödinger-cat
state in a tripartite two-level Hilbert space. BKOV entanglement
(e) vs π -tangle (n) vs 3-tangle (tt) for µ = 1

2 , 3
4 , and 1 (denoted

as subscripts on e, n, and tt) in the case of N = 3 and M = 2.
The calculation of BKOV is done using decompositions U ∈ SU(2)
because this is the approximate rank of ρ̂

S
.
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FIG. 4. Entanglement vs time (0 � 3γ t � 0.045) for a large-
amplitude Schrödinger-cat state in a tripartite three-level Hilbert
space. BKOV entanglement for µ = 1 (e1), 2 (e2), 4 (e4), and 8 (e8)
in the case of N = M = 3. The calculation is done using decomposi-
tions U ∈ SU(K), where K = rank of ρ̂

S
for the case of N = M = 3.

The rank of the reduced density matrix is 1 at t = 0 and then changes
instantaneously to 2 on the time scale used in the plot. The times
marked t4, t2, and t1 denote the points where the rank of ρ̂

S
changes

from 2 to 3 for the cases µ = 4, 2, and 1, respectively. In the case of
µ = 8, the rank of the reduced density matrix changes from 1 to 3
almost instantaneously on the time scale used in the plot.

Figure 5 illustrates this point. The fine curves in the figure
are calculated using decompositions from SU (K) = rank{ρ̂

S
}.

In this case, for t > 0, the rank is 2 or 3 as shown in Fig. 4 . The
large coarse points represent the calculation of entanglement
using the finer decomposition of SU(4). One can see that there
is no significant decrease in the entanglement calculated with
the finer decomposition.
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FIG. 5. The effect on CRE using finer decompositions in the
tripartite three-level case. Short-time (0 � 3γ t � 0.045) graph of
BKOV entanglement for the case of N = M = 3, where we com-
pare two different decompositions for the cases µ = 1, 4, and 8.
Graphs of the two decompositions are superimposed. The coarser
decomposition gives rise to the continuous-looking curves, which are
calculated using U ∈ SU(K), where K = rank{ρ̂

S
}, For µ = 4 and 10

and t > 0, the the rank of the density matrix is 3 and we use SU(3) for
the decomposition. When µ = 2 and t > 0, the rank starts out at 2 and
then becomes 3. So we first calculate entanglement in this case using
decompositions only from SU(2) when the rank is 2 and then from
SU(3) when the rank becomes 3. The finer decomposition is marked
by the large discrete points. The entanglement calculation at each time
point is done using SU(K) = SU(4). As is evident from the graphs,
there is no significant improvement in going to finer decompositions.
So it is sufficient to check the convex roof with K = rank{ρ̂

B
}.
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FIG. 6. Entanglement vs time (0 � 3γ t � 0.9) for a small-
amplitude Schrödinger-cat state in a tripartite three-level Hilbert
space. Entanglement for µ = 1/2 (e1/2), 3/4 (e3/4), 1 (e1), and
2 (e2) in the case of N = M = 3. The calculation was done with U ∈
SU(K), where K = rank of ρ̂

S
. The rank of the reduced density matrix

is 1 at t = 0 and then changes instantaneously to 2 on the time scale
used in the plot. The times marked t1, t3/4, and t1/2 denote the points
where the rank of ρ̂

S
changes from 2 to 3 for the cases µ = 1, 3/4,

and 1/2, respectively. In the case of µ = 2, the rank of the reduced
density matrix changes from 1 to 3 almost instantaneously on the
time scale used in the plot. The subscripts denote the value of µ. Note
that when µ � 1, the initial entanglement is no longer equal to one.

For small µ, that is µ � 1, we see, from Fig. 6, that the
entanglement decay rate is significantly slower then the super-
exponential decay exhibited in the high-µ case. Now the decay
of entanglement is of the same order as the amplitude decay
rate e−3γ t . In addition, for µ � 1, the initial entanglement
is no longer complete, and the initial value of entanglement
decreases rapidly with decreasing µ. To summarize, if we
start with a high amount of initial entanglement, the decay of
entanglement is extremely rapid. If we start with very little
entanglement, the decay of entanglement is much slower.

In Figs. 7 and 8 we compare the decay of entanglement
using the convex roof of BKOV to the decay of the real part
of the off diagonal bath inner product (ODBIP) from Eq. (36)

Re

{∏
B

〈βσ=1,B |βς=2,B〉
}

= exp{−|µ|2[1 − cos(−2π (1 − 2)/3)](1 − e−2×3γ t )}.
(77)

From the two figures we can identify several features about
the decay of entanglement for µ � 2:

(i) The decay rate of the ODBIP term and the decay rate
of the entanglement coincide for a time t ∈ [0,t1(µ)].

(ii) The time t2(µ) that it takes for the ODBIP term to
reach its exponential knee (defined as the point where the
slope is −1), coincides with the time it takes for the BKOV
entanglement to decay to zero.

(iii) The average rate of decay of the ODBIP term in the
time interval t ∈ [0,t2(µ)] is much much greater than −3γ .

(iv) For the time t ∈ [0,t2(µ)] the average decay rate of
BKOV entanglement is greater than that for the ODBIP term.
In fact, the entanglement decay rate is nearly constant for
approximately 2/3 of the decay.
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FIG. 7. Comparison of time entanglement (0 � 3γ t � 0.045) of
a large-amplitude Schrödinger-cat state with reservoir correlation
decay in a tripartite three-level Hilbert space using BKOV convex
roof. Entanglement is computed using decompositions U ∈ SU(K),
where K = rank of ρ̂

S
for the case of N = M = 3. Plotted next to

each entanglement graph, ek , is a plot of the off-diagonal bath product
term, bk , given by Eq. (77). The subscripts denote the value of µ.
Note that the off-diagonal bath decay rate completely determines the
initial entanglement decay rate for the given µ. After a fixed time the
BKOV decay rate is nearly the same as its initial value. On the other
hand, the bath decay rate, which decays superexponentially, becomes
exponentially smaller than the BKOV decay rate.

These observations suggest that the off-diagonal bath product
term in Eq. (77) plays a critical role in the extremely fast decay
of entanglement for large µ. For µ � 2, the ODBIP term limits
to e−(1+√

3/2)|µ|2 ∼ 0 as t → ∞. The decay of the ODBIP term
is thus complete. The exponential knee of the ODBIP term is
therefore close to zero as well, and the time to reach the knee
is much shorter than the oscillator amplitude decay time. The
decay time to the exponential knee of the entanglement curve
is even faster, since the decay rate is nearly constant and is set
by the initial decay rate of the ODBIP term.

When µ � 1, the limiting exponential, e−(1+√
3/2)|µ|2 , in

the ODBIP term is non-negligible compared to one. So the
total amount of ODBIP decay is limited, and its effect on
entanglement decay is therefore limited as well. Furthermore,
the time to reach this plateau is about 20 times slower than
for µ = 8. As a result, the decay rate for µ � 1, as seen in
Fig. 8, is of the same magnitude as the oscillator amplitude
decay rate, that is, −3γ . Consequently the amplitude decay
becomes a determining factor in the entanglement decay rate
for small µ. Since the decoherence of the bath and oscillator
amplitude decay are much slower processes for small µ, the
decay of entanglement for small µ is also much slower. A
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FIG. 8. Comparison of time entanglement (0 � 3γ t � 0.9) of
small-amplitude Schrödinger-cat states with reservoir correlation
decay in a tripartite three-level Hilbert space using BKOV convex
roof. Entanglement is computed using decompositions U ∈ SU(K),
where K = rank of ρ̂

S
for the case of N = M = 3. Plotted next to

each entanglement graph is the decay of the bath coherence product
of Eq. (77). Note that when µ � 1, the initial entanglement is no
longer equal to one. To compare rates to the bath decoherence, we
have translated Eq. (77) to the value of the entanglement at time
t = 0. b2, b1, and b3/4 represent the off-diagonal bath inner-product
decay for the cases µ = 2, 1, and 3/4, respectively. As µ decreases
below 1, the initial decay rate for BKOV entanglement is no longer
the same as the decay rate of bath decoherence. The decay rate of
entanglement is now determined by the oscillator amplitude decay
rate.

way to summarize these results is to state that the evolution of
large-amplitude entangled Schrödinger-cat states takes place
on a different time scale than the evolution of small-amplitude
entangled Schrödinger-cat states. The time evolution of the
latter is comparable to the system amplitude decay rate.

VIII. CONCLUSION

We have calculated directly the time-dependent entangle-
ment via the CRE of a collection of entangled harmonic
oscillators interacting with a zero-temperature bath. The tech-
nique we employ should be generally useful for multipartite
multilevel systems with density matrices of low rank. Our
calculations illuminate the role of initial conditions and bath
dephasing on the evolution of the initially entangled system.
We show that the time scale of the evolution of the entangle-
ment is dependent strongly on the level of excitation of the
initial state. Large-amplitude Schrödinger-cat states decohere
much more rapidly than small-amplitude Schrödinger-cat
states.
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