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We investigate the dynamical relations among entanglement, mixedness, and nonlocality, quantified by
concurrence C, purity P , and maximum Bell function B, respectively, in a system of two qubits in a common
structured reservoir. To this aim we introduce the C-P -B parameter space and analyze the time evolution of
the point representative of the system state in such a space. The dynamical interplay among entanglement,
mixedness, and nonlocality strongly depends on the initial state of the system. For a two-excitation Bell state the
representative point draws a multibranch curve in the C-P -B space and we show that a closed relation among
these quantifiers does not hold. By extending the known relation between C and B for pure states, we give an
expression among the three quantifiers for mixed states. In this equation we introduce a quantity, vanishing for
pure states, which in general does not have a closed form in terms of C, P and B. Finally, we demonstrate that
for an initial one-excitation Bell state, a closed C-P -B relation instead exists and the system evolves, remaining
always a maximally entangled mixed state.
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I. INTRODUCTION

Entanglement, mixedness, and nonlocality are among the
main properties describing the quantum features of a compos-
ite system. Entanglement is linked to quantum correlations [1]
and, for a two-qubit state, can be quantified, for example, by
concurrence C [2], while for a multipartite system its charac-
terization remains an open problem. Mixedness, namely, how
far the state of a quantum system is from being pure, can be
quantified by the purity P (linked to the linear entropy) or
by the Von Neumann entropy [3]. Nonlocality describes the
part of quantum correlations that cannot be reproduced by any
classical local model [4]. It is typically characterized by a
combination of correlation averages, called the Bell function,
violating some Bell inequality [5]. The value obtained for
the Bell function depends on the state of the system and on
some parameters determined by the experimental settings.
It may happen that, for some of these settings, the value
obtained for the Bell function does not violate the Bell
inequality. It is therefore appropriate, in general, to fix the
external parameters to obtain the maximum possible value
B for the Bell function. In this sense, the maximum of
the Bell function B individuates, at best, the presence of
nonlocality [6]. All of these quantifiers may be obtained by
measurements on the system. The properties they represent
play an important role in quantum information science, such
as in the realization of device-independent and security-proof
quantum key distribution protocols [3,7,8]. In applicative
contexts, it has also been reported that some states not violating
a Bell inequality can be used for teleportation [9] and that every
entangled state shows some hidden nonlocality [10] that may
be exploited using local filtering [11].

The values of the three quantities C, P , and B, are related
and connections among pairs of them have been widely
investigated. These connections are far from being trivial. For
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example, although for pure states the presence of entanglement
implies nonlocality [12], on the contrary, for mixed states a
given amount of entanglement does not necessarily guarantee
violation of a Bell inequality [13–15]. In particular, for
bipartite systems, a range of possible Bell inequality violations
corresponds to a certain amount of entanglement [16], while
states with a different degree of entanglement can violate a
Bell inequality by the same amount [17].

The connection between entanglement and mixedness has
often been investigated in the concurrence-purity plane, and
maximally entangled mixed two-qubit states for assigned
mixedness have been identified [18]. Their dependence on
the quantifiers has also been pointed out [19]. Moreover,
the entanglement-mixedness relation has been analyzed for
some dynamical systems in the presence of environmental
noise [20,21].

Regarding the connection among entanglement, mixedness,
and nonlocality, it has been conjectured that the more mixed
a system is, the more entanglement is needed to violate a
Bell inequality by the same amount [22]. However, there
are states having the same amount of entanglement and
mixedness but different Bell function values [23]. Relations
among entanglement, mixedness, and Bell function have been
given analytically for a restricted class [24] and numerically
for a more general class [25] of states. In particular, there are
regions of the concurrence-linear entropy plane where, given
concurrence and linear entropy, two families of states can be
discriminated: all states from one family violate the Clauser-
Horne-Shimony-Holt (CHSH) form of Bell inequality, while
all states from the other family satisfy it. One may therefore
ask if more general relations involving all these quantities may
be put forward.

Finally, the variety of relations among entanglement,
mixedness, and nonlocality in the state space has not yet
been examined in a dynamical context, for example, by
following them in time for a quantum system interacting
with its surroundings. In this case their time evolution, as
characterized by the quantities C, P , and B, can be rather
complex, depending on the structure of the environment and
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on the form of the interactions. In fact, typically decay of
both entanglement and nonlocal correlations is expected,
even though revivals or trapping of them may occur as a
consequence of memory effects [26,27] and/or of interactions
among parts of the system [28]. On the contrary, mixedness
typically increases during evolution, tending to different
asymptotic values.

The aim of this paper is to investigate the possible
connections among the quantifiers C, P , and B in a dynamical
context and discuss them for a wide class of two-qubit states.
To this purpose we introduce the three-dimensional C-P -B
parameter space as a tool to analyze the dynamics of these
relations, choosing the paradigmatic open quantum system of
two qubits in a common structured reservoir. The C-P -B space
appears to be particularly suitable for describing the dynamical
richness of entanglement, mixedness, and nonlocality relations
in such a system.

II. DYNAMICS IN C-P-B SPACE FOR A COMMON
RESERVOIR

Here we investigate the complex relation among entan-
glement, mixedness, and nonlocality in a specific dynamical
context. As stated before, we introduce a tool: the concurrence-
purity-Bell function (C-P -B) parameter space. The state of
the system and its evolution are represented, respectively, by
a point in this space and the trajectory it draws with time. To
begin with, we give the expressions of concurrence, purity, and
Bell function for a wide class of quantum states.

A. C, P , and B for X states

Here we report the dependence of C, P , and B on the
density matrix elements for the class of two-qubit states
whose density matrix ρ̂X, in the standard computational basis
B = {|1〉 ≡ |11〉,|2〉 ≡ |10〉,|3〉 ≡ |01〉,|4〉 ≡ |00〉}, has an X
structure of the kind

ρ̂X =

⎛
⎜⎜⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ∗
23 ρ33 0

ρ∗
14 0 0 ρ44

⎞
⎟⎟⎟⎠ . (1)

This class of states is sufficiently general to include the
two-qubit states most considered both theoretically and experi-
mentally, like Bell states (pure two-qubit maximally entangled
states) and Werner states (mixture of Bell states with white
noise) [1,3,29]. Such an X structure for the density matrix,
moreover, arises in a wide variety of physical situations
[30–34]. A further remarkable aspect of these X states is that,
under various kinds of dynamics, the initial X structure is
maintained during evolution [26,29]. In particular, this is the
case for the model we investigate here; this justifies our choice
of this class of quantum states.

For X states of Eq. (1), concurrence C, equal to 1 for
maximally entangled states and to 0 for separable states, is
given by

C = 2max{0,K1,K2},
(2)

K1 = |ρ14| − √
ρ22ρ33, K2 = |ρ23| − √

ρ11ρ44.

The purity P , equal to 1 for pure states and to 1/4 for
completely mixed states, turns out to be

P = Tr{ρ2} =
∑

i

ρ2
ii + 2(|ρ23|2 + |ρ14|2). (3)

Using the Horodecki criterion [6], the maximum Bell function
can be expressed in terms of three functions, u1, u2, and u3,
of the density matrix elements as B = 2

√
maxj>k{uj + uk},

where j,k = 1,2,3. When B is larger than the classical
threshold 2, no classical local model can reproduce all
correlations of these states. The three functions uj are [25]

u1 = 4(|ρ14| + |ρ23|)2, u2 = (ρ11 + ρ44 − ρ22 − ρ33)2,
(4)

u3 = 4(|ρ14| − |ρ23|)2.

As u1 is always larger than u3, the maximum Bell function for
X states is

B = max{B1,B2}, B1 = 2
√

u1 + u2, B2 = 2
√

u1 + u3.

(5)

B. The model

The paradigmatic system we examine consists of two
identical qubits interacting with a common zero-temperature
leaky cavity. The Hamiltonian of the total system is H =
H0 + Hint, with (h̄ = 1)

H0 = ω0(σA
+ σA

− + σB
+ σB

− ) +
∑

k

ωka
†
kak, (6)

Hint = (σA
+ + σB

+ )
∑

k

gkak + H.c. (7)

Here σA
± and σB

± are, respectively, the Pauli raising and
lowering operators for atoms A and B, ω0 is the Bohr frequency
of the two atoms, ak and a

†
k are the annihilation and creation

operators for the field mode k, and mode k is characterized
by the frequency ωk and the coupling constant gk . Since the
atoms are identical and equally coupled to the reservoir, the
dynamics of the two qubits can be effectively described by a
four-state system in which the three states of the triplet, |00〉,
the super-radiant state |+〉 = (|10〉 + |01〉)/√2 and |11〉, are
coupled to the vacuum in a ladder configuration, and the singlet
state, |−〉 = (|10〉 − |01〉)/√2, is completely decoupled from
the other states and from the field [36]. In particular, the
super-radiant state is coupled to both states |00〉 and |11〉 via
the electromagnetic field.

The reservoir is modeled as an infinite sum of harmonic os-
cillators, and its properties are described through a Lorentzian
spectral distribution,

J (ω) = 1

2π

�λ2

(ω − ω0)2 + λ2
, (8)

where the parameter λ defines the spectral width of the
coupling and � is related to the decay of the excited state of the
qubit in the Markovian limit of a flat spectrum (spontaneous
emission rate). The ideal cavity limit (no losses) is obtained for
λ → 0. The dynamics of this system has been solved exactly
(with no perturbation theory or Markov approximation) in
Ref. [35]. Entanglement dynamics has been studied for a
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large class of initial states in Refs. [35] and [36]. Such a
system exhibits a rich dynamics due to the memory effects
of the non-Markovian environment and the reservoir-mediated
interaction between the qubits.

It is thus interesting to investigate the C-P -B dynamical
relation in this physical configuration. The dynamics of the
representative point in the C-P -B parameter space allows one
to visualize the relations among these three physical quantities.
We consider initial states with an X form that is maintained
during evolution so that we can use equations in Sec. II A to
compute C, P , and B. For a given system and fixed initial
state the point in the C-P -B space, representing the state of
the system, draws a certain path individuating the dynamical
evolution. The flow of time is represented by arrows. We
consider a very narrow Lorentzian distribution to emphasize
the memory effects.

C. |�〉-state dynamics in C-P-B space

We start our investigation considering as the initial state the
two-excitation Bell-state |�〉,

|�〉 = (|00〉 + |11〉)/
√

2, (9)

whose dynamics is displayed in Fig. 1, where a nontrivial
dynamical interplay among C, P , and B is shown. Such a plot
in the C-P -B space consists of many branches along which
the system moves during evolution. The separation between
the branches depends on the losses of the system. In fact, it
can be shown that for a wider Lorentzian spectral distribution
(worse cavity), the branches become more separated and they
reach lower values on the B axis. On the contrary, they tend
to coincide for a perfect cavity (single-mode reservoir). The
trajectory drawn by the system is obtained by sampling C-P -B
triplets up to a certain time (200�t), allowing us to bring to
light the main features of the dynamics. Arrows and numbers
facilitate the reading of the plot. The state of the system
is initially pure (P = 1), maximally entangled (C = 1), and
maximally nonlocal (B = 2

√
2). C, P , and B deteriorate with

1

2

3

6

4
7

5

FIG. 1. (Color online) C-P -B space curve drawn by the system
starting from the initial two-excitation Bell state |�〉 for λ = 10−3�.
The arrows indicate the time evolution and the numbering from 1
to 7 indicates the different branches (multibranch behavior) arising
from the dynamics. A one-to-one correspondence among the three
quantities is not possible here.

time until the representative point has a value of B that satisfies
the Bell inequality (branch 1 in Fig. 1). Now a completely
new dynamical feature appears: the curve surfaces from the
B = 2 plane in a region of low concurrence and high purity
(branch 2). This behavior follows from the fact that when the
system is almost pure, even a small amount of entanglement
induces the appearance of nonlocality. After such a revival of
purity and nonlocality, the curve sinks again and reappears
on the space region with a lower purity (branch 3). However,
the system does not pass through the same C-P -B points
of the first branch, but traces a new branch close to the
first one (branch 3). Successively, once again, decoherence
effects due to the environment lead to deterioration of C,
P , and B, and a new branch appears (branch 4). The high
non-Markovianity of the reservoir again causes Bell violation
in the high-purity and low-concurrence region of space
(branch 5). The behavior continues in a similar way and the
point draws new branches until a time after which no further
violation occurs.

Further information can be found when examining the
projections of the whole curve on the B-C, B-P , and C-P
planes. We show these projections in the case of a Lorentzian
spectral distribution having a width 10 times larger than that
in Fig. 1. This choice allows us to distinguish the different
curves more clearly. Figures 2(a)–2(c) show that there is no
one-to-one correspondence between any two of the quantities
B, P , and C. It is interesting that this behavior does not depend
on the losses of the cavity, but it remains true also when the
environment decreases to a single mode, as shown in the insets
in Fig. 2. The absence of one-to-one correspondence between
any two of the quantities C, P , and B is truly a consequence
of the reservoir-mediated interaction between the qubits; in
fact, if one examines the dynamics starting from the same
initial state, but with the two qubits embedded in independent
reservoirs, one-to-one correspondences between these
quantities are found. Considering the plot in the B-C plane,
shown in Fig. 2(a), it is possible to see that the system passes
through states, for example, like those individuated by points
A1 and A2, such that C1 > C2 but B1 < B2. This inversion of
entanglement ordering has been shown in general for different
quantifiers, for example, between entanglement of formation
and either negativity [37] or relative entropy of entanglement
[38]. Indeed, there is a region characterized by low values of
concurrence (0.30 < C < 0.35) but where the Bell inequality
is violated up to values ≈2.1. The B-P plot in Fig. 2(b) gives
a justification of this behavior. In fact, as already noted from
Fig. 1 in the C-P -B space, high values of purity correspond to
these low values of concurrence. In particular, when P ≈ 0.95
the maximum of the Bell function reaches B ≈ 2.1 (point A2).
This correspondence between low C and high P values is
finally confirmed by the C-P plot in Fig. 2(c). Moreover, it is
possible to note that the system crosses point A1 in the B-C
plane two times (within the time interval we are considering),
in correspondence with which two different values of P

occur, as individuated by points A1 and A3 in the C-P plane
displayed in Fig. 2(c). This means that to the same pair of
values C,B, two different values of P correspond (P1 < P3).
As a final remark, we note that if one considers the portion of
the plots where B > 2, the multibranch behavior of Fig. 1 is
retrieved.
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FIG. 2. (Color online) Projections of the C-P -B space curve
starting from the two-excitation Bell state |�〉 on the planes
(a) B-C, (b) B-P , and (c) C-P for λ = 10−2�. Arrows indicate
the time evolution, and multibranch behaviors are clearly shown.
(a) Quantum states with inversion of entanglement ordering are
crossed (for example, points A1 and A2 where C1 > C2 but B1 < B2).
The plots in the insets are related to the case of a perfect cavity (single-
mode reservoir). No one-to-one correspondence among couples of
quantifiers exists in this case either.

For a lossy cavity, the analytic solution for the density
matrix element is cumbersome, as shown in Ref. [36]. In the
following we give these expressions in the simpler case where
the common cavity has no losses.

1. Perfect cavity case

For a lossless cavity (single-mode reservoir) the density
matrix elements of the system can be expressed as functions
of the population ρ++ of the super-radiant state and of ρ14:

ρ11 = 2|ρ14|2, ρ22 = ρ33 = ρ23 = ρ++/2. (10)

ρ++ and ρ14 are oscillating functions with different periods (the
first being the half of the second one), and their expression is

ρ++ = sin2(
√

6�t)/6, ρ14 = [2 + cos(
√

6�t)]/6, (11)

where � is the coupling constant between the qubits and the
mode of the cavity. Equations (10) and (11) are derived from
our Hamiltonian model, given in Eqs. (6) and (7), in the limit
of zero spectral distribution width. The interaction between
the qubits, mediated by the common reservoir, makes the
coherence ρ14 never vanish, as instead happens in the case
of independent reservoirs. From the insets in Fig. 2, one sees
that there is not a one-to-one correspondence between any two
of the quantities C, P , and B. Due to the absence of losses in
the cavity, the system goes back and forth through the entire
curve, meaning that at certain times the qubits recover the pure
maximally entangled state of preparation. When dissipation is
taken into account and an environment more complex than a
single mode is considered, this picture becomes more complex
and the multibranch behavior in the C-P -B parameter space
in Fig. 1 and in the projection planes in Fig. 2 arises.

The preceding analysis shows that a quite complex interplay
occurs among C, P , and B. It is known that, in general, given
two of these quantities, this does not determine the third [25].
However, one may ask whether some explicit connections
among them exist, which can be expressed in a closed form
for some class of states.

III. THE C-P-B RELATION

In this section we seek an equation among C, P , and B

that may be usefully adopted to quantify their connection in
a general context. To this end, we generalize a relation valid
only for pure states. It is known that in the latter case, a relation
between C and B holds [16]:

B = 2
√

1 + C2. (12)

In the attempt to generalize this equation to mixed states,
we note that the former equation can be written as B =
2
√

P + C2, with P = 1. Therefore, it is rather natural to
connect the three quantities C, P , and B, for any state, as

B2/4 − P − C2 = R, (13)

where the “remainder” R is a quantity expressed in terms
of density matrix elements that vanishes for pure states. In
particular, four different regions can be distinguished on the
basis of K1,K2 and u2,u3 defined in Eqs. (2) and (4).

1. Region 1. u2 � u3 and K1 � K2:

B = B1, C = 2K1, R = R1,

R1 = 2[|ρ23|2 − |ρ14|2 + ρ11ρ44 − ρ22ρ33
(14)+ 4|ρ14ρ23| + 4|ρ14|√ρ22ρ33

− (ρ11 + ρ44)(ρ22 + ρ33)].
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2. Region 2. u2 � u3 and K2 � K1:

B = B1, C = 2K2,
(15)

R = R2 = R1 (1 ↔ 2,3 ↔ 4).

3. Region 3. u3 � u2 and K1 � K2:

B = B2, C = 2K1, R = R3,

R3 = 2|ρ14|2 + 6|ρ23|2 − 4ρ22ρ33 (16)

+ 8|ρ14|√ρ22ρ33 − ρ2
11 − ρ2

22 − ρ2
33 − ρ2

44.

4. Region 4. u3 � u2 and K2 � K1:

B = B2, C = 2K2,
(17)

R = R4 = R3 (1 ↔ 2,3 ↔ 4),

The symbol i ↔ j means that index i must be changed
to j , and vice versa. The introduction of a remainder in
Eq. (13) allows us to express the Bell function as a function
of concurrence and purity and may explain why states
characterized by the same concurrence and purity can have
different values of the Bell function. Such a remainder might
contain some unknown properties qualifying the state of the
system.

Even if, in the general case, a closed equation among C, P ,
and B does not exist, it may be useful to look for classes of
states for which the remainder can be expressed as a function
of these same quantities. In the following we show that this
occurs in the case of maximally entangled mixed states.

A. Application to maximally entangled mixed states

As an example to which to apply the preceding consider-
ations and formulas, we now consider the case of maximally
entangled mixed states (MEMSs), defined as those states
possessing the maximal amount of entanglement (quantified
by tangle τ or concurrence C) for a given degree of mixedness
(quantified by linear entropy S or purity P ) [18,19]. MEMSs
have been generated in the laboratory by parametric down
conversion [39]; their density matrix depends on the quantifiers
chosen for entanglement and mixedness. Typically, tangle
τ = C2 is used to quantify entanglement and linear entropy
S = 4

3 (1 − P ) to quantify mixedness. Since the quantities
τ -C and S-P are monotonically related to each other, the
use of C and P instead of τ and S does not affect the
structure of the MEMS density matrix. For these quantifiers
the explicit form of the MEMS, in the standard computational
basis B = {|11〉,|10〉,|01〉,|00〉}, is given (up to local unitary
transformations) by [18]

ρ̂MEMS =

⎛
⎜⎜⎜⎝

g(γ ) 0 0 γ /2

0 0 0 0

0 0 1 − 2g(γ ) 0

γ /2 0 0 g(γ )

⎞
⎟⎟⎟⎠ , (18)

where the parameter γ coincides with the concurrence C (for
any value of γ the state is entangled) and

g(γ ) =
{

γ /2, C ≡ γ � 2/3,

1/3, C ≡ γ < 2/3.
(19)

According to the parametric regions identified by Eqs. (14)–
(17) and the C-P -B relation of Eq. (13), we obtain the
following expressions of C, P , B, and R for various ranges
of γ .

1. 0 � γ � 1/3 corresponds to region 1, with

C = γ, P = 1

3
+ γ 2

2
,

B2

4
= 1

9
+ γ 2, R = −2

9
− γ 2

2
.

(20)

2. 1/3 � γ � 2/3 corresponds to region 3, with

C = γ, P = 1

3
+ γ 2

2
,

B2

4
= 2γ 2, R = −1

3
+ γ 2

2
.

(21)

3. 2/3 � γ � 1 again corresponds to region 3, with

C = γ, P = 1 − 2γ + 2γ 2,
B2

4
= 2γ 2,

(22)
R = −(1 − γ )2.

Regions 2 and 4 are excluded because for MEMSs, K1 > K2

for any value of γ . From Eqs. (20)–(22), it follows that
Bell inequality violation occurs only for γ > 1/

√
2. It is

noteworthy that in this region of violation, the maximum Bell
function assumes the lower bound of violation, Blow = 2

√
2C,

for a given concurrence. This fact can be considered as a
further characterization of MEMSs [16]. For any value of γ

the remainder R turns out to be a function of only concurrence
and vanishes when P = 1 according to the considerations that
follow the C-P -B relation in Eq. (13). We recall that, by
varying γ , the MEMSs individuate an upper-bound curve in
the C-P plane under which all two-qubit quantum states are
confined [18].

In the following we return to our dynamical case, showing
that when the initial state is chosen properly, the dynamics of
the system flows along this upper-bound MEMS curve.

IV. SUPER-RADIANT STATE DYNAMICS IN C-P-B SPACE
AND MAXIMALLY ENTANGLED MIXED STATE

GENERATION

Here we investigate the dynamics of the two qubits in the
same model as in Sec. II B, in the case where they are initially
prepared in the one-excitation (super-radiant) Bell state:

|+〉 = (|10〉 + |01〉)/
√

2. (23)

The trajectory of the representative point of the system in
the C-P -B space is shown in Fig. 3. This path is obtained
by a dense sampling of triplets of C-P -B values at different
times (up to time 200�t). One sees that the dynamics starts
from the pure maximally entangled state (C = 1, P = 1),
thus maximally violating the CHSH inequality (B = 2

√
2).

Due to the interaction with the environment, C, P , and B

all decrease, and at a certain time the CHSH inequality is
not violated anymore. After this time the curve goes below
the B = 2 plane, but after a while the memory effects of
the non-Markovian environment make the three quantities
revive simultaneously. When the representative point rises
above the B = 2 plane, causing revivals of B, it again follows
the same curve but runs along only a part of it. This is related
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FIG. 3. (Color online) C-P -B space curve drawn by the system
starting from the initial one-excitation Bell state |+〉 for λ = 10−3�.
Arrows indicate the time evolution, and point A the maximum point
reached after the first ascent. A one-to-one correspondence among
the three quantities is clearly shown.

to the fact that the system is open and environmental noise
decreases the coherence properties of the state of the system,
with a corresponding decrease in the maximum values of C

and B with time. Hence, the dynamics passes through cycles of
revivals and collapses until, after a certain time, the CHSH-Bell
inequality is no longer violated.

This behavior can be clearly seen by examining the explicit
evolution of the two-qubit density matrix. In fact, we find that
all the density matrix elements at a given time t depend only
on the population of the super-radiant state ρ++ at that time:

ρ11 = 0, ρ22 = ρ33 = ρ++/2, ρ44 = 1 − ρ++,
(24)

ρ23 = ρ++/2, ρ14 = 0.

Varying the ratio between the spontaneous emission rate and
the spectral density width, �/λ, two different regimes in the
time behavior of ρ++ can be distinguished. For � < λ/2 (weak
coupling), there is a Markovian exponential decay controlled
by �; for � > λ/2 (strong coupling), non-Markovian effects
become relevant. In the latter regime the function ρ++ assumes
the form [40]

ρ++ = e−λt

[
cos

(
dt

2

)
+ λ

d
sin

(
dt

2

)]2

, (25)

where d = √
2�λ − λ2. In this strong coupling regime ρ++

presents damped oscillations, while in the weak coupling
regime Markovian-like decay occurs (harmonic functions in
ρ++ are replaced with the corresponding hyperbolic ones, and
d with ıd). In the ideal cavity limit, λ → 0, ρ++ becomes a
purely oscillating function.

We point out that Eq. (24) corresponds to the density
matrix form of MEMSs of Eq. (18) (for ρ++ � 2/3), where,
after a local unitary transformation on one of the two qubits
(changing |0〉 in |1〉, and vice versa), ρ++ plays the role of a
time-dependent parameter γ , whose behavior depends on the
values of spectral density parameters. This means that, starting
from the super-radiant state, the two-qubit system evolves
along the MEMS curve. As a consequence, the physical
configuration of two qubits in a lossy common cavity is suitable

for a dynamical creation of MEMSs (see also other proposals
for MEMS generation [41,42]). Our proposed method for
generating MEMSs rests on the high-fidelity generation of the
super-radiant Bell state in Eq. (23), with the dynamics given by
the Hamiltonian in Eqs. (6) and (7). In the current experimental
circuit QED framework, Bell states are generated with a
fidelity of ≈75% [43] and a Hamiltonian model corresponding
to ours is also realizable [44].

Because of Eq. (25), clearly C, P , and B also depend only
on ρ++. In particular, for the range of values 0 � ρ++ � 1/3,
we are in region 2 (see Sec. III) and the CHSH-Bell inequality
is never violated; for 1/3 � ρ++ � 1 we are in region 4, where
C, P , and B assume the form

B = 2
√

2ρ++, P = 1 − 2ρ++(1 − ρ++), C = ρ++,

(26)

the CHSH-Bell inequality being violated for ρ++ > 1/
√

2.
This form of C, P , and B implies a closed relation among
these three quantities, which can be expressed analytically as

(B2/4) − P − C2 = −(1 − C)2, (27)

where the remainder R of Eq. (13) is given by R = −(1 − C)2.
Equation (27) corresponds to what was obtained in Eq. (22)
for MEMSs. It is worth stressing that, differently from the
general case where no closed relation among C, P , and B

exists, here we deal with a dynamical case where a closed
relation is available. This analytical relation among C, P , and
B explains why the system draws back and forth on the same
trajectory with time in the C-P -B space. Moreover, the explicit
expression of Eqs. (24) allows us to understand why this
trajectory remains unaltered when the width of the Lorentzian
distribution is changed. Indeed, this is a consequence of the
fact that each C-P -B point is determined by only one specific
value of ρ++. In the case of a Lorentzian distribution, ρ++
exhibits damped oscillations between 0 and 1, so that repeated
equal values of ρ++ give the same C-P -B points, and thus in
turn the system dynamics draws the same trajectory back and
forth in the C-P -B space. On the contrary, the width of the
Lorentzian affects the oscillatory behavior of ρ++, therefore
influencing only the number of times and how high the system
can come back on the same curve in the C-P -B space. We
emphasize once more that this is true only for this particular
initial state.

V. CONCLUSIONS

In this paper the relation among entanglement, mixedness,
and nonlocality in a two-qubit system has been investigated.
The nontrivial connection among the quantifiers of these
properties, namely, concurrence C, purity P , and maximum
Bell function B, in the state space has been studied in a
dynamical context. Two qubits have been assumed to be
embedded in a non-Markovian common reservoir at zero tem-
perature. Common reservoir-mediated interaction and memory
effects induce, with different intensities, revivals of all three
quantities. The C-P -B “parameter” space has been introduced
and exploited for description of the relations among C, P , and
B for the two-qubit reduced dynamics.
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For an initial two-excitation Bell state, it has been shown
that the system draws a multibranch curve in the C-P -B
space. Projection of this curve on two-dimensional spaces
clearly shows the absence of one-to-one correspondence
between couples of the quantifiers C, P , and B [25]. This
dynamical feature is maintained even in the limit of a
perfect cavity suffering no losses. A comparison with the
case of independent reservoirs, where this correspondence
between couples of the quantifiers occurs, has been made,
demonstrating that the common reservoir-mediated interac-
tion between qubits is responsible for the lack of such
correspondence.

The search for classes of states where a closed relation
among C, P , and B holds led us to look for general connections
among these quantifiers. On the basis of known relations
between concurrence and maximum Bell function in the pure-
state case, an extended relation among all three quantifiers for
a wide class of mixed states has been given. A remainder,
vanishing in the limit of pure state, has been introduced
and its explicit form given for four regions identified by the
quantum state under investigation. This term could play a
role in explaining the complex and poorly understood relation

among these quantities. Moreover, we have shown that, for the
class of maximally entangled mixed states, a closed relation
among C, P , and B exists.

In Sec. IV we have reconsidered our dynamical model,
showing that if the two qubits are initially prepared in the
one-excitation Bell state (super-radiant state), differently from
the two-excitation case, a one-to-one correspondence between
any two of C, P , and B occurs. This results in a single-valued
relation represented by a one-branch curve in the C-P -B space
that is drawn back and forth by the system. In this case we
have a physical configuration in which a closed analytical
relation among C, P , and B can be written. We have shown,
furthermore, that the system evolves maintaining the MEMS
density matrix structure. Therefore this physical configuration
may be seen as a suitable setup for MEMS generation.
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