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Analog Landau-He-McKellar-Wilkens quantization due to noninertial effects of the Fermi-Walker
reference frame
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We will show that when a neutral particle with permanent electric dipole moment interacts with a specific
field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau
quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the
neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial
effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends
on the angular velocity.

DOI: 10.1103/PhysRevA.81.052117 PACS number(s): 03.65.Ge, 03.65.Vf

I. INTRODUCTION

The quantization of the motion of a charged particle in
discrete orbits when it interacts with a uniform magnetic field
is known in the literature as the Landau quantization [1] and
has been studied in several systems [2–7]. Interesting works
about the Landau quantization for charged particles were done
in the presence of topological defects [8–11], where it was
shown that the degeneracy of the Landau levels is broken due
to the presence of a topological defect [10] and when it is
considered the continuum elastic medium with the presence of
a density of screw dislocations [11].

For neutral particles, interesting discussions about the
behavior of the magnetic and electric dipoles in interferometry
experiments were made in [12–14], but the analog of the
Landau quantization was proposed by Ericsson and Sjöqvist
in [15] for the Aharonov-Casher (AC) setup [16]. This analog
to the Landau quantization is achieved when the permanent
dipole moment of the neutral particle interacts with an external
electric field in such a way that there is no torque on the dipole
moment and the electric field configuration must satisfy the
electrostatic conditions. Another condition established in [15]
is that there is an effective uniform magnetic field given by
�BAC = �∇ × [�n × �E] (where �n is the direction of the magnetic
dipole moment). Following the conditions established in [15],
Ribeiro et al. [17] studied the Landau quantization for a neutral
particle in the He-McKellar-Wilkens (HMW) setup [18,19]
assuming the existence of magnetic charge density. In [20], the
Landau quantization for neutral particles was discussed in the
presence of a linear topological defect in the Aharonov-Casher
setup and, through the duality transformations, the Landau
quantization in the HMW setup was discussed. They showed
that the infinite degeneracy of energy levels in the Landau
quantization for neutral particles is broken due to to the
presence of a linear topological defect. Without the hypothesis
of magnetic charges, Wei et al. [21] studied topological
effects involving induced electric dipoles and following this an
interesting work of Landau quantization for neutral particles
was done for an induced electric dipole moment interacting
with crossed electric and magnetic fields [22] and in the
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presence of topological defects the Landau quantization for
induced electric dipole was discussed in [23].

The most known noninertial effect in interferometry exper-
iments is the Sagnac effect [24] and it has been a source of
wide discussions in the literature [25–33]. Another important
noninertial effect in nonrelativistic quantum mechanics is the
coupling between the spin of the particles with the angular
velocity of the rotating frame, which is called the Mashhoon
effect [34]. In the relativistic quantum dynamics the Sagnac-
type effects and rotation-spin coupling were discussed in [35].
In [36] the origin of the Sagnac and Mashhoon effects is
related to the application of Lorentz transformations. In the
presence of a gravitational field, the Sagnac effect and the
spin-rotation coupling are derived in [37] as in the relativistic
and nonrelativistic dynamics of a spin-half particle through
the weak field approximation. In [38], the appearance of the
geometric quantum phases in the cosmic string space-time in
rotating frames is studied.

In this paper, we study the bound states for a neutral particle
with permanent electric dipole moment which arise due to
the noninertial effects when the permanent electric dipole
moment of the neutral particle interacts with external fields
when the reference frames of the observers are Fermi-Walker
transported. We show that we can obtain an analog Landau
quantization for the He-McKellar-Wilkens setup provided by
the noninertial effects of the Fermi-Walker reference frame,
where the energy levels are infinitely degenerated and the
cyclotron frequency depends on the angular velocity and the
intensity of the electric field.

The structure of this paper is as follows. In Sec. II, we
show the mathematical features and the field configuration
when the reference frame of the observers are Fermi-Walker
transported. In Sec. III, we discuss the Landau quantization
in the nonrelativistic quantum dynamics of the neutral particle
with permanent electric dipole moment. In Sec. IV, we present
our conclusions.

II. FERMI-WALKER REFERENCE FRAME AND FIELD
CONFIGURATION

In the HMW setup [18,19], the wave function of a neutral
particle with permanent electric dipole moment acquires a
phase shift due to the interaction between the electric dipole
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moment with a radial magnetic field generated by a linear
distribution of magnetic charges. Several discussions about
the topological nature of the quantum phase of permanent
electric dipoles were done [39–42] in the last decade. Several
experiments have been proposed [43–47] to reproduce the
same field configuration of the HMW setup. In [43–45] the
magnetic field configuration is generated by two concentric
cylindrical magnets and in [46] a cylindrical solenoid with
a surface current density where the radial magnetic field is
achieved in the external region of the solenoid is considered.
In [47], an interferometer experiment using ferromagnetic wire
is proposed, where the magnetization of the ferromagnetic
wire is considered parallel to the wire direction and where
the magnitude of magnetization changes linearly along the
wire. However, bound states which correspond to the Landau
quantization in the HMW setup were obtained in [17] using
a radial magnetic field generated by a linear distribution of
magnetic charges. In this section, we show the mathematical
features to describe the field configuration and spinors when
we consider that the local reference frame of the observers
are transported via Fermi-Walker transport. We show that, in
this reference frame, we can obtain a field configuration with
a radial magnetic field where we can observe bound states
analogous to the Landau quantization in the HMW setup.
We work out in the flat space-time and in the units where
h̄ = c = 1. Thus, we write the line element as

ds2 = −dT 2 + dR2 + R2d�2 + dZ2, (1)

We consider that there is a uniform electric field along the
z axis of the space-time in the rest frame of the observers, that
is,

EZ
rf = E0, (2)

However, we are interested in studying the noninertial
effects of a noninertial frame on the quantum dynamics of
the neutral particle. Thus, we realize the following coordinate
transformation:

T = t ; R = ρ; � = ϕ + ω t ; Z = z, (3)

where ω is the constant angular velocity of the rotating frame
and must satisfy ωρ � 1. With this transformation, the line
element (1) becomes

ds2 = −(1 − ω2ρ2) dt2 + 2ωρ2dϕdt + dρ2 + ρ2dϕ2 + dz2.

(4)

With the line element given in the expression (4), it is
convenient to treat spinors as in curved space-time [48,49].
In curved space-time, we define the spinors through the
local reference frame for the observers. We can build the
local reference frame through a noncoordinate basis θ̂ a =
ea

µ(x) dxµ, where its components are ea
µ(x) and satisfy the

following relation [49,50]:

gµν(x) = ea
µ(x) eb

ν(x) ηab, (5)

where ηab = diag(− + ++) is the Minkowisky tensor and
the indices (i,j,k = 1,2,3) are the spatial index of the local
reference frame. The components of the noncoordinate basis
ea

µ(x) are called tetrads or Vierbein and they form our
local reference frame. The tetrads have an inverse defined as

dxµ = e
µ
a(x) θ̂ a , where they are related by ea

µ(x) e
µ

b(x) = δa
b

and e
µ
a(x) ea

ν(x) = δµ
ν .

We have a freedom to choose the local reference frame
for the observers. If we wish to observe noninertial effects
due to the action of external forces without any effects due
to arbitrary rotations of the local spatial axis of the reference
frame of the observers, we need to build a nonrotating frame or
Fermi-Walker reference frame [48]. A Fermi-Walker reference
frame can be built with the components of the noncoordinate
basis given in the rest frame of the observers at each instant,
that is, θ̂0 = e0

t (x) dt , and where the spatial components of
this noncoordinate basis θ̂ i , i = 1,2,3, do not rotate [48].
Interesting effects due to noninertial effects can be observed
in this frame as the Mashhoon effect [34] and the Page-Werner
et al. term [32,33,35], where a coupling between the angular
momentum of the quantum particle with the angular velocity
arises in the nonrelativistic dynamics of a quantum particle.
As pointed out in [36], the Sagnac effect cannot be observed
in the Fermi-Walker reference frame due to the absence of
precession effects or dragging effects on the local spacial axis,
but the Mashhoon effect can be observed in the Fermi-Walker
reference frame due the behavior of quantum particles as
gyroscopes when the presence of a rotational motion exists.
In that way, we can write the local reference frame of the
observers in the form [48]

θ̂0 = dt ; θ̂1 = dρ; θ̂2 = ωρ dt + ρ dϕ; θ̂3 = dz. (6)

With the information about the choice of the local refer-
ence frame, we can obtain the one-form connection ωa

b =
ω a

µ b dxµ through the Maurer-Cartan structure equation [50].
In the absence of the torsion field, the Maurer-Cartan structure
equation may be written as dθ̂a + ωa

b ∧ θ̂ b = 0, where the
operator d is the exterior derivative and the symbol ∧ means
the wedge product [50]. Solving the Maurer-Cartan structure
equations, we have that the non-null components of the
one-form connection are ω 1

t 2 = −ω 2
t 1 = −ω and ω 1

ϕ 2 =
−ω 2

ϕ 1 = −1.
We must note that the electric field given in (2) corre-

sponds to the field configuration in the rest frame of the
observer, which we can write as E3 = e3

Z EZ = E0. In
the Fermi-Walker reference frame (6), the fields are given
by [51–53]

Fµν = eµ
a(x) eν

b(x) Fab. (7)

Thus, we obtain that there are non-null components of the
electric and magnetic fields when the local reference frames
of the observers are Fermi-Walker transported

Ez = E3 = E0; Bρ = ωρ E3 = ω E0 ρ. (8)

We can see, considering that the permanent electric dipole
moment of the neutral particle is initially aligned with the
z axis, that there is no torque on the permanent electric
dipole moment of the neutral particle generated by the field
configuration (8). Moreover, the electrostatic conditions are
satisfied and we have a uniform effective magnetic field given
by �Beff = �∇ × [�n × �B] = 2ωE0 (where �n is the direction of
the electric dipole moment) which shows us that all conditions
for the Landau-He-McKellar-Wilkens quantization given in
[17] are satisfied. In that way, with the field configuration given
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in (8), we will see that we can obtain a Landau quantization
for a neutral particle without assuming the existence of a
radial magnetic field generated by a magnetic charge density
as done in Ref. [17], when the Landau quantization for the
He-McKellar-Wilkens setup [18,19] was proposed.

Hence, with the local reference frames of the observers (6)
and the field configuration given in this frame (8), we are able
to study the Landau quantization in the nonrelativistic quantum
dynamics of the neutral particle with permanent electric dipole
moment induced by the noninertial effects of the reference
frame of the observers.

III. BOUND STATES FOR A NEUTRAL PARTICLE IN THE
NONINERTIAL FRAME

In this section, we study the bound states which arise in
the nonrelativistic quantum dynamics of the neutral particles
when the local reference frames of the observers are Fermi-
Walker transported. We consider that the neutral particle has
a permanent electric dipole moment and it interacts with the
external electric and magnetic fields. The quantum dynamics
of the neutral particle with permanent magnetic dipole mo-
ment interacting with external magnetic and electric field is
described by the introduction of the following nonminimal
coupling into the Dirac equation [12–14]:

iγ µ ∇µ → iγ µ ∇µ − i
d

2

µν γ 5 Fµν, (9)

where d is the permanent electric dipole moment of the neutral
particle, Fµν is the electromagnetic field tensor whose non-null
components are F0i = −F0i = Ei , Fij = −Fji = −εijk Bk

and 
ab = i
2 [γ a,γ b], with the indices (a,b,c = 0,1,2,3)

indicating the local reference frame of the observers. The γ a

matrices are defined in the local reference frame and are the
Dirac matrices given in the flat space-time [49,54], i.e.,

γ 0 = β̂ =
(

1 0

0 −1

)
; γ i = β̂ α̂i =

(
0 σ i

−σ i 0

)
;

(10)

γ 5 = γ5 =
(

0 I

I 0

)
; 
i =

(
σ i 0

0 σ i

)
,

with I being the 2 × 2 identity matrix, �
 being the spin
vector, and σ i the Pauli matrices which satisfy the relation
(σ i σ j + σ j σ i) = 2 ηij . The γ µ matrices are related to the
γ a matrices via γ µ = e

µ
a(x)γ a . Since we are in curvilinear

coordinates, we can write the Dirac equation in the same
formulation given in curved space-time [49,50,55–57]. In that
way, the partial derivative must be changed in the expression
(9) by the covariant derivative of a spinor [49,56,57] given
by ∇µ = ∂µ + �µ, with �µ = i

4 ωµab 
ab being the spinorial
connection [49,50]. Hence, the Dirac equation in curved
space-time with the interaction of the permanent electric dipole
moment of the neutral particle with external fields (8) is given
by the following expression:

i γ a eµ
a(x) ∂µψ + i γ µ �µψ − i

d

2

µν γ 5 Fµν ψ = mψ.

(11)

Taking the expression for the one-form connections ω 1
t 2 =

−ω 2
t 1 = −ω and ω 1

ϕ 2 = −ω 2
ϕ 1 = −1, we can calculate the

spinorial connection �µ and obtain that γ µ �µ = γ 1

2ρ
[56].

After some manipulations, we can rewrite the Dirac Eq. (11)
in the form

i
∂ψ

∂t
= mβ̂ψ + iω

∂ψ

∂ϕ
− iα̂1

(
∂

∂ρ
+ 1

2ρ

)
ψ − i

α̂2

ρ

∂ψ

∂ϕ

− iα̂3 ∂ψ

∂z
+ idβ̂ �α · �Bψ + dβ̂ �
 · �Eψ, (12)

where the electric and magnetic field in the Dirac Eq. (12)
are given in the expression (8). Our interest in this work is
to study the bound states which arise in the nonrelativistic
quantum dynamics of the neutral particle. In that way, we can
obtain the nonrelativistic dynamics of the neutral particle when
we extract the temporal dependence of the wave function due
the rest energy [54]. So, we write the Dirac spinor in the form

ψ = e−imt

(
φ

χ

)
, (13)

where φ and χ are two-spinors. Thus, substituting (13) into
the Dirac Eq. (12), we obtain two coupled equations of φ and
χ . The first coupled equation is

i
∂φ

∂t
− iω

∂φ

∂ϕ
− dE0 σ 3φ =

[
−i σ 1 ∂

∂ρ
− i σ 1

2ρ
+ idωE0 ρ σ 1

− i σ 2

ρ

∂

∂ϕ
− i σ 3 ∂

∂z

]
χ, (14)

while the second coupled equation is

i
∂χ

∂t
+ 2mχ − iω

∂χ

∂ϕ
+ dE0 σ 3χ

=
[
−i σ 1 ∂

∂ρ
− i σ 1

2ρ
− idωE0 ρ σ 1 − i σ 2

ρ

∂

∂ϕ
− i σ 3 ∂

∂z

]
φ.

(15)

Considering χ being the “small” component of the wave func-
tion, we can consider that |2mχ | � | ∂χ

∂t
|, |2mχ | � |ω∂χ

∂ϕ
|,

and |2mχ | � |dE0 σ 3χ |, thus, we can relate the “small”
component with the “large” component φ as

χ ≈ 1

2m

[
−i σ 1 ∂

∂ρ
− i σ 1

2ρ
− idωE0 ρ σ 1

− i σ 2

ρ

∂

∂ϕ
− i σ 3 ∂

∂z

]
φ. (16)

Substituting χ in the expression (16) into (15), we obtain a
second-order differential equation given by

i
∂φ

∂t
= − 1

2m

[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2
+ ∂2

∂z2

]
φ

+ i

2m

σ 3

ρ2

∂φ

∂ϕ
+ i

dωE0

m
σ 3 ∂φ

∂ϕ
+ 1

8mρ2
φ − dωE0

2m
φ

+ d2ω2E2
0

2m
ρ2 φ + iω

∂φ

∂ϕ
+ dE0 σ 3φ, (17)

which corresponds to the Schrödinger-Pauli equation for
a neutral particle with permanent electric dipole moment

052117-3



KNUT BAKKE PHYSICAL REVIEW A 81, 052117 (2010)

interacting with external electric and magnetic fields when
the local reference frames of the observers are Fermi-Walker
transported. We can see in the Eq. (17) that φ is an
eigenfunction of σ 3, whose eigenvalues are s = ±1. Thus,
we must write σ 3φs = ±φs = sφs . Let us take the solutions
of the Eq. (17) in the form

φs = e−iE t ei(l+ 1
2 )ϕ eikz Rs(ρ), (18)

where l = 0, ± 1, ± 2, . . . and k is a constant. Substituting
the solution (18) into the the Schrödinger-Pauli Eq. (17), we
obtain[

d2

dρ2
+ 1

ρ

d

dρ
− ζ 2

s

ρ2
− δ2 ρ2 − βs

]
Rs(ρ) = 0, (19)

where we defined the parameters

ζs = l + 1

2
(1 − s); δ = dωE0;

(20)

βs = 2m

[
E + ω(l + 1/2) − sdE0 + s

δ

m
ζs + δ

m

]
.

Let us make a change of variables ξ = δρ2. In this way, the
second-order differential Eq. (19) becomes[

ξ
d2

dξ 2
+ d

dξ
− ζ 2

s

4ξ
− ξ

4
+ βs

4δ

]
Rs(ξ ) = 0. (21)

The solution of the radial Eq. (21) must be given in the
form

Rs(ξ ) = e− ξ

2 ξ
|ζs |

2 Fs(ξ ). (22)

Substituting the solution (22) into the Eq. (21), we obtain the
following equation:

ξ
d2Fs

dξ 2
+ [(|ζs | + 1) − ξ ]

dFs

dξ
+

[
βs

4δ
− |ζs |

2
− 1

2

]
Fs = 0,

(23)

where the Eq. (23) is the equation of the confluent hyper-
geometric function Fs(ξ ) = F [ |ζs |

2 + 1
2 − βs

4δ
,|ζs | + 1,ξ ]. To

obtain the bound states in this nonrelativistic quantum dynam-
ics of the neutral particle, we must impose a condition that
the parameter |ζs |

2 + 1
2 − βs

4δ
be a nonpositive integer number,

making the wave function normalizable. Thus, we have
that

|ζs |
2

+ 1

2
− βs

4δ
= −n, (24)

where n = 0,1,2, . . . . Taking the expression for the parame-
ters ζs , β, and δ given in (20), we obtain

En,l = ωc

[
n +

∣∣l + 1
2 (1 − s)

∣∣
2

− s

[
l + 1

2 (1 − s)
]

2

]

+ s dE0 − ω(l + 1/2). (25)

The energy levels obtained in the expression (25) corre-
spond to the bound states generated by noninertial effects in
the nonrelativistic quantum dynamics of a neutral particle with
permanent electric dipole moment interacting with external
electric and magnetic fields when the local reference frame
of the observers are Fermi-Walker transported. We can see,
in the Fermi-Walker reference frame, that we can generate

a field configuration, with a radial magnetic field, where
there exists no torque on the electric dipole moment of the
neutral particle in a similar way to the He-McKellar-Wilkens
system without assuming the existence of magnetic charge
density. We must observe that these bound states are infinitely
degenerated, but if we take ω = 0 the bound states vanish
because there are no more inertial effects which provide the
field configuration given in (8). Thus, the energy levels (20)
provided by the noninertial effects correspond to an analog
of the Landau-He-McKellar-Wilkens quantization, where the
cyclotron frequency in this case is given by

ωc = 2
dωE0

m
. (26)

Comparing with the cyclotron frequency obtained in [17]
in the He-McKellar-Wilkens setup where the cyclotron
frequency depends on the magnetic charge density, we can
see through the expression (26) that we can build a system
which provides an analog Landau-He-McKellar-Wilkens
quantization where the cyclotron frequency depends on the
intensity of the electric field and the angular velocity of the
reference frame. We can also see that the noninertial effects
provide a new term for the bound states given in the last term
of (25) that corresponds to the coupling between the angular
velocity ω and the quantum number l which is known as the
Page-Werner et al. term [32,33,35].

Hence, when the local reference frames of the observers are
Fermi-Walker transported, the field configuration (8) provides
no torque on the dipole moment of the neutral particle and
give us the Landau quantization for a neutral particle with
permanent electric dipole moment. We can see that we obtain
the Landau quantization for a neutral particle with permanent
electric dipole moment without assuming the existence of
magnetic charges as done in [17] with the He-McKellar-
Wilkens setup. Here, the noninertial effects provide the Landau
quantization in the nonrelativistic quantum dynamics of the
neutral particle.

IV. CONCLUSIONS

In this paper, we study the nonrelativistic quantum dynam-
ics of a neutral particle with permanent electric dipole moment
interacting with external fields when the local reference frame
of the observers are Fermi-Walker transported. We considered
that in the rest frame of the observers there was a uniform
electric field along the z axis of the space-time. Thus, when
the local reference frame of the observers was Fermi-Walker
transported, an alternate field configuration arose where there
was no torque on the electric dipole moment of the neutral
particle. In this alternate field configuration, a radial magnetic
field was generated which provided us with another way to
obtain bound states for a neutral particle with permanent
electric dipole moment without considering the field config-
uration of the Landau-He-McKellar-Wilkens setup as done
in [17].

Hence, we saw that bound states could arise in the
nonrelativistic quantum dynamic of the neutral particle due to
the noninertial effects of the reference frame of the observers.
The energy levels obtained were infinitely degenerate which
corresponded to another way to obtain the Landau quantization
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for neutral particles with permanent electric dipole moment.
When we compared the cyclotron frequency given in the
inertial frame of the Landau-He-McKellar-Wilkens setup [17],
which depends on the magnetic charge density, we saw that
the noninertial effects provided a cyclotron frequency which
depends on the electric field and the angular velocity. However,
when we took ω = 0, we saw that the bound states vanished
because there was no longer a field configuration which

provides the possibility of bound states in the nonrelativistic
quantum dynamics of the neutral particle.
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[15] M. Ericsson and E. Sjöqvist, Phys. Rev. A 65, 013607 (2001).
[16] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).
[17] L. R. Ribeiro, C. Furtado, and J. R. Nascimento, Phys. Lett. A

348, 135 (2006).
[18] X.-G. He and B. H. J. McKellar, Phys. Rev. A 47, 3424 (1983).
[19] M. Wilkens, Phys. Rev. Lett. 72, 5 (1994).
[20] K. Bakke, L. R. Ribeiro, C. Furtado, and J. R. Nascimento, Phys.

Rev. D 79, 024008 (2009).
[21] H. Wei, R. Han, and X. Wei, Phys. Rev. Lett. 75, 2071 (1995).
[22] C. Furtado, J. R. Nascimento, and L. R. Ribeiro, Phys. Lett. A

358, 336 (2006).
[23] K. Bakke, L. R. Ribeiro, and C. Furtado, Cent. Eur. J. Phys.

(2010), doi:10.2478/s11534-010-0006-z.
[24] M. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913); 157,

1410 (1913).
[25] J. J. Sakurai, Phys. Rev. D 21, 2993 (1980).
[26] J. Anandan, Phys. Rev. D 15, 1448 (1977).
[27] B. R. Iyer, Phys. Rev. D 26, 1900 (1982).

[28] E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[29] J. Anandan, Phys. Rev. D 24, 338 (1981).
[30] S.-M. Cui and H.-H. Xu, Phys. Rev. A 44, 3343 (1991).
[31] S.-M. Cui, Phys. Rev. A 45, 5255 (1992).
[32] L. A. Page, Phys. Rev. Lett. 35, 543 (1975).
[33] S. A. Werner, J.-L. Staudenmann, and R. Colella, Phys. Rev.

Lett. 42, 1103 (1979).
[34] B. Mashhoon, Phys. Rev. Lett. 61, 2639 (1988).
[35] F. W. Hehl and W.-T. Ni, Phys. Rev. D 42, 2045 (1990).
[36] I. Damiao Soares and J. Tiomno, Phys. Rev. D 54, 2808

(1996).
[37] J. Anandan and Jun Suzuki, e-print arXiv:quant-ph/0305081.
[38] K. Bakke and C. Furtado, Phys. Rev. D 80, 024033 (2009).
[39] G. Spavieri, Phys. Rev. Lett. 81, 1533 (1998).
[40] M. Wilkens, Phys. Rev. Lett. 81, 1534 (1998).
[41] G. Spavieri, Phys. Rev. Lett. 82, 3932 (1999).
[42] G. Spavieri, Phys. Rev. A 59, 3194 (1999).
[43] W. H. Heiser and J. A. Shercliff, J. Fluid Mech. 22, 701 (1985).
[44] S. Y. Molokov and J. E. Allen, J. Phys. D 25, 393 (1992).
[45] S. Y. Molokov and J. E. Allen, J. Phys. D 25, 933 (1992).
[46] C. Chryssomalakos, A. Franco, and A. Reyes-Coronado, Eur. J.

Phys. 25, 489 (2004).
[47] V. M. Tkachuk, Phys. Rev. A 62, 052112 (2000).
[48] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(W. H. Freeman, San Francisco, 1973).
[49] Birrel and Davies, Quantum Fields in Curved Space (Cambridge

University Press, Cambridge, UK, 1982).
[50] M. Nakahara, Geometry, Topology and Physics (Institute of

Physics Publishing, Bristol, 1998).
[51] T. C. Mo, J. Math. Phys. 11, 2589 (1969).
[52] J. L. Anderson and J. W. Ryon, Phys. Rev. 181, 1765 (1969).
[53] J. van Bladel, IEEE 64, 301 (1976).
[54] J. M. Bjorken and S. D. Drell, Relativistic Quantum Mechanics

(McGraw-Hill Book Company, New York, 1964).
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