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Linear optical quantum computation with imperfect entangled photon-pair sources and
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We propose a scheme for efficient cluster state quantum computation by using imperfect polarization-entangled
photon-pair sources, linear optical elements, and inefficient non-photon-number-resolving detectors. The
efficiency threshold for loss tolerance in our scheme requires the product of source and detector efficiencies
should be > 1/2, the best known figure. This figure applies to uncorrelated loss. We further find that the loss
threshold is unaffected by correlated loss in the photon pair source. Our approach sheds new light on efficient
linear optical quantum computation with imperfect experimental conditions.
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I. INTRODUCTION

Linear optical quantum computation (LOQC) has been
known to be possible since Knill, Laflamme, and Milburn
(KLM) proposed a scheme by employing measurement-
induced nonlinearities [1]. Although scalable in principle,
their scheme requires an unacceptably large number of
operations. Much progress has been made in recent years
to simplify LOQC [2]. One of the approaches is clus-
ter state quantum computation [3,4]. This model, differ-
ing from the circuit computation model, starts from an
entangled state, known as a cluster state, and requires
only adaptive single-qubit measurements and feed-forward
operations. This model has been the subject of numerous
LOQC investigations, such as proposals for scalable cluster
state generation [5–9], experimental realizations of small-
scale cluster quantum computation [10–15], and fault-tolerant
thresholds [16–19].

Error correction is essential for large-scale quantum compu-
tation. A major error source in LOQC is photon loss, arising
from imperfect photon sources, inefficient photon detectors
and nonideal optical circuits. For the circuit computation
model, a loss error threshold of between 1.78% and 11.5% was
found using the seven-qubit Calderbank-Shor-Steane (CSS)
code [20] and up to 18% with parity encoding [21]. Thresholds
for loss are considerably higher than for errors such as bit
flips because loss in LOQC is a locatable error that removes
the qubit rather than changing its logical value. Even higher
loss thresholds have been found for cluster-state quantum
computation. Recently, by building tree-cluster states, and
assuming the loss error is in an independent degraded (ID)
form, i.e., each qubit in the cluster state has the same and
uncorrelated loss error rate, Vanarva, Browne, and Rudolph
proposed a scheme [22] for loss-tolerant LOQC by using
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imperfect single-photon sources, inefficient photon-number-
resolving detectors, and linear optical elements, providing
the product of the detector efficiency and source efficiency
greater than 2/3. This is the current highest known loss
threshold for any LOQC scheme. In this article, we consider a
different technique for building the tree clusters that removes
the requirement for photon-number-resolving detectors and
leads to an improved loss threshold of 1/2. Furthermore, the
ID source model considered in Ref. [22] assumes no correlated
loss occurs for the sources of entangled photons. This would
seem unlikely to be true as for a generic deterministic model
any loss in the pumping process of the entangled state source
will lead to a correlated two-photon loss in the output. It is
usually assumed that such correlated noise will be detrimental.
Here, in contrast, we find that our construction method is
fail safe to such correlated noise. We consider a situation
in which both correlated and uncorrelated loss errors occur
to a polarization-entangled photon-pair source. We find that
thresholds are strongly improved compared with that in
Ref. [22]. In particular, if no uncorrelated loss occurs to either
photon, we obtain that the detector efficiency is allowed to be
as small as a value larger than 1/2.

II. A SCHEME FOR LINEAR OPTICAL QUANTUM
COMPUTATION

The mixed state from the inefficient source is assumed to
be in the form

ρs = (1 − ηs − ηa − ηb)|vac〉〈vac| + ηs |�+〉a,b〈�+|a,b

+ ηa

2
(|H 〉a〈H |a + |V 〉a〈V |a)

+ ηb

2
(|H 〉b〈H |b + |V 〉b〈V |b), (1)

with the target entangled state

|�+〉a,b = 1√
2

(|HH 〉a,b + |V V 〉a,b), (2)
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where ηs ,ηa ,ηb represent the rates of emitting a photon-pair,
only one photon in beam a, b, respectively, with |H 〉 (|V 〉)
denoting the horizontal (vertical) polarization state and |vac〉
the vacuum state. Note that, the source model we consider has
the property that it emits one and only one photon-pair, one
or both of which may be lost with some probability. As in
Ref. [22], we do not consider the possibility of higher photon
number emission, that means, the source we consider does not
emit more than two photons once it emits photons.

Another way to understand the source is in terms of loss
error rate. A perfect Bell state given by Eq. (2) is assumed to
suffer a correlated loss rate fc and uncorrelated loss rates fa

and fb in modes a and b, respectively. Then the state given
by Eq. (1) can be equivalently rewritten under the following
relations

ηs = (1 − fc)(1 − fa)(1 − fb),

ηa = (1 − fc)(1 − fa)fb, (3)

ηb = (1 − fc)(1 − fb)fa.

The photon detectors we consider are the realistic detectors
commonly used in photonic experiments. The detector cannot
resolve the number of photons detected but instead tell us
whether photons exist in a detection event with nonunit
probability ηd . The dark count of this kind of detector is usually
very low and hence here is neglected. The POVM describing
a non-photon-number-resolving detector is [23]

Eclick =
∞∑

n=0

[1 − (1 − ηd )n]|n〉〈n|, (4)

Eoff =
∞∑

n=0

(1 − ηd )n|n〉〈n|. (5)

According to the strategy for creating tree clusters
in Ref. [22], we first need to prepare a four-photon
GHZ state. Our scheme for generating a four-photon
polarization-entangled GHZ state using four photon-pair
sources is shown in Fig. 1, which can be regarded as two
steps. The first step is fusing two sources with a polarizing
beam splitter (PBS) followed by a photon detection at one
output port in the basis of +/−. Here + and − denote 45◦
and −45◦ polarization bases, respectively. For example, based
on successful detections at D1c(D+

1c,D
−
1c), the unnormalized

state in modes 1a, 2a, and 1d can be written as

1
2η2

s ηd |GHZ3〉1a,2a,1d〈GHZ3|1a,2a,1d

+ 1
4ηsηbηd (|HH 〉1a,1d〈HH |1a,1d + |V V 〉1a,1d〈V V |1a,1d

+ |HH 〉2a,1d〈HH |2a,1d + |V V 〉2a,1d〈V V |2a,1d )

+ 1
4η2

bηd (|H 〉1d〈H |1d + |V 〉1d〈V |1d ) + · · ·, (6)

where

|GHZ3〉1a,2a,1d = 1√
2

(|HHH 〉1a,2a,1d + |V V V 〉1a,2a,1d ).

(7)

Here, for simplicity, we neglect the amplitudes containing
no photon in beam 1d. Note that, if the detector D−

1c clicks a
correction of σz operation on beam 1d (1a, or 2a) is needed
(analogous calculations can be found in Refs. [24,25]). It is

FIG. 1. Scheme for generating a four-photon GHZ state from
four photon-pair sources (represented by S). Lowercase letters
and numbers label the beams. Polarizing beam splitter (PBS)
transmits horizontally polarized (|H 〉) photons and reflects ver-
tically polarized (|V 〉) photons. +/− denotes ±45◦ polarization
basis.

clear that the state in modes 3a, 4a, and 3d has the same form as
Eq. (6).

The second step is fusing the two mixed states obtained
in the first step with a PBS followed by a photon detection
in each output port. Based on twofold coincidence detection
at detectors D1e(D1e+,D1e−) and D1f (D1f +,D1f −), the
normalized state in modes 1a, 2a, 3a, and 4a is in the following
form

ρr = (1 − ε)4ρ0 + (1 − ε)3ερ1 + (1 − ε)2ε2ρ2

+ (1 − ε)ε3ρ3 + ε4|vac〉〈vac|, (8)

where ρ0 is a perfect four-photon GHZ state,

|GHZ4〉1a,2a,3a,4a

= 1√
2

(|HHHH 〉1a,2a,3a,4a + |V V V V 〉1a,2a,3a,4a), (9)

with ρ1, ρ2, and ρ3 representing the mixed states evolved from
a GHZ state by losing one, two, and three photons, respectively.
Explicitly,

ρ1 = σ1a,2a,3a + σ1a,2a,4a + σ1a,3a,4a + σ2a,3a,4a,

ρ2 = �1a,2a + �1a,3a + �1a,4a + �2a,3a + �2a,4a + �3a,4a,

ρ3 = ς1a + ς2a + ς3a + ς4a, (10)

where

σi,j,k = 1
2 (|HHH 〉i,j,k〈HHH|i,j,k + |V V V 〉i,j,k〈V V V |i,j,k),

�i,j = 1
2 (|HH 〉i,j 〈HH |i,j + |V V 〉i,j 〈V V |i,j ),

ςi = 1
2 (|H 〉i〈H |i + |V 〉i〈V |i), (11)

with i,j,k = 1a,2a,3a,4a.
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From the above four equations, we can see the resource
state produced, ρr , has an ID form as in Ref. [22], with the ID
loss probability

ε = ηb

ηb + ηs

= fa. (12)

The success probability to obtain ρr is

Psuccess = 1
8η4

d (ηb + ηs)4 = 1
8η4

d (1 − fc)4(1 − fb)4. (13)

Note that when calculating the success probability we have
considered the feed-forward corrections depending on differ-
ent detection results (for details on analogous calculations, see
Refs. [24,25]).

Next, with ρr as a resource, using the method introduced
by Varnava-Browne-Rudolph [22] (see Fig. 1 in Ref. [22]),
arbitrarily large tree-cluster states can be built with local
Hadamard gates and type II fusion gates. Therefore, based
on Varnava-Browne-Rudolph’s error threshold [26], to realize
loss-tolerant LOQC we require (1 − ε)ηd > 1/2, which im-
plies ηsηd/(ηb + ηs) > 1/2. If we define a ratio κ ≡ ηb/ηs ,
then it is clear that the requirement becomes ηd > (κ + 1)/2,
which makes sense when κ < 1, i.e., ηb < ηs . A consequent
result is that the threshold for the detector improves as κ

decreases and a max value is 1/2 when κ equals 0. In the
perspective of loss error rate, the requirement becomes

(1 − fa)ηd > 1
2 , (14)

which makes sense as long as fa < 1/2. Note that not only
is the requirement better than the previous threshold of 2/3
but also that it does not depend at all on any correlated
loss or loss in arm b of the source. Moreover, as shown in
Fig. 2, the detector efficiency requirement gets looser as fa

become smaller. If fa = 0, i.e., photon a does not suffer any
uncorrelated loss, we get the loosest requirement, ηd > 1/2.
Note that fc and fb are only required to be smaller than 1 to
make sure Psuccess > 0.

To further compare our threshold with that obtained in
Ref. [22], recall that their threshold is ηsηd > 2/3, implying
that ηd > 2/3 is necessary. While in our scheme, in the case
of κ < 1/3 or equivalently fa < 1/4, the threshold for the
detector is certainly improved compared with their threshold.
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FIG. 2. Threshold of the detection efficiency (ηdmin) against the
uncorrelated loss rate fa in mode a. The detection efficiency ηd

requires larger than ηdmin.

Moreover, photon-number-resolving detectors required in
their scheme are not necessary in our scheme.

Consider the case of ηb = 0 or, equivalently, fa = 0, in
which we have the best threshold as just discussed. From
Eq. (8) we can see that in this case we can produce a
pure four-photon polarization-entangled GHZ state heralded
by a fourfold coincidence detection at detectors D1c, D3c,
D1e, and D1f . As the type II fusion gate is inherently
loss tolerant and does not require photon-number-resolving
detectors [5,22], we can create an arbitrarily large heralded
pure tree-cluster state. Hence, our scheme also provides a way
to produce “event-ready” multiphoton polarization-entangled
state [27–29].

Equation (12) shows that the ID loss rate is exactly the
uncorrelated loss occurring to the photon in mode a. This
implies that this uncorrelated loss fa can be shifted to the
detector. In this respect, we get an equivalent circuit in
which the sources have no uncorrelated loss in either photon
and the detectors have an effective efficiency η′

d satisfying
η′

d = (1 − fa)ηd . Consequently, under detection with these
“new” detectors, pure GHZ states and tree-cluster states can
be produced and the threshold is obtained as η′

d > 1/2. Even
in the absence of correlated loss this is a superior threshold to
that of Vanarva et al. [22].

A surprising result is that only the ratio of the generation
probability of photon a to that of the photon-pair contributes
to the threshold requirement. From the loss error perspective,
only the loss rate of either photon affects the threshold. This
result may facilitate the experimental realization, as the loss
rates on each arm are usually not equal, and thus, to achieve
a better threshold for the detector, we can select the modes to
satisfy ηb � ηa or, equivalently, fa � fb.

III. CONCLUSIONS AND DISCUSSIONS

Finally, we would like to make some comments on the
photon-pair sources we employ. Our source is a bit stricter
than the single-photon source usually assumed in LOQC
and has not been realized in experiment yet. However,
entangled photon pairs are not only a vital resource in
quantum optics [30] but also of importance in quantum
information processing [31]. Much progress has been made
in generating polarization-entangled photon pairs with
the required characteristics, for example, in quantum dot
systems [32–37]. We believe that the proof-in-principle
experimental demonstration of our scheme is possible with
current experimental conditions. In addition, from our analysis
above, we can see that the photon-pair sources in some sense
relax the requirement of the photon detectors on number
resolving ability and efficiency. From this point of view, our
assumption on the source should make sense, as at present
photon-number-resolving detectors are more challenging than
non-photon-number-resoling detectors. We guess that the
source may also find applications in some other LOQC model,
for example, in parity-encoded quantum computation [38,39].

In summary, we have presented a scheme for loss-tolerant
LOQC by using imperfect entangled photon-pair sources,
inefficient non-photon-number-resolving detectors and linear
optical elements. We obtained a better efficiency threshold for
loss tolerance of 1/2 compared to the current best threshold
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of 2/3. We have also discussed the roles of correlated and
uncorrelated loss errors in the threshold for the photon
detector. Our approach opens a door to efficient LOQC with
imperfect experimental conditions.

Recently, we became aware of a related article [40],
in which the authors proposed to prepare a three-photon
GHZ state using a similar approach to ours. Since building
tree-cluster states requires four-photon GHZ states as resource
states, they have to fuse two three-photon GHZ states to
obtain a four-photon GHZ state with type II fusion gates, and,
therefore, our scheme should be more economical and more
efficient.
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[27] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys.
Rev. Lett. 71, 4287 (1993).

[28] P. Walther, M. Aspelmeyer, and A. Zeilinger, Phys. Rev. A 75,
012313 (2007).

[29] X.-L. Niu, Y.-X. Gong, X.-B. Zou, Y.-F. Huang, and G.-C. Guo,
J. Mod. Opt. 56, 936 (2009).

[30] D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin,
1994).

[31] D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of
Quantum Information (Springer, Berlin, 2000).

[32] O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev.
Lett. 84, 2513 (2000).

[33] R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A.
Ritchie, and A. J. Shields, Nature 439, 179 (2006).

[34] N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron,
D. Gershoni, B. D. Gerardot, and P. M. Petroff, Phys. Rev. Lett.
96, 130501 (2006).

[35] R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli,
and O. G. Schmidt, New J. Phys. 9, 315 (2007).

[36] R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov,
I. A. Shelykh, and G. Malpuech, Phys. Rev. Lett. 100, 240404
(2008).

[37] R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A.
Ritchie, and A. J. Shields, Phys. Rev. Lett. 102, 030406 (2009).

[38] A. Gilchrist, A. J. F. Hayes, and T. C. Ralph, Phys. Rev. A 75,
052328 (2007).

[39] A. J. F. Hayes, A. Gilchrist, and T. C. Ralph, Phys. Rev. A 77,
012310 (2008).

[40] Z.-H. Wei, Y.-J. Han, C. H. OH, and L.-M. Duan, e-print
arXiv:0912.1493.

052303-4

http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.93.040503
http://dx.doi.org/10.1103/PhysRevLett.95.010501
http://dx.doi.org/10.1103/PhysRevLett.95.010501
http://dx.doi.org/10.1103/PhysRevLett.95.080503
http://dx.doi.org/10.1103/PhysRevLett.95.080503
http://dx.doi.org/10.1103/PhysRevLett.97.143601
http://dx.doi.org/10.1103/PhysRevA.73.064303
http://dx.doi.org/10.1103/PhysRevA.73.064303
http://dx.doi.org/10.1103/PhysRevA.76.052326
http://dx.doi.org/10.1103/PhysRevA.76.052326
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature05346
http://dx.doi.org/10.1103/PhysRevLett.98.140501
http://dx.doi.org/10.1103/PhysRevLett.99.120503
http://dx.doi.org/10.1103/PhysRevLett.100.160502
http://dx.doi.org/10.1103/PhysRevLett.100.160502
http://dx.doi.org/10.1103/PhysRevLett.100.210501
http://dx.doi.org/10.1103/PhysRevA.71.042323
http://dx.doi.org/10.1103/PhysRevA.71.042323
http://dx.doi.org/10.1103/PhysRevLett.96.020501
http://dx.doi.org/10.1103/PhysRevLett.96.020501
http://dx.doi.org/10.1103/PhysRevA.73.052306
http://dx.doi.org/10.1103/PhysRevA.73.052306
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1103/PhysRevA.72.032307
http://dx.doi.org/10.1103/PhysRevA.72.032307
http://dx.doi.org/10.1103/PhysRevLett.95.100501
http://dx.doi.org/10.1103/PhysRevLett.95.100501
http://dx.doi.org/10.1103/PhysRevLett.100.060502
http://dx.doi.org/10.1103/PhysRevLett.100.060502
http://dx.doi.org/10.1103/PhysRevA.61.042304
http://dx.doi.org/10.1103/PhysRevA.61.042304
http://dx.doi.org/10.1103/PhysRevA.64.062311
http://dx.doi.org/10.1103/PhysRevA.64.062311
http://dx.doi.org/10.1080/09500340802130720
http://dx.doi.org/10.1080/09500340802130720
http://dx.doi.org/10.1103/PhysRevLett.97.120501
http://dx.doi.org/10.1103/PhysRevLett.97.120501
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevLett.71.4287
http://dx.doi.org/10.1103/PhysRevA.75.012313
http://dx.doi.org/10.1103/PhysRevA.75.012313
http://dx.doi.org/10.1080/09500340902822341
http://dx.doi.org/10.1103/PhysRevLett.84.2513
http://dx.doi.org/10.1103/PhysRevLett.84.2513
http://dx.doi.org/10.1038/nature04446
http://dx.doi.org/10.1103/PhysRevLett.96.130501
http://dx.doi.org/10.1103/PhysRevLett.96.130501
http://dx.doi.org/10.1088/1367-2630/9/9/315
http://dx.doi.org/10.1103/PhysRevLett.100.240404
http://dx.doi.org/10.1103/PhysRevLett.100.240404
http://dx.doi.org/10.1103/PhysRevLett.102.030406
http://dx.doi.org/10.1103/PhysRevA.75.052328
http://dx.doi.org/10.1103/PhysRevA.75.052328
http://dx.doi.org/10.1103/PhysRevA.77.012310
http://dx.doi.org/10.1103/PhysRevA.77.012310
http://arXiv.org/abs/arXiv:0912.1493

