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Six-qubit cluster states built on the simultaneous entanglement of two photons in three independent degrees of
freedom, that is, polarization and a double longitudinal momentum, have been recently demonstrated. We present
here the peculiar entanglement properties of the linear cluster state |L̃C6〉 related to the three degrees of freedom.
This state has been adopted to realize various kinds of controlled NOT (CNOT) gates, obtaining high values of
the fidelity of the expected output states for all considered cases. Our results demonstrate that these states may
represent a promising approach toward scalable quantum computation in a medium-term time scale. The future
perspectives of a hybrid approach to one-way quantum computing based on multiple degrees of freedom and
multiphoton cluster states are also discussed in the conclusion of this article.
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I. INTRODUCTION

Multiqubit graph states [1] are a basic resource for a number
of important quantum-information applications. These states
have been proposed in particular for advanced tests of quantum
nonlocality in which the violation of local realism increases
exponentially with the number of qubits [2–5] and for the
realization of quantum-computation algorithms of increasing
complexity in the one-way model [6,7]. Other application
fields deal with quantum communication [8] and quantum error
correction [9].

In recent years, photon cluster states of four, six, and
up to ten qubits have been realized by different approaches
and used to deeply investigate the peculiar properties of
high-dimensional entanglement [10] and to perform basic
quantum computation algorithms [11,12].

Two strategies are generally used to create multiqubit
cluster states: one consists of increasing the number of
entangled photons [13–17]; the second one is based on the
encoding of more qubits in different degrees of freedom
of the particles [11,12,18,19]. By the first approach, some
examples of four- and six-photon [13–16] cluster states have
been experimentally demonstrated, up to now, with very low
rates. The second approach, which is based on two-photon
hyperentanglement, has been used to create two-photon, four-
qubit cluster states [18–28]. By using hyperentanglement, five
photons have been recently entangled in ten qubits encoded
in the polarization and longitudinal momentum degrees of
freedom (DOFs) [19].

The advantages of the hyperentangled-state approach, as far
as generation rate, detection efficiency rate and fidelity of the
states are concerned, have been already demonstrated [11,12].
These properties have been very recently confirmed by the
realization of the linear two-photon, six-qubit cluster state
|L̃C6〉, starting from the triple entanglement of two photons
in three independent DOFs [29], namely, the polarization

*http://quantumoptics.phys.uniroma1.it/

and a double longitudinal momentum. The |L̃C6〉 is the only
distribution of six qubits between two particles whose perfect
correlations have the same nonlocality as those of the six-qubit
Greenberger-Horne-Zeilinger state [5], but only requires two
separated carriers [4].

In this article we give a detailed characterization of the
|L̃C6〉 state realized by using the triple hyperentanglement
of two photons and demonstrate its feasibility for one-way
quantum computation by the realization of different kinds of
controlled-NOT (CNOT) gates.

The article is organized as follows. In Sec. II we describe the
realization of the six-qubit linear cluster state, derived from the
application of suitable controlled-PHASE (CPHASE) gates to a
six-qubit hyperentangled state. Section III reports on the char-
acterization of the |L̃C6〉 state by a sequence of quantum to-
mographic reconstructions performed in the three DOFs. Sec-
tion IV describes how the CNOT gate has been efficiently real-
ized with six qubits. Finally, the future perspectives of the real-
ization of multiqubit cluster states built on an increasing num-
ber of photon DOFs are discussed in the conclusions of Sec. V.

II. GENERATION OF THE SIX-QUBIT CLUSTER STATE

Cluster states are peculiar entangled states associated to n-
dimensional lattices where each vertex i represents a qubit and
connections between vertices correspond to Ising interactions
between the two-level quantum systems. Two-dimensional
lattices have proved to be a universal resource for quantum
computation (QC) [6]; from here on, we shall then restrict
ourselves to the case n = 2. The explicit expression of a cluster
state is obtained by preparation of each qubit in the state |+〉i =

1√
2
(|0〉i + |1〉i) and subsequent application of a CPHASE gate,

CZij , between two adjacent vertices i and j . We have

CZij = |0〉i〈0| ⊗ 1j + |1〉i〈1| ⊗ Zj , (1)

where 1 is the identity operator. From now we will use the
following simplified notation for the Pauli operators σ (i)

z ≡ Zi

and analogous relations for σ (i)
x and σ (i)

y .
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FIG. 1. (a) Graph associated to the hyperentangled state |HE6〉.
Each set represents a photon and every vertex is associated to a qubit.
Qubits 1 and 4 are encoded in the E/I DOF, qubits 2 and 5 in
polarization, and qubits 3 and 6 in the r/� DOF. See text for further
details. (b) Graph associated to the two-photon six-qubit linear cluster
state |LC6〉. |LC6〉 can be obtained from |HE6〉 by applying two CZ

operations between qubits belonging to different DOFs.

For a lattice L with N sites, the corresponding cluster state
can then be written as∣∣�L

N

〉 =
( ∏

i,j linked

CZij

)
|+〉N, (2)

where |+〉N = |+〉1 ⊗ |+〉2 ⊗ · · · ⊗ |+〉N .
In general, the cluster state associated to a specific graph

can be equivalently defined as the only state satisfying the
eigenvalue equations

gi

∣∣�L
N

〉 = ∣∣�L
N

〉
(3)

for every lattice vertex i, where the operators

gi = Xi

⊗
j∈Ni

Zj (4)

are known as the stabilizer generators for the cluster state. Ni

is the set of vertices connected with the vertex i.
The linear cluster state |LC6〉 is the state associated to

the lattice shown in Fig. 1(b). We generated a six-qubit,
two-photon linear cluster state |L̃C6〉, equivalent to |LC6〉

up to single qubit unitary transformations, starting from
the hyperentangled state |H̃E6〉 and exploiting the three
DOFs of polarization and two different kinds of longitudinal
momentum. To show that the cluster state |L̃C6〉 obtained in
the laboratory is equivalent to |LC6〉, we start describing the
source of the hyperentangled state |H̃E6〉, the first step for the
generation of the linear cluster |L̃C6〉.

The two-photon, six-qubit source, extensively described
elsewhere [22,23,29], consists of a continuous-wave
(cw), vertically polarized Ar+ laser beam (P = 50 mW,
λp = 364 nm) interacting through spontaneous parametric
down-conversion (SPDC) with a Type I, 0.5-mm-thick β

barium borate (BBO) crystal. The nonlinear interaction
between the laser beam and the BBO crystal produces
degenerate photon pairs at wavelength λ = 728 nm, entangled
in polarization and belonging to the surfaces of an emission
cone. Referring to Fig. 2(a), the insertion of a holed mask
allows us to select four pairs of correlated spatial modes from
the conical surface, which is all we need for the creation
of the hyperentangled state |H̃E6〉. The labels used to identify
the selected modes require some explanation [cf. Fig. 2(b)]:
The distinction between left and right modes provides us with
the first longitudinal momentum DOF (r/�, also known as the
linear momentum k), while distinguishing between external
and internal modes supplies the second momentum DOF
(E/I ). Moreover, the conical emission of the BBO crystal can
be divided into an “up” circular half and a “down” one with
respect to an ideal horizontal line passing through the center
of the mask. Every mode belonging to the “up” half shall be
associated to carrier photon A; an analogous correspondence
is adopted for the “down” half and the second carrier photon
B. By doing so we have at our disposal two SPDC photons,
A and B, to each of which we associate three different qubits
corresponding to the three DOFs (polarization and first and
second momentum) introduced earlier in this article.

λ

λ
λ

λ

∆

∆

(a)

(b)

(c)

FIG. 2. (Color online) Setup of the experiment. (a) Source (green box) of the eight-mode hyperentangled state. A detailed description of
the source is given in [22,23,29]. (b) Mode labeling. Upper (lower) modes correspond to Alice (Bob) photon. For each photon we indicate with
|r〉 (|�〉) the right (left) modes and with |I 〉 (|E〉) the internal (external) modes. We also show the two half-wave plates (λ/2) used to transform
the hyperentangled state |H̃E6〉 to the cluster state |L̃C6〉. The λ/2 on the I modes of photon A is oriented at 45◦ while the λ/2 on the � modes
of photon B is oriented at 0◦. (c) Measurement scheme. The momentum measurement setup consists of two chained interferometers, the first
(BS1) measuring the r/� qubit, while the second (BS2A and BS2B ) measuring the I/E qubit. Polarization analysis is performed by standard
wave plates and polarizing beam splitters (PBS). Path delays �x1 and �x2 are varied to obtain the optimal temporal superposition of the modes,
respectively, in the first and second interferometers.
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By appropriately setting the phase of each pair of
modes, the source generates the hyperentangled state |H̃E6〉,
explicitly written as

|H̃E6〉 = 1√
2

(|HH 〉AB − |V V 〉AB) ⊗ 1

2
(|Er〉A|E�〉B

+ |E�〉A|Er〉B + |Ir〉A|I�〉B + |I�〉A|Ir〉B)

= 1√
2

(|EE〉AB + |II 〉AB) ⊗ 1√
2

(|HH 〉AB

− |V V 〉AB) ⊗ 1√
2

(|r�〉AB + |�r〉AB). (5)

It comes out that the state |H̃E6〉 is given by a tensor product
of three maximally entangled states, one for each DOF.

By setting the following correspondences between physical
and computational qubits,

{|E〉A,|I 〉A} → {|0〉1,|1〉1}, (6a)
{|H 〉A,|V 〉A} → {|0〉2,|1〉2}, (6b)
{|r〉A,|�〉A} → {|0〉3,|1〉3}, (6c)
{|E〉B,|I 〉B} → {|0〉4,|1〉4}, (6d)
{|H 〉B,|V 〉B} → {|0〉5,|1〉5}, (6e)
{|r〉B,|�〉B} → {|0〉6,|1〉6}, (6f)

we can express the state (5) as

|H̃E6〉 = H2X3H3H4Z5|HE6〉, (7)

where |HE6〉 is the state associated to the graph shown in
Fig. 1(a) and Hi is the Hadamard operator acting on qubit i.
From the definition of graph states in Eq. (2), |LC6〉 is obtained
from the graph state |HE6〉 by the application of the two-qubit
gates CZ12 and CZ56.

We build the state |L̃C6〉 by applying the gates CX12 and
CZ56 to the hyperentangled state |H̃E6〉. The gate CX is defined
as CXij = |0〉i〈0| ⊗ 1j + |1〉i〈1| ⊗ Xj . We are now in the
position to state the relation between the state |L̃C6〉 and the
state |LC6〉:

|L̃C6〉 = CX12CZ65|H̃E6〉
= CX12CZ65(H2X3H3H4Z5)|HE6〉
= (H2X3H3H4Z5)CZ12CZ65|HE6〉
= H2X3H3H4Z5|LC6〉. (8)

The previous relations can be easily demonstrated by using
the property CXijHj = Hj CZij . We thus see that the generated
cluster state |L̃C6〉 is equivalent to the linear six-qubit, two-
photon cluster state |LC6〉 up to the unitary transformation
[H2X3H3H4Z5] consisting of single-qubit unitaries. In the
generated state, qubits 1 and 4 are encoded in the E/I

longitudinal momentum DOF, qubits 2 and 5 in the polarization
variable, and qubits 3 and 6 in the r/� momentum DOF (see
Fig. 1). Specifically, the relation given in (8) between |L̃C6〉
and |LC6〉 implies that |L̃C6〉 is the only common eigenstate of
the generators {g̃i} obtained from {gi} by changing X2 ↔ Z2,
X3 → −Z3, Z3 → X3, X4 ↔ Z4, and X5 → −X5.

Starting from Eq. (8), we can write the following explicit
expressions for the generated state |L̃C6〉 by differently
factoring the terms referring to the three considered DOFs:

|L̃C6〉 = 1
2 [|EE〉|φ+〉π |r�〉 + |EE〉|φ−〉π |�r〉
+ |II 〉|ψ+〉π |r�〉 − |II 〉|ψ−〉π |�r〉] (9a)

= 1
2 [|EE〉|HH 〉|ψ+〉k + |EE〉|V V 〉|ψ−〉k

+ |II 〉|V H 〉|ψ+〉k + |II 〉|HV 〉|ψ−〉k] (9b)

= 1
2 [|φ+〉c| + +〉|r�〉 + |φ−〉c| − −〉|r�〉
+ |φ+〉c| + −〉|�r〉 + |φ−〉c| − +〉|�r〉], (9c)

where we omitted the subscripts AB. The states |φ±〉π =
1√
2
(|HH 〉AB ± |V V 〉AB) and |ψ±〉π = 1√

2
(|HV 〉AB ±

|V H 〉AB) are the four polarization Bell states, while the states
|ψ±〉k and |φ±〉c are the standard Bell states encoded in the
r/� and E/I DOFs, respectively (the “c” subscript standing
for “cone”).

The realization of the two-qubit gates responsible for the
transformation of the hyperentangled state |H̃E6〉 into the
cluster state |L̃C6〉 in terms of optical components was made
possible by the insertion of two wave plates after the holed
mask; since qubits 1 and 2 belong to photon A, the first CX12

gate was realized by means of a λ/2 wave plate oriented at 45◦
and intercepting the two internal A modes [see Fig. 2(b) and
Eq. (6a)]. Analogously, the CZ65 gate was obtained thanks to a
second λ/2 wave plate oriented at 0◦ and intercepting the two
left B modes [see Fig. 2(b) and Eq. (6f)]. It actually proved
convenient to have two separated λ/2 wave plates on the left
B modes, but this was a choice uniquely related to our specific
experimental setup.

III. CHARACTERIZATION OF THE SIX-QUBIT
CLUSTER STATE

We refer now to Fig. 2(c). The two chained interferometers,
whose core elements are the three symmetric beam splitters
BS1, BS2A, and BS2B , allow the simultaneous measurement
of the three single-qubit compatible observables associated to
particles A and B. The r modes are made indistinguishable
(in space as well as in time) from the � ones on BS1, while
E and I modes are matched on BS2A or BS2B depending on
which photon they refer to. By means of a trombone mirror
assembly in each of the two interferometers, it is possible to act
on the optical path delays, �x1 and �x2, and find the optimal
temporal superposition conditions for both of the interference
phenomena. We now refer to the BS1: We set {|�〉j ,|r〉j } and
{|�′〉j ,|r ′〉j }, for j = A,B, as its input and output states. The
insertion of a thin glass plate intercepting two right A modes
(one internal and one external) transforms the input states
in the following way: |φA〉k = 1√

2
(|�〉A + e−iφA |r〉A) → |�′〉A

and |φ⊥
A 〉k = 1√

2
(|�〉A − e−iφA |r〉A) → |r ′〉A for external and

internal modes, respectively. By detecting the photons on the
|�′〉 or |r ′〉 output we are projecting the input state respectively
into |φA〉 or |φ⊥

A 〉. An analogous glass plate intercepts the left
B modes.1

Two more such phase shifters, intercepting the external
A and B modes, are inserted in the second interferometer
before BS2A and BS2B . Four single-photon detectors D1A,
D2A, D1B , and D2B receive the radiation belonging to the
“up” and “down” output modes [see Fig. 2(b)], which we can

1In this case the projection is performed into the states |φB〉k =
1√
2
(e−iφB |�〉B + |r〉B ) and |φ⊥

B 〉k = 1√
2
(e−iφB |�〉B − |r〉B ).
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label as {|E′〉j ,|I ′〉j } for j = A,B. In the presence of the glass
plates cited previously, the following input-output transforma-
tions concerning BS2A and BS2B hold: |δ〉c = 1√

2
(e−iδ|E〉j +

|I 〉j ) → |E′〉j and |δ⊥〉c = 1√
2
(e−iδ|E〉j − |I 〉j ) → |I ′〉j . Fi-

nally, a polarization analyzer constituted of a λ/2 wave plate, a
λ/4 wave plate, and a polarizing beam splitter (PBS) is added
in front of each detector. Under these conditions we recorded
nearly 500 coincidences per second.

The characterization of the generated state |L̃C6〉 relies
on a tomographic reconstruction technique followed by a
“maximum likelihood” method [30]. Particularly, we aim
at recovering Eq. (9), which shows three alternative and
perfectly equivalent ways of writing the cluster state |L̃C6〉.
Indeed, Eq. (9) is important to prove since it highlights the
inner structure of the generated state. As we see, each of
the expressions (9) is obtained by writing the states of four
qubits corresponding to two DOFs in a separable basis, and
expressing the remaining couple of qubits in the appropriate
entangled Bell basis; for example, the first relation shows the
four polarization Bell states. Equation (9a) shows that the state
|L̃C6〉 is obtained by a coherent superposition between four
terms, each of them referring to a specific pair of correlated
modes. We first demonstrated that the four polarization states
corresponding to the different pairs of modes are given by
the Bell states. The coherence between them can be shown
by using Eqs. (9b) and (9c). It is easy to show that the first
two terms in (9b) arise from the superposition between the
first two terms in (9a), and the same applies for the last
two terms. By selecting the appropriate separable basis in
two DOFs we performed the tomographic reconstructions to
recover the Bell states encoded in the remaining degree of
freedom. As a consequence, these measurements prove not
only the presence of the various terms appearing in Eq. (9),
but also implicitly tell us about the coherences between the
states involved.

The reconstruction concerning the polarization variable
exactly followed the strategy presented in [30], while the
complete sets of tomographic analysis states associated to
the two longitudinal momentum DOFs were established
combining the known complete set of polarization states (as
given in [30]) with the stated correspondence between physical
and computational qubits [see Eqs. (6)].

The experimental density matrix reconstructions are shown
in Fig. 3 for the polarization variable, in Fig. 4 for the linear
momentum k, and in Fig. 5 for the E/I DOF. The fidelities
associated to the considered tomographic analysis are listed in
Table I. As we see, most of these values exceed 80% and some
get above 90%; the lowest experimental fidelity corresponds to
the tomographic reconstruction associated to the E/I DOF.

We attribute this to the difficulty to achieve perfect mode
matching in the second interferometer due to mode divergences
and to imperfections of the first interferometer that affect
the measurement on the second momentum. Nevertheless,
the obtained results represent a first evidence of the correct
generation of the cluster state |L̃C6〉.

As said, the reported tomographic reconstructions allow
us to test the validity of Eq. (9); this approach is naturally
connected to the first definition of cluster states recalled in this
article [see Eq. (2)].

FIG. 3. (Color online) Tomographic reconstruction of the four
polarization states in Eq. (9) (real parts). The imaginary compo-
nents are negligible. The corresponding theoretical Bell states are:
(a) |φ+〉π , (b) |φ−〉π , (c) |ψ+〉π , (d) |ψ−〉π .

Furthermore, we completely characterized the generated
cluster state in terms of its stabilizing operators: Their exper-
imental expectation values {〈S̃j 〉}64

j=1 are shown in Table II.
From these values we calculated the fidelity of the generated
state F|L̃C6〉 = 0.6350 ± 0.0008 and an entanglement witness
〈WF 〉 = −0.270 ± 0.002, which proves the existence of a

FIG. 4. (Color online) Tomographic reconstruction of the four
states encoded in the r/� DOF (real parts). The imaginary components
are negligible. The corresponding theoretical Bell states are: (1) and
(3) |ψ+〉k, (2) and (4) |ψ−〉k.
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TABLE I. Fidelities of Bell states for each DOF. We selected a
separable state for two DOFs (leftmost column) and performed a
tomographic reconstruction of the density matrix of the remaining
DOF (next column). The expected output states and the relative
fidelities are shown in the remaining two columns.

Separable basis Output DOF Output state Fidelity

|EE〉c|r�〉k π |φ+〉π 0.821 ± 0.014
|EE〉c|�r〉k |φ−〉π 0.917 ± 0.017
|II 〉c|r�〉k |ψ+〉π 0.905 ± 0.013
|II 〉c|�r〉k |ψ−〉π 0.828 ± 0.025
|EE〉c|HH 〉π r/� |ψ+〉k 0.897 ± 0.008
|EE〉c|V V 〉π |ψ−〉k 0.933 ± 0.016
|II 〉c|V H 〉π |ψ+〉k 0.899 ± 0.009
|II 〉c|HV 〉π |ψ−〉k 0.858 ± 0.017
|++〉π |r�〉k E/I |φ+〉c 0.797 ± 0.015

TABLE II. Experimental results: measurement of the 64 stabiliz-
ers S̃i of |L̃C6〉, that is, all the products of the generators g̃i . In the
second column we report the explicit form of the stabilizers written
in terms of the Pauli matrices.

Stabilizer Operator Experimental value

1 1 1.0000 ± 0.0000
g̃1 X1X2X4 0.5928 ± 0.0075
g̃2 Z1Z2Z5 0.8788 ± 0.0053
g̃3 −Z3Z6 0.9984 ± 0.0005
g̃4 Z1Z4 0.9973 ± 0.0008
g̃5 −X2X5Z6 0.7905 ± 0.0057
g̃6 X3Z5X6 0.8310 ± 0.0062
g̃1g̃2 −Y1Y2X4Z5 0.5657 ± 0.0059
g̃1g̃3 −X1X2Z3X4Z6 0.5930 ± 0.0075
g̃1g̃4 −Y1Y2Y4 0.5602 ± 0.0076
g̃1g̃5 −X1X4X5Z6 0.5872 ± 0.0076
g̃1g̃6 X1X2X3X4Z5X6 0.4653 ± 0.0095
g̃2g̃3 −Z1Z2Z3Z5Z6 0.8586 ± 0.0062
g̃2g̃4 Z2Z4Z5 0.8775 ± 0.0053
g̃2g̃5 Z1Y2Y5Z6 0.7042 ± 00066
g̃2g̃6 Z1Z2X3X6 0.8288 ± 0.0062
g̃3g̃4 −Z1Z3Z4Z6 0.9970 ± 0.0009
g̃3g̃5 X2Z3X5 0.7896 ± 0.0057
g̃3g̃6 Y3Z5Y6 0.7484 ± 0.0056
g̃4g̃5 −Z1X2Z4X5Z6 0.7339 ± 0.0084
g̃4g̃6 Z1X3Z4Z5X6 0.8312 ± 0.0062
g̃5g̃6 −X2X3Y5Y6 0.6392 ± 0.0060
g̃1g̃2g̃3 Y1Y2Z3X4Z5Z6 0.4504 ± 0.0092
g̃1g̃2g̃4 −X1Y2Y4Z5 0.6063 ± 0.0074
g̃1g̃2g̃5 Y1Z2X4Y5Z6 0.5378 ± 0.0086
g̃1g̃2g̃6 −Y1Y2X3X4X6 0.4169 ± 0.0065
g̃1g̃3g̃4 Y1X2Z3Y4Z6 0.5603 ± 0.0076
g̃1g̃3g̃5 X1Z3X4X5 0.5874 ± 0.0075
g̃1g̃3g̃6 X1X2Y3X4Z5Y6 0.4651 ± 0.0063
g̃1g̃4g̃5 Y1Y4X5Z6 0.5882 ± 0.0074
g̃1g̃4g̃6 −Y1X2X3Y4Z5X6 0.4148 ± 0.0075
g̃1g̃5g̃6 −X1X3X4Y5Y6 0.4450 ± 0.0061
g̃2g̃3g̃4 −Z2Z3Z4Z5Z6 0.8592 ± 0.0062
g̃2g̃3g̃5 −Z1Y2Z3Y5 0.7036 ± 0.0066

TABLE II. (Continued.)

Stabilizer Operator Experimental value

g̃2g̃3g̃6 Z1Z2Y3Y6 0.7468 ± 0.0056
g̃2g̃4g̃5 Y2Z4Y5Z6 0.7038 ± 0.0066
g̃2g̃4g̃6 Z2X3Z4X6 0.8285 ± 0.0062
g̃2g̃5g̃6 −Z1Y2X3X5Y6 0.6861 ± 0.0058
g̃3g̃4g̃5 Z1X2Z3Z4X5 0.7357 ± 0.0083
g̃3g̃4g̃6 Z1Y3Z4Z5Y6 0.7484 ± 0.0056
g̃3g̃5g̃6 X2Y3Y5X6 0.6625 ± 0.0051
g̃4g̃5g̃6 −Z1X2X3Z4Y5Y6 0.6394 ± 0.0060
g̃1g̃2g̃3g̃4 X1Y2Z3Y4Z5Z6 0.6067 ± 0.0074
g̃1g̃2g̃3g̃5 −Y1Z2Z3X4Y5 0.5391 ± 0.0086
g̃1g̃2g̃3g̃6 −Y1Y2Y3X4Y6 0.4334 ± 0.0063
g̃1g̃2g̃4g̃5 X1Z2Y4Y5Z6 0.4247 ± 0.0093
g̃1g̃2g̃4g̃6 −X1Y2X3Y4X6 0.3960 ± 0.0077
g̃1g̃2g̃5g̃6 −Y1Z2X3X4X5Y6 0.4435 ± 0.0076
g̃1g̃3g̃4g̃5 −Y1Z3Y4X5 0.5897 ± 0.0074
g̃1g̃3g̃4g̃6 −Y1X2Y3Y4Z5Y6 0.4349 ± 0.0080
g̃1g̃3g̃5g̃6 X1Y3X4Y5X6 0.4465 ± 0.0061
g̃1g̃4g̃5g̃6 Y1X3Y4Y5Y6 0.4465 ± 0.0061
g̃2g̃3g̃4g̃5 −Y2Z3Z4Y5 0.7037 ± 0.0066
g̃2g̃3g̃4g̃6 Z2Y3Z4Y6 0.7465 ± 0.0056
g̃2g̃3g̃5g̃6 Z1Y2Y3X5X6 0.6113 ± 0.0063
g̃2g̃4g̃5g̃6 −Y2X3Z4X5Y6 0.6860 ± 0.0058
g̃3g̃4g̃5g̃6 Z1X2Y3Z4Y5X6 0.6624 ± 0.0051
g̃1g̃2g̃3g̃4g̃5 −X1Z2Z3Y4Y5 0.4235 ± 0.0093
g̃1g̃2g̃3g̃4g̃6 −X1Y2Y3Y4Y6 0.3735 ± 0.0078
g̃1g̃2g̃3g̃5g̃6 Y1Z2Y3X4X5X6 0.4071 ± 0.0077
g̃1g̃2g̃4g̃5g̃6 −X1Z2X3Y4X5Y6 0.5059 ± 0.0052
g̃1g̃3g̃4g̃5g̃6 −Y1Y3Y4Y5X6 0.4884 ± 0.0057
g̃2g̃3g̃4g̃5g̃6 Y2Y3Z4X5X6 0.6112 ± 0.0063
g̃1g̃2g̃3g̃4g̃5g̃6 X1Z2Y3Y4X5X6 0.4046 ± 0.0060

FIG. 5. (Color online) Tomographic reconstruction of the state
encoded in the E/I DOF (real part) corresponding to the rA − �B

spatial mode pair and the polarization state |+〉A|+〉B . The imaginary
components is negligible. The corresponding theoretical state is
|φ+〉c.
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genuine six-qubit entanglement (see [29] for details). The
fidelity value is limited by imperfections in phase and
polarization settings, such as the two controlled operations
(CX and CZ), and mainly by nonperfect mode matching on
the three beam splitters (BSs), as said. The different values of
the measured stabilizers depend on the specific Pauli matrices
appearing in their expressions. Precisely, the larger the number
of the involved Xj and Yj Pauli operators, the lower the
experimental value of the measured stabilizer. This feature
will be important in the discussion of the realized CNOT gate.
The data shown in Table II were also used for a nonlocality test
of quantum mechanics (see [29] for more details concerning
Bell inequalities with the two-photon, six-qubit linear cluster
state).

IV. EXPERIMENTAL REALIZATION OF THE CNOT GATE

We now turn to the one-way model of QC [10]. Given
a cluster state, it can be useful to think of the distinct
horizontal qubits as “the original [logical] qubit at different
times” [31], with the temporal axis oriented from left to right
(a choice made possible by appropriately designing the lattice);
single-qubit gates are represented by pairs of horizontally
adjacent qubits, while vertical connections play the role of
CPHASE gates. Each computation process is then obtained as a
sequence of single-qubit projective measurements performed
on the so-called physical qubits, simultaneously determining
the propagation of information through the cluster and the loss
of entanglement in the original state [6,31].

This last feature is responsible for the irreversibility of the
process and explains why we speak of one-way computation.
The difference existing between physical and encoded qubits
deserves a deeper understanding. Physical qubits in the initial
cluster state represent an entanglement resource; encoded
(or logical) qubits constitute the quantum information being
processed [32]. Let N be the number of physical qubits and M

the number of encoded qubits, with M < N . M input cluster
qubits, all prepared in the state |+〉, are usually positioned on
the left of the two-dimensional graph. The single-qubit mea-
surements involve N − M qubits. Consequently, the output
of the computation can be read on the M unmeasured qubits
up to local Pauli errors, as is specified later in this paper.
More precisely, the measurements driving the computation
are performed in the following basis:

Bi(α) = {|α+〉i ,|α−〉i}, (10)

with |α±〉i = 1√
2
(eiα/2|0〉i + e−iα/2|1〉i). If we take si as

signaling the presence of a Pauli error, we usually associate
si = 0 to the measurement outcome |α+〉 (error-free case) and
si = 1 to |α−〉. The choice of α (and the consequent possible
errors occurring in the computation) depends on the algorithm
to be implemented. Measuring a qubit in the computational
basis {|0〉i ,|1〉i} has a completely different effect on the cluster
in that it removes the measured qubit and leads to the cluster
state ∏

k∈Ni

Z
si

k

∣∣�L\{i}
N−1

〉
, (11)

where Ni is the set of vertices connected to site i.

FIG. 6. Graph associated to the six-qubit horseshoe cluster state,
equivalent to the generated linear cluster state.

The generated six-qubit cluster allows the implementation
of nontrivial two-qubit operations such as the CNOT gate.
For this purpose, it is convenient to think of a horseshoe
(180◦ rotated) six-qubit cluster instead of the one depicted in
Fig. 1(b); the two are physically equivalent, but the horseshoe
one is easier to translate into a circuit representation of
the CNOT gate. We now consider Fig. 6. Since we realize
our computation within the one-way model, we perform
simultaneous single-qubit measurements on qubits 3 and 4
and on qubits 6 and 1 and then read the corresponding output
on qubits 5 and 2, both encoded in the polarization DOF.

We pointed out four possible measurement patterns in order
to accomplish different logical operations, depending on the
bases chosen for the single-qubit measurements. From now on,
when referring to a given measurement basis we will always
think of the so-called “laboratory basis” (LB), which differs
from the “cluster basis” (CB) because of the presence of the
local operations affecting qubits 3 (X3H3) and 4 (H4) [see
Eq. (8)]. The four considered measurement patterns, both in
the cluster and in the laboratory bases, are listed in Table III.

For each pattern a corresponding computational circuit can
be derived. In Fig. 7 we show the detailed derivation of the
corresponding circuit for the first considered pattern: The
measurements implement the “Cluster algorithm” (see figure)

TABLE III. Measurement bases for the different considered
patterns. For each pattern we indicate the measured qubit (and
the DOF in which the qubit is encoded) and the corresponding
measurement in the cluster (CB) and laboratory bases (LB).

Pattern Qubit [DOF] Measurement CB Measurement LB

I 3[r/�] {|0〉,|1〉} {|+〉,|−〉}
4[E/I ] {|0〉,|1〉} {|+〉,|−〉}
6[r/�] B(α)a B(α)a

1[E/I ] B(β)a B(β)a

II 3[r/�] {|0〉,|1〉} {|+〉,|−〉}
4[E/I ] B(0) {|0〉,|1〉}
6[r/�] B(α) B(α)
1[E/I ] B(0) {|+〉,|−〉}

III 3[r/�] B(0) {|1〉,|0〉}
4[E/I ] {|0〉,|1〉} {|+〉,|−〉}
6[r/�] B(0) {|+〉,|−〉}
1[E/I ] B(β) B(β)

IV 3[r/�] B(0) {|1〉,|0〉}
4[E/I ] B(0) {|0〉,|1〉}
6[r/�] B(0) {|+〉,|−〉}
1[E/I ] B(0) {|+〉,|−〉}

aSee Eq. (10).
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FIG. 7. (Color online) Measurement pattern I. A cross stands for a measurement in the basis {|0〉,|1〉}, while α and β indicate a measurement
in the bases B(α) and B(β). The output state is encoded in qubits 5 and 2. The circuit associated to the considered measurement is shown. We
first indicate the circuit obtained by directly following the one-way rules and then the equivalent circuit composed by single-qubit gates and a
two-qubit CNOT gate. The gates labeled as “Change of basis” are due to the transformation between the computational and laboratory bases.

and the change between the CB and the LB corresponds to the
final gates (labeled as “Change of basis” in the figure). The
circuit can be equivalently written as shown in the rightmost
section: It consists of two single-qubit rotations and a CNOT

gate. The Pauli errors, as usual, depend on the measurement
results of qubits 3, 4, 6, and 1. In Fig. 8 we show the equivalent
circuits corresponding to the other three measurement patterns
we have considered.

By taking into account their circuit representations shown
in Fig. 7 and Fig. 8, we can write the expected output state,
encoded in the physical qubits 5 (photon B, control) and 2
(photon A, target), for each measurement pattern:

|ψout〉I = (
X

s3+s6
5 Z

s1+s4
2 X

s3+s6
2

)
×Z5CNOT52

[
R(5)

x (α) ⊗ R(2)
z (β)

]|0〉5|+〉2, (12a)

|ψout〉II = (
X

s3+s6
5 X

s3+s4+s6
2

)
×Z5CNOT52

[
R(5)

x (α) ⊗ 12
]|0〉5|0〉2, (12b)

|ψout〉III = (
Z

s3
5 Z

s1+s4
2

)
×Z5CNOT52

[
15 ⊗ R(2)

z (β)
]|+〉5|+〉2, (12c)

|ψout〉IV = (
Z

s3
B X

s4
A

)
Z5CNOT52|+〉5|0〉2, (12d)

FIG. 8. (Color online) Measurement patterns II, III, and IV and
the corresponding circuit representations. Each circuit is composed
by single-qubit gates and a two-qubit CNOT gate.

where Rx(α) = e−iαX/2 corresponds to a counterclockwise
rotation through an angle α about the x axis of the Bloch sphere
[an analogous definition holds for Rz(β)]. The presence of the
single-qubit Pauli errors X and Z depends on the measurement
output of the corresponding qubit [represented by si for
i = 1,3,4,6; see the comment following Eq. (10)]. It comes out
from the expressions of |ψout〉 in (12) that the computations
can be interpreted as single-qubit transformations followed
by a CNOT gate acting on different input states. Precisely,
by rewriting the computation in the error-free case we
obtain

|ψout〉I = Z5CNOT52
[
R(5)

x (α) ⊗ R(2)
z (β)

]|ψin〉I, (13a)

|ψout〉II = Z5CNOT52
[
R(5)

x (α) ⊗ 12
]|ψin〉II, (13b)

|ψout〉III = Z5CNOT52
[
15 ⊗ R(2)

z (β)
]|ψin〉III, (13c)

|ψout〉IV = Z5CNOT52|ψin〉IV, (13d)

where the input states are |ψin〉I = |0〉5|+〉2, |ψin〉II = |0〉5|0〉2,
|ψin〉III = |+〉5|+〉2, and |ψin〉IV = |+〉5|0〉2.

We start from pattern IV: In this case, by looking at
the measurement basis given in Table III, it is possible
to reinterpret the four tomographic reconstructions of the
cluster state |L̃C6〉 with respect to the polarization DOF as
a one-way computation (here the CNOT operation). Precisely,
the measurement of qubits 3 and 4 in the computational basis
corresponds to selecting different modes of the cluster. The
output is then encoded in the polarization of the two photons
and the four Bell states correspond to the four different
outputs of the computation. In fact, it is easy to show that
|ψout〉IV = |φ−〉52 in the error-free case. The other three Bell
states are obtained by applying the different Pauli errors.
Hence, the tomographic reconstructions of the polarization
states given in Sec. III suffice to the experimental proof of
the correct functioning of the realized logic gate within the
specific framework of pattern IV.

We then consider patterns I, II, and III in the error-free case,
which means that si = 0 for i = 1,3,4,6. Moreover, we set α =
β = 0, implying that Rx(0) = Rz(0) = 1. These hypotheses
lead to the output states |ψout〉I, |ψout〉II, and |ψout〉III, all in
the form of separable states of the two photons A and B, and
establish a first set of input and output states for the three
cases. Under these conditions, it is interesting to reconstruct
the input-output (I-O) matrices for the realized CNOT gate, the
knowledge of which makes possible the further calculation of
the fidelities associated to the output states (13a)–(13c). The
experimental results are listed in Table IV, while Fig. 9 shows a

052301-7



VALLONE, DONATI, CECCARELLI, AND MATALONI PHYSICAL REVIEW A 81, 052301 (2010)

TABLE IV. Input-output states, corresponding to the first three
measurement patterns, expressed in the polarization basis. Here the
“AB” ordering is used.

Pattern Input state Expected output state Fidelity

I |+H 〉AB |+H 〉AB 0.6052 ± 0.0084
|−H 〉AB |−H 〉AB 0.6657 ± 0.0077
|−V 〉AB |−V 〉AB 0.5476 ± 0.0066
|+V 〉AB |+V 〉AB 0.6223 ± 0.0069

II |HH 〉AB |HH 〉AB 0.8716 ± 0.0050
|V H 〉AB |V H 〉AB 0.8348 ± 0.0072
|HV 〉AB |V V 〉AB 0.8710 ± 0.0053
|V V 〉AB |HV 〉AB 0.8376 ± 0.0065

III |++〉AB |+−〉AB 0.6541 ± 0.0111
|+−〉AB |++〉AB 0.6798 ± 0.0088
|−−〉AB |−−〉AB 0.6741 ± 0.0108
|−+〉AB |−+〉AB 0.6096 ± 0.0093

graphic representation of the I-O matrices. The fidelity values
show that the gate built on the generated cluster state |L̃C6〉
operates as expected.

A further analysis consists of examining other possible
values for the rotation angles α and β in the framework of
an error-free computation. By letting α and β assume nonzero
values during the computation, we obtain other combinations
of input and output product states. As an example, we consider

FIG. 9. (Color online) Graphic representation of the I-O matrices
for the considered CNOT operation. The sublabels indicate the pattern
to which each matrix refers. The sets of input and output states are
listed in Table IV and can be read on the upper (input) and lower
(output) axis.

FIG. 10. (Color online) Tomographic reconstruction of the
polarization entangled output state |ψ ′

out〉II. Both the (a) real and
(b) imaginary components are shown. The corresponding theoretical
state is − 1√

2
(|HH 〉AB − i|V V 〉AB ).

the “variant” of pattern II, where α = 3π/2. We can then write
the output state as

|ψ ′
out〉II = Z5CNOT52R

(5)
x (3π/2)|0〉5|0〉2

= − 1√
2

(|HH 〉AB − i|V V 〉AB). (14)

As we see, here we have an entangled two-photon state
encoded in polarization. When dealing with an entangled
state of photons A and B it is not possible to adopt an I-O
matrix reconstruction strategy in order to test the correctness
of the gate’s functioning; it is now necessary to perform a
tomographic reconstruction of the output state corresponding
to the considered computation (this is exactly what happens
with case IV, too). The experimental tomographic analysis for
the “case II variant” is shown in Fig. 10: The fidelity of the
output state |ψ ′

out〉II is F = 0.879 ± 0.017.
We now comment on the latter fidelity (a similar observation

holds for the fidelities given in Table IV for pattern II. Its
value (87.9%) is larger than the fidelity of the cluster state
(63.5%). This apparent discrepancy resides on the considered
measurement pattern. Precisely, it is the measurement basis
chosen in this case for qubits 1 and 4 (the ones encoded in the
E/I momentum) that distinguishes pattern II from the others.
Indeed, Table I shows that the E/I DOF is mainly responsible
for the limited value of the generated cluster state fidelity.
However, in pattern II the measurement basis for qubit 4 is
{|0〉,|1〉} (see Table III). In this basis the visibility is almost
perfect, as it is possible to see from the expectation value of
g̃4 in Table II. As a consequence, even if the cluster state has
an overall fidelity of 63.5%, depending on the particular choice
of the measurement pattern, it is still possible that the fidelity
of the output of the considered computation is larger than
the overall state fidelity.

V. CONCLUSIONS AND PERSPECTIVES

We have characterized the six-qubit linear cluster state
|L̃C6〉, realized by starting from a two-photon state, hyper-
entangled in the three DOFs of polarization and a double set
of longitudinal momentum modes of the photons emitted over
the degenerate cone of a Type I SPDC crystal.
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The importance of a six-qubit linear cluster state is twofold:
while it represents a significant step in the research of quantum
nonlocality, as recently demonstrated [29], the realization of
cluster states with an increasing number of qubits is important
to the QC community. Indeed, we have used this state by
realizing the CNOT gate in the one-way QC domain. For this
purpose, the configuration chosen for the graph associated to
the six-qubit state is that of a horseshoe (180◦ rotated) cluster
state.

The CNOT results of our experiment are similar to those
obtained within the Hefei group experiment [33], where a
six-qubit graph state was created by using polarization and
spatial modes of four photons. By that technique new qubits
encoded in different DOFs of the same photon are added by
local operations. Multiqubit entangled states realized by this
technique may find useful applications in one-way QC.

Both the existing approaches to one-way QC and error
encoding, based on multiphoton and multi-DOF entangle-
ment, contribute to make an all-optical architecture a serious
contender for the ultimate goal of a large-scale quantum
computer. However, scalable linear optics systems are required
for the realization of more complex QC operations and
algorithms. This is a very challenging objective, according
to the current optical technology. One of the main reasons
is that an increasing number of qubits requires the setup of
bulk measurement systems of increasing complexity. At the
same time, the need for an increasing number of qubits in
a QC algorithm conflicts with the intrinsic limitations of the
SPDC process. Indeed, no more than few pairs of photons at
a time are created by SPDC, due to its probabilistic nature.
Moreover, multiphoton detection is seriously affected by the
limited quantum efficiencies of modern detectors.

In order to take the maximum advantage of the possibilities
offered by the current optical technology to increase power and
speed of computational operations based on high-dimension
entangled photonic systems, we may conceive cluster states
built on a number of photons entangled in many DOFs.
Increasing the number of photons or encoding the qubits
in other DOFs of the particles, besides polarization [34]

and longitudinal momentum [35], such as frequency [36],
time bin [37], and orbital angular momentum of the photons
[38], are two complementary (but not exclusive) approaches
to enhancing the computational power and the information
content.

It is worth remembering that increasing the number n of in-
volved DOFs implies an exponential requirement of resources.
For instance, 2n k modes per photon must be selected within
the emission cone to encode n qubits in each photon. However,
according to the current optical technology, working with few
DOFs (such as n = 2,3,4) offers still more advantages than
working with a corresponding number of photon pairs, because
of the higher repetition rate and state generation and detection
efficiency. Indeed, by increasing the number of DOFs on which
two photons are entangled, the overall detection efficiency and
hence the repetition rate of detection is constant, since it scales
as ηN , N being the number of photons and η the detector
quantum efficiency, except for some factors depending on the
measurement setup. Furthermore, an entangled state built on
a larger number of particles is in principle more affected by
decoherence because of the increased difficulty of making
photons indistinguishable. On a medium-term time scale a
hybrid approach to QC (i.e., multi-DOF and multiphoton
states) may represent a convenient solution to overcoming the
structural limitations in generation and detection of quantum
photon states.

In view of an efficient linear optics QC, the use of
miniaturized optical circuits built on a chip in the realization
of increasingly complex linear optical schemes consisting
of many interferometers, whose feasibility has been recently
demonstrated [39–42], is becoming of fundamental relevance.
Indeed, these new integrated structures guarantee high fideli-
ties and highly intrinsic phase stability of the measurements
necessary to perform the logical operations. Furthermore, the
adoption of integrated optics may also enable the realization
of novel kinds of multiphoton states. Hence, new exciting
perspectives implying the solution of new problems are opened
in the application of miniaturized optical structures with
multiphoton multi-DOF entangled states.
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T. Jennewein, and A. Zeilinger, Nature (London) 445, 65
(2007).

[18] G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, and
V. Berardi, Phys. Rev. Lett. 98, 180502 (2007).

052301-9

http://dx.doi.org/10.1103/PhysRevA.69.062311
http://dx.doi.org/10.1103/PhysRevA.69.062311
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.1103/PhysRevLett.95.120405
http://dx.doi.org/10.1103/PhysRevLett.95.120405
http://dx.doi.org/10.1103/PhysRevLett.99.220402
http://dx.doi.org/10.1103/PhysRevLett.99.220402
http://dx.doi.org/10.1103/PhysRevA.77.062106
http://dx.doi.org/10.1103/PhysRevA.77.062106
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1103/PhysRevLett.83.648
http://dx.doi.org/10.1103/PhysRevLett.83.648
http://dx.doi.org/10.1103/PhysRevA.65.012308
http://dx.doi.org/10.1103/PhysRevA.65.012308
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1103/PhysRevLett.99.120503
http://dx.doi.org/10.1103/PhysRevLett.100.160502
http://dx.doi.org/10.1103/PhysRevLett.100.160502
http://dx.doi.org/10.1103/PhysRevLett.91.180401
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1103/PhysRevLett.95.020403
http://dx.doi.org/10.1103/PhysRevLett.95.020403
http://dx.doi.org/10.1103/PhysRevLett.95.210502
http://dx.doi.org/10.1038/nature05346
http://dx.doi.org/10.1038/nature05346
http://dx.doi.org/10.1103/PhysRevLett.98.180502


VALLONE, DONATI, CECCARELLI, AND MATALONI PHYSICAL REVIEW A 81, 052301 (2010)

[19] W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel,
Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Nat. Phys.,
doi:10.1038/nphys1635.

[20] Y. Tokunaga, S. Kuwashiro, T. Yamamoto, M. Koashi, and
N. Imoto, Phys. Rev. Lett. 100, 210501 (2008).

[21] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature (London)
412, 313 (2001).

[22] C. Cinelli, M. Barbieri, R. Perris, P. Mataloni, and F. De Martini,
Phys. Rev. Lett. 95, 240405 (2005).

[23] M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Phys.
Rev. A 72, 052110 (2005).

[24] J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat,
Phys. Rev. Lett. 95, 260501 (2005).

[25] C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Phys.
Rev. Lett. 96, 190501 (2006).

[26] H. S. Park, J. Cho, J. Y. Lee, D.-H. Lee, and S.-K. Choi, Opt.
Express 15, 17960 (2007).

[27] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C.
Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and
A. G. White, Nat. Phys. 5, 134 (2009).

[28] G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Phys.
Rev. A 79, 030301(R) (2009).

[29] R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and
A. Cabello, Phys. Rev. Lett. 103, 160401 (2009).

[30] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys.
Rev. A 64, 052312 (2001).

[31] M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004).
[32] R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys. Rev. A

68, 022312 (2003).
[33] W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu,

C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Phys. Rev. Lett. 104,
020501 (2010).

[34] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger,
A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337
(1995).

[35] A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni,
Phys. Rev. Lett. 102, 153902 (2009).

[36] J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
[37] J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Phys. Rev. Lett.

82, 2594 (1999).
[38] E. Nagali, L. Sansoni, F. Sciarrino, F. De Martini, L. Marrucci,

B. Piccirillo, E. Karimi, and E. Santamato, Nat. Photonics 3, 720
(2009).

[39] A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien,
Science 320, 646 (2008).

[40] A. Politi, J. C. F. Matthews, and J. L. O’Brien, Science 325,
1221 (2009).

[41] J. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, Nat.
Photonic 3, 346 (2009).

[42] G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker,
M. Ams, M. J. Withford, and J. L. O’Brien, Opt. Express 17,
12546 (2009).

052301-10

http://dx.doi.org/10.1038/nphys1635
http://dx.doi.org/10.1038/nphys1635
http://dx.doi.org/10.1103/PhysRevLett.100.210501
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1103/PhysRevLett.95.240405
http://dx.doi.org/10.1103/PhysRevA.72.052110
http://dx.doi.org/10.1103/PhysRevA.72.052110
http://dx.doi.org/10.1103/PhysRevLett.95.260501
http://dx.doi.org/10.1103/PhysRevLett.96.190501
http://dx.doi.org/10.1103/PhysRevLett.96.190501
http://dx.doi.org/10.1364/OE.15.017960
http://dx.doi.org/10.1364/OE.15.017960
http://dx.doi.org/10.1038/nphys1150
http://dx.doi.org/10.1103/PhysRevA.79.030301
http://dx.doi.org/10.1103/PhysRevA.79.030301
http://dx.doi.org/10.1103/PhysRevLett.103.160401
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevLett.93.040503
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevLett.104.020501
http://dx.doi.org/10.1103/PhysRevLett.104.020501
http://dx.doi.org/10.1103/PhysRevLett.75.4337
http://dx.doi.org/10.1103/PhysRevLett.75.4337
http://dx.doi.org/10.1103/PhysRevLett.102.153902
http://dx.doi.org/10.1103/PhysRevLett.62.2205
http://dx.doi.org/10.1103/PhysRevLett.82.2594
http://dx.doi.org/10.1103/PhysRevLett.82.2594
http://dx.doi.org/10.1038/nphoton.2009.214
http://dx.doi.org/10.1038/nphoton.2009.214
http://dx.doi.org/10.1126/science.1155441
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1038/nphoton.2009.93
http://dx.doi.org/10.1038/nphoton.2009.93
http://dx.doi.org/10.1364/OE.17.012546
http://dx.doi.org/10.1364/OE.17.012546

