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Results from electrostatic calibrations for measuring the Casimir force
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We report on measurements performed on an apparatus aimed to study the Casimir force in the cylinder-plane
configuration. The electrostatic calibrations evidence anomalous behaviors in the dependence of the electrostatic
force and the minimizing potential upon distance. We discuss analogies and differences of these anomalies with
respect to those already observed in the sphere-plane configuration. At the smallest explored distances we observe
frequency shifts of non-Coulombian nature preventing the measurement of the Casimir force in the same range.
We also report on measurements performed in the parallel-plane configuration, showing that the dependence
on distance of the minimizing potential, if present at all, is milder than in the sphere-plane or cylinder-plane
geometries. General considerations on the interplay between the distance-dependent minimizing potential and the
precision of Casimir force measurements in the range relevant to detect the thermal corrections for all geometries
are finally reported.
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I. INTRODUCTION

Casimir forces [1] have been investigated since their
inception as a macroscopic test of the irreducible fluctua-
tions associated to quantum fields. They are geometrical in
character, as they originate from the possibility to confine
and shape the energy density of quantum fluctuations using
proper boundary conditions. So far, the experimental attention
has been mainly focused on the original parallel-plate con-
figuration [2,3], and the sphere-plane geometry [4–9], apart
from the only experiment performed in a crossed-cylinder
configuration [10]. Further motivations to pursue precision
studies of the Casimir forces are related to the possibility
to discover new forces of strength similar or larger than the
Newtonian gravitational coupling, but with short-range or
different distance scaling and expected to act, according to
various models, in the submillimeter range [11]. This can
be considered part of a broader program aimed at testing
deviations from Newtonian gravitation in the nonrelativistic
limit [12,13]. In the micrometer range the dominant source of
background to non-Newtonian gravitational forces is provided
by Casimir forces [14,15] (see also [16,17] for reviews) and
to discover such forces, or at least to provide reliable limits
on their existence, one must control at the highest level of
accuracy all systematic sources of deviation from the idealized
case analyzed by Casimir in his original paper. Major sources
of systematic errors that are still considered under partial
control are the use of the proximity force approximation
(PFA) [18,19] for curved surfaces, the presence of electric
forces not reflected in the purely Coulombian contribution
such as patch effects [20–24], and the combined effect of finite
conductivity and finite temperature [25–27].

The use of the PFA has been discussed at length in
the literature, with several alternative methods developed to
overcome its limitations, and exact solutions have been found
in particular curved geometries. It is generally assumed that
the PFA for the Casimir force differs from the exact result by

an amount smaller than 0.1%, an assumption compatible with
the results of a dedicated experiment [28]. The control on the
PFA used to assess limits to Yukawian non-Newtonian gravity
has not been addressed until very recently, although it has been
used for many years [9,29–34]. It has been argued that the usual
form of PFA cannot be extended unambiguously to volumetric
forces [35], and thereafter an alternative form of the PFA has
been discussed [36], which, however, has been shown in [37]
to coincide with the exact formula for geometries in which one
of the two bodies has translational invariance.

The presence of electric forces not incorporated in the
Coulombian contribution has been discussed extensively in the
literature, in particular in [20]. Anomalies in the electrostatic
calibrations of the sphere-plane configuration have been
evidenced for large radii of curvature of the sphere and
small distances from the planar surface [38,39]. This has
triggered discussions about the nature and the universality of
the observed anomalies [35,40], and the situation is still far
from being clarified. The anomalous exponent optimizing the
fit of the electrostatic calibrations in [38,39] has not been found
in another experiment using spheres of much smaller diameter
located at similar distances from the planar surface [41], while
the dependence of the minimizing potential on the sphere-
plane separation reported in [38] has been confirmed in [41],
and for crystalline Ge in [42] (see also [39] for a discussion of
some unpublished data from former experiments). The spatial
and temporal variabilities of the minimizing potential have
been evidenced in a centimeter-size torsional balance [43],
which confirms the necessity for a detailed knowledge of the
surfaces and their preparation [44–47].

The finite temperature contribution added to the quantum
fluctuations has originated a lengthy debate about the inter-
play of the thermal contribution with the finite conductivity
properties of the surfaces (see for instance [48–59] for the
initial steps of the debate). On the experimental side, attempts
to evidence the thermal contribution discriminating various
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models have been reported for the sphere-plane geometry [9],
while proposals using torsional balances in the parallel-plane
configuration [60,61] are under development. A dedicated
experiment in the parallel-plane configuration using microres-
onators [62] and a low-frequency heterodyne technique [63]
has been limited so far from patch charges [64].

Recently, the use of a configuration with intermediate
features between the parallel plate and the sphere-plane ones,
(i.e., the cylinder-plane geometry) has been proposed, and
its experimental feasibility was investigated at gaps of the
order of 20 µm, limited by the roughness of the metallic
surfaces [65–67]. This geometry is very relevant from the
theoretical viewpoint since an exact solution for the Casimir
force has been found [68,69], also providing another example
of curved geometry in which the PFA may be tested against
numerical techniques [70,71]. In this paper we report on the
results of electrostatic calibrations for an apparatus using the
cylinder-plane geometry in a range of distances of relevance
for measuring the Casimir force. We observe a background
originating frequency shifts of amplitude large enough to
overwhelm the downshift expected from the Casimir force. We
also discuss the distance dependence of the contact potential
in both the cylinder-plane and parallel-plates configurations.
The minimizing potential shows no significant distance de-
pendence in the parallel-plates configuration with respect to
corresponding cases of the cylinder-plane and sphere-plane
configurations.

The paper is organized as follows. In Sec. II we briefly
recall the Coulomb force in the cylinder-plane geometry, and
report on the upgrades to the apparatus with respect to the one
described in [66], its overall sensitivity performance, its ge-
ometrical characterization, and the parallelization technique.
In Sec. III we describe results from electrostatic calibrations,
showing that in analogy to the sphere-plane case we observe
that (a) the optimal exponent for fitting the dependence of
the Coulomb coupling on distance is not the one expected
from the idealized situation, at least at the smallest explored
distances between the cylinder and the plane and (b) that the
minimizing potential depends on distance. We then describe
the data analysis leading to force residuals after subtraction of
the Coulombian contribution. At the smallest explored gaps we
observe residual frequency shifts of an amplitude large enough
to prevent the measurement of the Casimir force. The presence
of shifts neither of Coulomb nor of Casimir origin has been
confirmed by implementing a measurement strategy consisting
in progressively approaching the two surfaces at constant bias
voltage and measuring the resonator frequency. In Sec. IV we
discuss possible explanations for the unexpected scaling law
of the Coulomb interaction with distance. We then describe
in Sec. V electrostatic calibrations taken in a parallel-plane
geometry aimed at evidencing the dependence on distance
of the minimizing potential also in this configuration, thereby
completing the analysis for the three most common geometries
of experimental interest. The relevance of measuring and
modeling the dependence of the minimizing potential on
distance to detect the thermal contribution to the Casimir force
is discussed in Sec. VI. In the conclusion we put our findings
in the more general framework of the recent observations of
systematic effects highlighting possible future developments
for the cylinder-plane geometry.

II. CYLINDER-PLANE CONFIGURATION:
GEOMETRICAL CONSIDERATIONS

The theory related to the cylinder-plane geometry and a
description of the apparatus have been the subject of a former
paper [66], while further details of the measurement technique
have been reported in [38,39,67,72]. The main difference from
the former tests is due to the use of high-quality Au-coated
cylindrical lenses, with planarity and roughness comparable
to the ones of the resonator, therefore allowing us to reach
submicrometer gaps.

The electrostatic force between a conducting cylinder (of
length L, radius a, with L � a) parallel to a conducting planar
surface, separated by a gap d and kept at a fixed electrostatic
potential difference V is [73]
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where � = √
h2 − a2 and h = d + a, with the approximate

expression in the right-hand side (r.h.s.) valid in the limit
d � a, also coinciding with the result expected from the PFA
for electrostatics. Since both the cantilever and the cylinder
have finite size, the length L in the previous expressions should
be replaced by an effective length Leff that characterizes the
relative exposure between the cantilever and the lens, (i.e.,
the minimum between the width of the cantilever and the
length of the cylinder). In our initial experimental attempts
this corresponded to the cantilever width. However, by visual
and optical microscope analysis we noticed the presence of
sharp irregularities at the border of the cantilever, most likely
originated by the laser cutting process of the Si wafer. We have
then chosen cylindrical lenses of length L = 4 mm smaller
than the resonator width of 10 mm (see Fig. 1), as the lenses
seem to have more regular borders, as visible at the optical
microscope. At this point we should note that the curvature
of our cylindrical lens is a = 12 mm, larger than its length L.
This implies that border effects in the electrostatic interaction
between the cylinder and the cantilever can be important, and
the exact logarithmic expression of the electrostatic force in
Eq. (1) should not hold in our configuration. However, as long
as the conditions for the PFA hold (d � a) the approximate
expression for the force as given by the r.h.s. in Eq. (1)
should apply, irrespective of the relative magnitude of L and a.
Other important geometrical issues are the possible nonperfect
parallelization between the cylinder and the cantilever and the
use of a cylindrical lens rather than a full cylinder. In [66], the
correction to the PFA expression for the force [r.h.s. of Eq. (1)]
due to nonparallelism was computed
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where α = L sin θ/2d, θ is the deviation angle from ideal
parallelism, and in this nonparallel case the distance d between
the cantilever and the cylinder is measured from the midpoint
along the axis of the cylinder. The use of a cylindrical lens
rather than a full cylinder can be simply evaluated in the PFA
[72], resulting in a subleading PFA correction (of the order of
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FIG. 1. (Color online) (Left) Schematic view of the experimental setup with two lateral piezoelectric actuators (PZTL and PZTR) for the
fine adjustment of parallelization and a central piezoelectric actuator (PZTC) for controlling the cylinder-plane distance. On the top of the
central actuator a platform is located with screws to adjust the horizontal position of the Au-coated cylindrical lens (C). The resonator (R) is
on the top of the cylindrical lens, and below the optical fiber (F) which is attached to a piezoelectric actuator (PZTF). (Right) Closeup image
of the cylindrical lens and resonator region. The cylindrical lens has a radius of curvature of a = 12 mm and a length L = 4 mm, smaller than
the width of the resonator of 10 mm.

5 × 10−2 for a typical separation of d/a = 10−3), and will be
then discarded in what follows.

To calibrate the apparatus, a controllable electrostatic force
is generated by applying bias voltages between the cantilever
and the cylindrical lens. At a given separation, the frequency
of a resonant mode characterized by an effective mass meff is
measured both with (ν) and without (ν0) the presence of the
voltage. This allows for the evaluation of the square frequency
difference �ν2 = ν2 − ν2

0 , related to the voltage V in the PFA
(d � a) as

�ν2
el = − 3ε0

√
aLeff

16
√

2πmeff

(V − V0)2

d5/2

×
[

α−1

3(1 − α)3/2
− α−1

3(1 + α)3/2

]
, (3)

where V0 is the minimizing potential. For small tilting angles
α � 1, the correction to the frequency shift due to nonparal-
lelism has a quadratic dependence on α, given as 1 + 35α2/24.
The parallelization procedure is one-dimensional, thereby
simpler than in the case of two flat surfaces. Rather than
measuring the frequency shift induced by a constant bias
voltage as discussed in [66], we have opted to monitor the
cylinder-plane capacitance using a capacitive ac bridge [72].
Using the PFA, the capacitance between the cylinder and the
plane is given by

C = 2πε0Leff
√

a√
2d

(
√

1 + α − √
1 − α)

α
. (4)

The tilting angle θ (and therefore α in turn) is controlled
through two motorized actuators acting in differential mode,
with the goal to keep the average distance d (the separation
between the plate and the cylinder as measured from the
midpoint of the cylinder) constant while changing the tilting

angle (see Fig. 1). The precision of the achieved parallelism is
then determined by the quality of the fitting of the capacitance
versus differential steps number, propagated to determine the
dispersion on the number of steps at minima compatible with
the fitting error.

The precision can be improved by minimizing stray
capacitance between various contacts since the precision of the
capacitance meter is some percentage of the total capacitance
in the system, usually 0.05%. An example of parallelization
through capacitance measurements is shown in Fig. 2. The
use of long-range actuators has been shown to be problematic
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FIG. 2. (Color online) Assessment of the parallelization through
capacitance measurements. The cylinder-plane capacitance is shown
vs. the difference between the steps traveled by the left and right
actuators in a differential mode. Each data point is the average of
20 measurements with an integration time of 1 s. The error bar
represents the mean standard deviation on each data set.
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due to large hysteresis, and therefore we have opted for a
fine tuning with the use of two piezoelectric actuators as in
the schematics shown in the left plot of Fig. 1. An optical
microscope allows us to monitor the quality and cleanness of
the two surfaces and for a visual, qualitative assessment of
the parallelization. An a posteriori, off-line check is obtained
by fitting the electrostatic curves of the frequency shift using
Eq. (3), which results in a value of θ compatible with zero
within a fitting error of δθ = 10−3 radians.

III. ELECTROSTATIC CALIBRATIONS AND RESIDUALS
ANALYSIS IN THE CYLINDER-PLANE GEOMETRY

An important prerequisite to any Casimir force measure-
ment is the execution of high-quality electrostatic calibrations.
Forces are always indirectly measured via their functional
relationship to more accessible observables, such as detection
of deflection angles, voltages required to keep the apparatus
at rest in closed loop schemes, or shifts of the frequency
of a mode of a resonator as in our case. It is then crucial
to convert such quantities more directly observed into the
corresponding force signal by means of well-known and
controllable physical signals, for instance by applying external
bias voltages and comparing the measured forces with the
Coulombian interactions between macroscopic conducting
bodies.

The electrostatic calibration starts by finding the best
parallelization condition at a given nominal cylinder-plane sep-
aration d using the capacitance technique described previously.
Then the parallelization is further fine tuned by adjusting the
two lateral piezoelectric actuators PZTL,R. Once the optimal

parallel condition is obtained, PZTL,R are left untouched,
and the separation d is changed via the central piezoelectric
actuator PZTC. This procedure keeps the parallelization at
the optimal value. As seen previously, in the perfect parallel
situation the frequency shift of the cantilever due to pure
electrostatics takes the form

�ν2
el = − 3ε0

√
aLeff

16
√

2πmeff

(V − V0)2

d5/2
= −Kel(V − V0)2. (5)

The displacement of the central piezo PZTC depends linearly
on the voltage applied VPZT, and therefore the absolute gap is
given by d = β(V 0

PZT − VPZT), where β = (91.9 ± 0.9) nm/V
is the actuation coefficient of the piezoelectric transducer,
and V 0

PZT is the PZT voltage required to make contact
between the two surfaces. At a given distance, the electrostatic
calibration has been performed by measuring the frequency
shift induced by a range of electric voltages V applied
between the two surfaces. The curvature coefficient Kel =
3ε0

√
aLeff/16

√
2πmeffd

5/2 and the minimizing potential V0

can then be obtained by fitting the data with

ν2
el = ν2

el(V,VPZT) = ν2
0 − Kel(VPZT) × (V − V0)2, (6)

Kel(VPZT) = γ
(
V 0

PZT − VPZT
)−5/2

, (7)

where γ ≡ 3ε0
√

aLeff/16
√

2πmeffβ
5/2. This fitting procedure

allows the determination of the absolute distance d once the
fitting parameter V 0

PZT is obtained, and the measurement of
the contact potential V0 as a function of d. A typical data plot
of Kel versus VPZT is shown in the left plot of Fig. 3. The
blue curves are the best fits using Eq. (6), and they deviate
significantly from the data points, both including or excluding
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FIG. 3. (Color online) (Left) Plots of curvature coefficient Kel vs. VPZT in cylindrical-plane electrostatic measurements obtained with the
curvature technique, and best fits with the expected Coulombian interaction having a 2.5 exponent (blue/dark gray continuous curve), and with
a power-law functional dependence in which the exponent is instead a free parameter (red/light gray continuous curve). The dashed curves are
obtained by also constraining to zero an offset for Kel, representing a possible curvature present even at a large distance between the cylinder
and the plane, for instance due to stray environmental electric fields. (Right) Plot of the reduced χ2 obtained by dividing χ 2 by the degrees of
freedom (DOF) vs. the value of the power exponent in the case of the offset K

(0)
el = 0. Data are taken as described in [38,39], with a modification

of the acquisition code for faster data acquisition and smaller uncertainty from drift effects. In the routine used for data acquisition in [38,39],
the bias voltage always returns to 0 V after each measurement. In the new routine instead, it changes from +Vb to −Vb in steps of δV where
Vb and δV (i.e., the maximum bias voltage and its minimum step of variation during the calibration) are specified in advance in the code. This
allows us to double the acquisition speed for a targeted span of voltage values. Although this sacrifices some accuracies in the subsequent fitting
of the data, a shorter data acquisition time is preferable considering the relatively large drift experienced during the entire duration of a typical
run.

052115-4



RESULTS FROM ELECTROSTATIC CALIBRATIONS FOR . . . PHYSICAL REVIEW A 81, 052115 (2010)

TABLE I. Fitting parameters of the electrostatic calibrations using the curvature technique.

Run 1 Run 2 Run 3 Run 4 Run 5

Fixed exponent 2.5 2.5 2.5 2.5 2.5
V 0

PZT (V) 79.52 ± 0.06 73.08 ± 0.06 56.76 ± 0.03 71.05 ± 0.02 65.84 ± 0.02
dmin (nm) 590 504 491 464 477
meff (units of g) 6.63 9.25 8.87 9.46 9.01
χ 2/DOF 60 116 283 518 876
Free exponent 1.30 ± 0.03 0.97 ± 0.01 0.93 ± 0.01 1.00 ± 0.01 0.94 ± 0.01
V 0

PZT (V) 74.37 ± 0.04 68.07 ± 0.02 51.78 ± 0.01 66.45 ± 0.01 61.03 ± 0.01
dmin (nm) 116 43 33 42 34
χ 2/DOF 5.3 11 19 42 31

a curvature offset K (0)
el representing a hypothetical background

electric field. Moreover, the effective mass calculated from the
fitting parameter is 30–50 times larger than the physical mass,
much larger than the expected value of the effective mass
which should be comparable or smaller than the physical
mass of the resonator. If instead the power exponent is left
as a free parameter, rather than being fixed at 2.5, a new fitting
curve with the exponent in the 0.9 to 1.3 range is obtained
(the red curves in Fig. 3). This deviation from the expected
exponent for the Coulombian force has been confirmed to
exist in all our electrostatic calibrations data.

Table I shows the fitting parameters of the electrostatic
calibrations for five runs both when the exponent is fixed and
left as a free parameter. The effective mass for the latter case is
not well defined because of the deviation of the exponent from
2.5, thus it is not listed. As shown in Table I, the exponent,
when left as a free parameter, is always smaller than the
theoretical value of 2.5, with a reduced χ2 smaller by about
an order of magnitude with respect to the one expected from
the Coulombian scaling. The relatively large value of χ2 also

indicates that the errors may be underestimated, although this
does not affect our conclusions about the relative comparison
between Coulombian and optimal exponents. While small
deviations from 2.5 are expected considering all the less
than ideal conditions such as imperfect parallelization and
thermal and mechanical drifts, such a significant difference
(an average value of 1.03 versus 2.5) cannot be explained as
small deviations from ideality.

Electrostatic calibrations have also been performed with
an alternative technique consisting in directly measuring the
resonance frequency as the separation gap is decreased main-
taining a constant bias voltage. This so-called fast-approach
measurement technique has the advantage of a faster data
acquisition, resulting in a mitigation of the long-term thermal
or mechanical drifts, and provides an alternative to check the
distance dependence of the electrostatic force. As shown in
the left plot of Fig. 4, the optimal exponent obtained from the
minimum of the reduced χ2 curve is around 0.89. Although this
technique seems to be slightly less sensitive to the exponent,
as shown from the softer dependence of χ2 (the value of χ2
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FIG. 4. (Color online) (Left) Squared resonance frequency vs. VPZT for the fast-approach calibration technique. The data were obtained
using a measurement protocol in which a constant bias voltage equal to 4 V was applied across the two surfaces and the resonance frequency
was progressively measured from the farthest to the closest distances. The dashed blue curve is the fitting with a 2.5 exponent while the
continuous red curve is obtained leaving the exponent as a free parameter, whose optimal value turned out to be about 0.89. In the inset the
reduced χ 2 is plotted vs. the value of the free exponent. (Right) Test of the electrostatic scaling law for the cylinder-plane geometry at large
distances with the curvature technique. Plot of curvature coefficient Kel vs. VPZT. The red curve is the fit with the 2.5 exponent, the blue is
the fit with the optimal exponent 1.84. In the inset the reduced χ2 is plotted vs. the value of the free exponent, with a minimum of χ2 obtained
for an exponent equal to 1.84.
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FIG. 5. (Color online) Optimal exponents of five electrostatic
calibrations versus the distance of the closest data point used in the
fitting, with the continuous line representing a spline curve obtained
by considering all data points, weighted by their error bars.

for the exponent of 2.5 being only three times larger than the
minimum χ2 obtained at the exponent of 0.89), the optimal
value of the exponent is consistent with the results from the
previous technique based upon electrostatic calibrations. The
fact that a significant deviation of the exponent from 2.5 is still
observed even in fast-approach measurements limits or rules
out the possibility that systematic effects, such as artifacts from
fitting the parabolic dependence in Eq. (5), or long-term drifts
such as thermal expansions or relaxation of the PZT actuator,
may be responsible for this anomalous behavior.

As can be seen in Table I, the smallest distance achieved is of
the order of 500 nm based on the fitting with a fixed exponent
of 2.5. In a previous measurement using wider cylindrical
lenses with a larger radius of curvature, the smallest distance
reached was around 1 µm, and no significant deviation of
power exponent from 2.5 has been observed. This suggests
that the exceptionally small exponent may be a result of the
smaller gaps reachable with the cylindrical lenses of smaller

width and radius of curvature. Although the absolute distances
obtained from the fitting with exponent 2.5 cannot be fully
trusted in light of the relatively inaccurate fitting, they can
be still considered as reliable enough to estimate the gap
separation.

Electrostatic calibrations with the same lens were per-
formed at relatively large distances, as shown in the right plot
of Fig. 4. In the data presented in Table I, the explored distances
ranged from about 500 nm to 7.3 µm. The new calibrations
were instead performed in the range of about 5.1 to 21.6 µm.
This obviously results in much smaller frequency shifts and
larger error bars in the values of Kel, yet it is evident from the
fitting that an exponent of 2.5 is more satisfactory for these
large-distance data. Furthermore, the fitting parameters with an
exponent fixed at 2.5 gives an effective mass of 1.2 g which is
much closer to the estimated physical mass of the resonator of
0.2 g. If the power exponent is instead left as a free parameter, a
value of 1.84 ± 0.06 is obtained. The large-distance data span
smaller ranges of Kel and therefore are less sensitive to the
power exponent, and as shown in the inset on the left plot of
Fig. 4, the difference between the fitting curve of 2.5 exponent
and that of 1.84 exponent is not very significant (corresponding
to a reduced χ2 of 2.3 versus 4.9). Nevertheless, the fitting
makes evident that the optimal exponent at large distance
is almost two times larger than the one obtained from the
small-distance data. We also investigated how the optimal
exponent changes if a subset of data, rather than the entire set,
is used in the fitting procedure. In particular, we have fitted
subsets of data obtained by progressively removing points at
the smallest distances. As shown in Fig. 5, all five runs share the
same trend showing that the optimal exponent increases when
the number of the removed point of closest distance used in
the fitting increases. The absolute distances in the plot were
obtained from the fitting with fixed 2.5 exponent. One feature
which is noticeable in the figure is a relatively sharp increase
in the value of the optimal exponent for a distance range of
500 to 600 nm. This could explain why such a large deviation
of the optimal exponent from 2.5 has not been observed in
our earlier measurements with a larger radius of curvature
cylinders in which we managed to reach minimum distances
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FIG. 6. (Color online) Dependence of the minimizing potential on distance in the cylinder-plane geometry. (Left) Minimizing potential V0

vs. VPZT from a typical electrostatic calibration measurement. (Right) Minimizing potential V0 vs. distance d from various runs.
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FIG. 7. (Color online) Plots of the curvature coefficient Kel (left) and the minimizing potential V0 (right) vs. time at constant VPZT. The
inset of the right plot is the histogram of V0, which shows that V0 roughly follows a Gaussian distribution centered around 0.163 V with a full
width at half maximum of 0.023 V (standard deviation 0.01 V).

of only about 1 µm. We have also noticed a strong correlation
between the value of the effective mass meff and the exponent.
The effective mass obtained from the fitting increases when the
distance between the two surfaces decreases. The dependence
on distance of the optimal exponent is in contrast to the case of
the sphere-plane measurements in which a relatively constant
optimal exponent was observed uniformly over the entire range
of explored distance [38,39]. All fits are performed with a
weight equal to 1/σ 2

i , where σi is the standard deviation of Kel

from the parabola fitting.
In our experiment we have also studied the possible

distance variability of the minimizing potential V0 (i.e., the
voltage difference between the cylindrical and the planar
conducting surfaces which is minimizing the electrostatic
force, as described for instance in [38,39]). At larger gaps
we have observed an approximate linear relationship between
the residual potential V0 and VPZT in the cylinder-plane
configuration. With closer approaching (larger values of VPZT),
V0 tends to have a nearly flat dependence on the distance, as is

visible in Fig. 6, both on a single run (left plot) and on various
runs obtained in different days (right plot).

To estimate the effect of long-term drifts we have studied the
time dependence of the electrostatic curvature coefficient Kel

and the minimizing potential V0, without nominally changing
the cylinder-plane gap distance, as shown in Fig. 7. The
curvature coefficient shows temporal variations of order 50%,
while the minimizing potential V0 does not show any evident
dependency, rather it fluctuates in a relatively small range of
values.

From the electrostatic calibration measurements it is also
possible to extract the electrostatic-free frequency ν0 as can be
seen from Eq. (6). In principle, when the distance between the
two surfaces is small enough, one should expect a downward
shift of this residual frequency due to attractive Casimir forces.
However, as can be seen in Fig. 8, no significant downshift of ν0

has been observed, rather a sharp upshift was instead observed
in one case. This upshift indicates a very strong repulsive force
between the two surfaces at small distances, which could be
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FIG. 8. (Color online) Residuals from electrostatic calibrations with parabola method. (Left) Plot of residual frequencies from various runs
of electrostatic calibration measurements vs. distance. Because of the dependence of the resonant frequency on temperature, different runs have
different frequencies even at the largest gaps at which no residual force is expected. (Right) Same plot but with a common baseline chosen in
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FIG. 9. (Left) Plot of frequency versus VPZT with a constant bias voltage Vbias = 4 V obtained using the fast-approach method. (Right) Plot
of frequency vs. VPZT with a constant bias voltage Vbias = 0.15 V approximately compensating the value of the minimizing potential expected
at the smaller gaps. No evidence for downshifts attributable to charge-independent forces is visible until the frequency increases due to direct
contact between the two surfaces.

from either a repulsive component of the Van der Waals forces
or simply a soft contact of the surfaces. To better understand
the short-distance behavior and to reduce the effect of thermal
drifts, we have performed a series of measurements using the
fast-approach technique mentioned previously.

As shown in Fig. 9, with a constant bias voltage Vbias =
4 V, the frequency of the resonator decreases as the cylindrical
lens approaches the resonator, as qualitatively expected for the
attractive Coulomb force, then followed by a sharp increase,
most likely from contact of the surfaces. If the Coulomb force
is the dominant force, then the downward part of the curve can
be fitted using Eq. (5). As mentioned earlier, a fixed exponent
of 2.5 produces a marginal fit while the optimal exponent is
around 0.9. However, we should keep in mind that the exponent
is not supposed to be 2.5 in the first place if at small distances
some other forces (either the Casimir force, patch forces, or
corrections to the standard Coulomb interaction mentioned
in the previous section) become large enough to compete
with the Coulomb force. Based on this remark, we further
analyze the data by removing data points at the smallest
distances to test the stability of the fit with the Coulomb force.
In these conditions the optimal exponent increases, as shown
in Table II. In analogy to the previous analysis on electrostatic
calibration data, although the optimal exponent is still smaller
than 2.5, the value is approaching 2.5 within the relatively
large error bars. This indicates once again that the sources of
discrepancy between the data and the expected Coulomb force
are localized at the smallest distances.

We then can investigate another kind of residual of the data
to analyze the effect of data taken at the smallest distances.
Instead of relaxing the exponent finding its optimal value,
the exponent is kept fixed at 2.5 when fitting the larger
distance portion of the data, and the residuals at small distances
are evaluated. This residual analysis is shown in Fig. 10
for one run, with the soft contact occurring around VPZT =
88.8 V. If the Coulomb force is the only dominant force for the
whole downshifted part before the soft contact, then the fitting
curve obtained when excluding a small region of data prior
to contact, for instance all the data corresponding to a PZT
voltage larger than VPZT = 87.8 V, should be able to predict
the data obtained by excluding distances corresponding to a
further Volt of VPZT removed, with residuals centered around
zero. However, by doing so there is clearly a nonzero downshift
residual before the soft contact takes over. In principle this
residual could come from fitting artifacts, in particular it could
depend on the interval chosen for fitting the data with the
Coulomb force. However, when more points were removed,
this nonzero residual appears to be stabilized. Considering
that the frequency shifts with this fast-approach technique
may capture all possible forces acting on the resonator, this
electrostatic residual analysis indicates that there are forces
other than the expected contribution from the applied constant
bias voltage that caused a further downshift in the frequency.
To test whether the residual force is correlated to the external
bias electric field, measurements were also performed with
Vbias = 0.15 V, corresponding to the average value of the

TABLE II. Optimal exponents for various values of minimum distance used in the fitting of the data
from fast-approach measurements.

dmin − dtouch (nm) 0 92 184 276 368

Vbias = 3V −0.91 ± 0.02 −1.52 ± 0.10 −1.56 ± 0.17 −1.91 ± 0.32 −2.05 ± 0.51
Vbias = 4V −0.89 ± 0.03 −1.20 ± 0.08 −1.73 ± 0.19 −1.89 ± 0.30 −1.83 ± 0.36
Vbias = 5V −0.98 ± 0.02 −1.70 ± 0.04 −1.60 ± 0.06 −1.61 ± 0.10 −1.62 ± 0.16
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FIG. 10. (Color online) Residuals to the frequency shifts with the fast-approach technique. (Left) Plots of residual frequency square (ν2–ν2
fit)

for a constant bias voltage Vbias = 4 V vs. VPZT and different values of the maximum value of VPZT used for the data analysis. (Right) Plot of
the corresponding force vs. distance. Both the absolute force and the absolute distance are inferred by the Coulomb fitting at larger distances.

residual potential V0 at small distances as shown in Fig. 6.
No noticeable downshift was observed, as seen in the right
plot of Fig. 9. Furthermore, to rule out possible changes of
configurations (such as parallelism or distance drifts) in runs
taken in different days, fast-approach measurements were
performed with different Vbias applied within the same run
(i.e., at each position three values of Vbias were applied and
the respective frequencies measured, as shown in Fig. 11 with
bias voltages of 3, 4, and 5 V). This confirms that larger bias
voltages result in larger frequency shifts at the same distance.
The residual analyses were carried out and the results with the
fitting after removing the closest 184 nm data are shown in
Fig. 12. The extra downshifts were present in all three curves,
with peak value approximately quadratic in the external bias
voltage.

Although this residual force Fres is attractive, it cannot
be identified with the sought Casimir force. Apart from the
absence of a comparable signal in the residual frequency
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FIG. 11. (Color online) Fast-approach measurements with vari-
ous values of the bias voltage. Plot of the resonator frequency vs.
distance with bias voltage Vbias of 3 V (black circle points), 4 V (red
square points), and 5 V (green diamond points).

analysis with the electrostatic calibration technique (Fig. 8),
Fres seems to be dependent on the applied bias voltage as
shown in Fig. 12. Moreover, best fits of this residual force with
power-law expressions indicate that it is required an exponent
which is much larger than that of the Casimir force. The
fact that this extra force depends on the applied bias voltage
indicates that it may also be present in electrostatic calibrations
and could lead to an anomalous exponent.

It should be noticed that within our statistics of runs
performed with the fast-approach technique (about 20) we
have also observed a couple of runs in which residuals gave
rise to short-distance upshifts. This could be explained by
the presence of anomalous distance drifts due to external
factors such as the environmental temperature. To assess this
effect and how much it affects the amplitude of the observed
frequency shifts in the residuals, we show in Fig. 13 the
typical amplitude of the frequency fluctuations. This allows
for disentangling the intrinsic drifts due to changes in the
resonator frequency, obtained by monitoring the resonator with
a distance from the cylinder large enough to make negligible
its influence, and drifts due to changes in the cylinder-plane
distance, with a bias voltage of 4 V intermediate between the
two extreme values of voltages applied in the fast-approach
measurements.

IV. POSSIBLE EXPLANATIONS FOR THE
ANOMALOUS EXPONENT

In the following section we discuss possible causes of the
anomalous exponent obtained in our electrostatic calibrations
of the cylinder-plane geometry. In particular, we consider
edge effects, local deformations from the idealized geometry,
electric forces with steeper distance scaling than the Coulomb
force, and electrostatic patch effects.

A. Edge effects

One possible reason for a deviation from the ideal Coulomb
prediction of 2.5 for the exponent of the frequency shift versus
distance is the fact that a finite size cylindrical lens was
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FIG. 12. (Color online) Plots of residual frequency square (ν2–ν2
fit) from the fast-approach measurement with Vbias = 3 V (black circle

points), 4 V (red square points) and 5 V (green diamond points) versus VPZT (left) and distance (right). The fittings were done after removing
the closest 184 nm data.

used in the experiment, instead of a long whole cylinder.
In this situation edge effects may not be negligible, and
Eq. (1) would not be a good approximation to the actual
electrostatic frequency shift. While edge effects have been
discussed for Casimir forces with the general world-line
approach in [74], we have not found former discussions of this
effect in the electrostatic calibrations in Casimir experiments.
Using the COMSOL numerical package, we have conducted
numerical simulations in which the precise geometry of the
measurements was used, and the capacitance between the
cylindrical lens and the resonator was evaluated at different
distances [75]. By neglecting edge effects, the power exponent
for the capacitance versus distance would be 0.5. We repeated
the same analysis as shown in Fig. 5 with these data, and
Fig. 14 shows how the optimal exponent changes if data
points at the smallest distances are progressively removed
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FIG. 13. (Color online) Plots of the resonator frequency vs.
time in the case of large separation (black upper points) and small
separation (red lower points), the latter obtained by imposing an
external bias voltage of 4 V at a nominally constant distance. While
the first plot reflects the intrinsic resonator change, for instance due
to temperature drifts or internal creeps, the second also includes the
effect of drifts over time in the cylinder-plane separation distance.

from the fitting. The optimal exponent obtained for the
capacitance from the COMSOL simulation for the finite-size
geometry deviates more from the ideal value of 0.5 as the
cylinder-plane separation is increased (i.e., the regime in
which edge effects are more pronounced). In contrast, the
optimal exponent obtained experimentally in our electrostatic
calibrations deviates more strongly from the ideal value as
the separation is decreased. Therefore, border effects cannot
explain, either quantitatively or qualitatively, the anomalous
exponent observed in our measurements.

B. Local geometrical deformations

Another possible reason for the deviation of the exponent
with respect to the ideal value 2.5 is the presence of geometrical
deformations in the shape of the cylinder. As the experiment
is performed with a very large cylinder (a = 12 mm), the
surface may present local deformations at the submillimeter
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FIG. 14. Optimal exponent vs. the distance of the closest data
point used in the fitting of the capacitance vs. distance curve for the
numerical simulation of the finite size cylindrical lens in front of the
finite size planar resonator, the geometry corresponding to the actual
experimental setup as shown in Fig. 1.
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FIG. 15. Two examples of deformations of the cylindrical surfaces. On the left we show a cylindrical lens with a flat deformation, on the
right, the cylinder has a tip (not to scale).

scale, which could induce strong deviations in the exponent.
A similar point has been raised for the case of a large sphere in
front of a plane in [40], where it was remarked that departures
from the ideal spherical surface may noticeably affect the
exponent of the electrostatic calibration.

To illustrate this point, we have computed the electrostatic
force between a deformed cylinder and a plane using the PFA.
Let us first assume that, in the region of minimum distance
between surfaces, the cylinder has a flat deformation of width
2b (see left plot in Fig. 15). For simplicity we assume that the
same deformation is all along the length L of the cylinder. In
this case it is possible to show that

�ν2
el = −ε0Leff(V − V0)2

4π2meff

∂2

∂d2

[
finc

(
d − b2

2a

)
+ fpp(d)

]
,

(8)

where

finc(d) =
√

2a

d
arctan

√
2ad

b2
, (9)

is the contribution of the (incomplete) cylinder, and fpp(d) =
b/d is the contribution of the flat deformation. Let us assume
that �ν2

el = −A/dB . Depending on the relation between the
size b of the deformation and the range of distances d

of the calibration, we expect that the exponent B will interpo-
late between the ideal value 2.5 (cylinder-plane) at relatively
large distances, and 3 (parallel plates) at short distances
(although the interpolation is not necessarily a monotonic
function). When b = 102 µm, and the fit is performed for
d between 0.5 and 2 µm, the exponent becomes B = 2.8,
bigger than that of the ideal cylinder-plane geometry. Then
this kind of deformation does not help to explain the observed
anomalous exponent.

On the other hand, if the cylinder has a deformation with
the form of a tip (see right plot in Fig. 15), the exponents are,
in general, considerably smaller than the ideal one, and can
explain at least part of the anomaly. Indeed, let us assume that
the deformation consists of a triangular tip of width 2b and
height b′. In this case, the PFA gives

�ν2
el = −ε0Leff(V − V0)2

4π2meff

∂2

∂d2
[finc(d + b′) + ftip(d)], (10)

where

ftip = b

b′ ln

(
1 + b′

d

)
. (11)

If the height of the tip is much larger than d, the contribution of
the incomplete cylinder is almost irrelevant since the cylinder
is shifted upward and its electrostatic energy becomes almost
independent of d in this regime. The main contribution comes
from the tip, and the mild logarithmic dependence of the energy
with the distance implies an exponent of around B ≈ 2. This
can be easily confirmed by performing fits of Eq. (10). For
example, for the same parameters as previously, with b′ = b,
we obtain an exponent B = 2.0. Sharper tips may produce
even smaller exponents, although the PFA becomes unreliable
for very thin tips.

The main conclusion of the PFA estimations is that, as
expected, deformations of the cylindrical surface may change
appreciably the exponent 2.5 of the electrostatic calibration.
Although the previous examples do not explain the full
discrepancy between the ideal prediction and the experimental
data, this is certainly a crucial point to be taken into account
in future experiments.

C. Additional electric forces

In the residuals analysis of electrostatic calibrations de-
scribed in the previous section, a residual force which seems to
depend on the applied bias voltage was observed. The presence
of such a force could lead to an anomalous exponent. Let
us consider a hypothetical scenario in which the square of
frequency shift �ν2

hs for a cylinder-plane geometry has the
following dependence on distance

�ν2
p = −

(
α1

d2.5
+ α2

dp

)
(V − V0)2, (12)

in which p > 2.5. This means that besides the expected
electrostatic interaction between the two surfaces, there is
another electric force which follows a higher power law
upon the cylinder-plane separation. Let us generate a set
of pseudo-data following Eq. (12), and let us try to fit the
curvature coefficient Kp = α1d

−2.5 + α2d
−p with

Kp = α(d − d0)−q, (13)

where α, d0, and q are fitting parameters. In Figs. 16 and 17 we
show the results of the fitting using different values of α2/α1

versus the distance of the closest point used in the fitting with
p = 5. Not surprisingly, the optimal value of q from the fitting
approaches p at small distances and approaches 2.5 at large
distances. However, it is not monotonically decreasing from p

to 2.5 when the distance increases, but first goes below 2.5 and
then slowly approaches 2.5. The α2/α1 = 5 and 10 curves in
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FIG. 16. (Color online) Optimal exponent of the hypothetical
scenario data vs. the distance of the closest data point used in the
fitting. The data are constructed from Eq. (12) with p = 5, α1 = 104,
and α2/α1 = 5, 10, 50, and 100 for the black circle points, red square
points, green diamond points, and blue triangle points, respectively.

Fig. 16 resemble the results from our electrostatic calibrations
data as shown in Fig. 5. Therefore it is possible that an extra
force with a power law dependence on distance steeper than
the Coulombian one is responsible for the strong deviation
of the optimal exponent from 2.5. The value of α from the
fitting also suffers from similar issues. In the electrostatic
calibration measurement, the exponent is fixed at 2.5 and the
calibration factor α is used to calculate the effective mass
meff of the resonator. However, when α2 �= 0 there is this
extra force which is not included in the fitting formula, thus
α obtained from the fitting is not equal to α1 as can be
seen in the top plots of Fig. 17 (α1 is chosen to be 104),
and meff calculated from α would be incorrect. For example,
the α2/α1 = 5 and 10 curves show that α obtained from
the fitting is smaller than α1 = 104. Since meff is inversely
proportional to α, a smaller α would result in a larger meff . This
is in agreement with our observation that the effective mass
obtained from electrostatic calibration measurements is larger
than expected. The inset of the top right plot in Fig. 17 shows
the calibration factor α versus the distance of the closest point
used in the fitting with experimental data from our electrostatic
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FIG. 17. (Color online) Plots of the calibration factor α (top) and contact distance dfit
0 (bottom) of the hypothetical scenario data vs. the

distance of the closest data point used in the fitting. The plots on the left are the results of the best fit when the exponent q is a free parameter,
and the plots on the right are the results when q is fixed at 2.5. The data are constructed from Eq. (12) with p = 5, α = 10 000, and α2/α1 = 5,
10, 50, and 100 for the black, red, green, and blue curves, respectively. The insets on the right are the corresponding results using experimental
data from our electrostatic calibration measurements. The relationship between the distance and the PZT voltage is d − d0 = β(V 0

PZT − VPZT)
where β is the actuation coefficient of the piezoelectric transducer. The same labeling for the points as in the previous figure is used.
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calibration measurements, showing qualitative agreement with
the model.

The previous analysis indicates that with a carefully chosen
combination of p and α2/α1, the existence of an extra
electric force could well explain the problems we experienced
in our electrostatic calibration measurements. Another very
important result from this analysis is that unreliable values of
d0 could be obtained from the fitting if there exist forces other
than the expected electrostatic force. As shown in the bottom
plots of Fig. 17, positive values of dfit

0 were obtained, both when
the exponent q is left as a free parameter or fixed at 2.5. Based
on the way the data were constructed, the correct value for d0 is
0 nm, and the difference between dfit

0 and its corresponding null
value cannot be covered by the fitting uncertainty. This results
in a further source of systematic error in the determination of
the absolute distance, which adds up to other sources, including
the one recently discussed in [76]. It should also be noted that
there seems to be a strong correlation between the two fitting
parameters α and dfit

0 , which is indeed also present in our
electrostatic calibration measurements as shown in the insets
in the bottom right plot of Fig. 17.

D. Electrostatic patch effects

As it is well known, all metallic surfaces in reality are
not equipotential surfaces, showing instead voltage variations
of order 10–100 mV over micrometer distances. These patch
potentials are typically due to local changes in the work
function associated to different crystallographic facets of the
metal. Electrostatic patches are known to be an important
systematic in several precision measurement experiments,
including those aiming at detecting the Casimir force. Apart
from the static component, patch potentials can also fluctuate
in time, a dynamical process that has not been studied in detail
to date. It has recently been shown that by cooling a Au sample
the electric-field noise above the metal is substantially reduced,
a process possibly due to thermal activation barriers in the
surface potential [77].

Here we briefly describe the physics of electrostatic patches
in the cylinder-plane geometry, and discuss whether they
could be partly responsible for the anomalous exponent
in our electrostatic calibrations. Our considerations follow
closely the model and notation of [23]. A related effect is
the fluctuation-induced interaction between monopolar charge
disorder within the dielectric slabs [24]. The electrostatic
interaction energy between two parallel plates, whose surfaces
contain stochastic voltage variations Va(x,y) (a denotes the
upper or lower plate) is

Upp = ε0

2

∫ ∞

0
dk

k2e−kd

sinh(kd)
S(k). (14)

This expression results from assuming zero-average patches,
and an isotropic two-point correlation in the transverse
plane-wave basis k given by 〈Va,k,Vb,k′ 〉 = δa,bCa,kδ

2(k − k′).
Here 〈. . .〉 denotes stochastic average k = |k|, and the
power spectral density S(k) is defined as

∫ ∞
0 dkkS(k) ≡

(1/8π )
∫ ∞

0 dkk(C1,k + C2,k). The corresponding electrostatic
force due to these potential patches is given by Fpp =
−∂Upp/∂d. To compute the patch effect on the force in the
cylinder-plane configuration we make use of the PFA to treat

the curvature of the cylinder, which is a good approximation
in the limit d/a � 1. We do not impose any restriction on
the typical size of the patches (i.e., we leave kd arbitrary). In
the limit d/a � 1 the electrostatic force due to patches in the
cylinder-plane configuration is

Fcp = πε0L

2
√

2
a

(
d

a

)1/2 ∫ ∞

0
dk

k3e−2kd

sinh2(kd)
S(k). (15)

Two simple limiting cases can be analyzed. In the large patch
limit (kd � 1) the force is given by

Fcp ≈ πε0L

2
√

2

a1/2

d3/2
V 2

rms, (16)

with V 2
rms = ∫ ∞

0 dkkS(k). This expression is exactly equiva-
lent to the r.h.s. of Eq. (1) with V 2 replaced by V 2

rms, as expected
for large patches. In the small patch limit (kd � 1) the force
is exponentially suppressed because the patches are small and
change sign rapidly, resulting in a vanishing net interaction
between the plates. It should be noticed that the patch force
depends on distance as an inverse power law (with exponent
1.5) only in the small-patch limit. The smaller the patches, the
faster the decay (bigger exponent). More importantly for our
purposes is the fact that the electrostatic patch force (16) is
independent of the applied voltage V between the cylinder
and the plane. Therefore, it cannot explain the anomalous
exponent of the electrostatic calibration that stems from the
V -dependent contribution to the force. The patch force (16) is,
instead, a background force that could possibly show up in the
analysis of the electrostatic residuals, that is, the force after
the subtraction of the Coulomb-like V -dependent terms.

It could be argued that the presence of strong electric fields
in the gap between the plates may, in principle, redistribute the
spatial configuration of the patches, and then the question is
whether the force between the redistributed patches depends
on V 2 (note that if this were the case, there might be
some hope that the anomalous exponent is partially due to
patches). Equation (16) was obtained assuming that the two
plates had only stochastic potentials fluctuating around zero.
If an external fixed potential difference V is applied between
the plates, the linearity of Laplace’s equation implies that the
total force will be the sum of the usual V 2 term plus the
V -independent term given in (16). In principle, for sufficiently
large external fields in the gap, the power spectrum S(k) could
depend on the external voltage V , but it is unclear if, and
how, such an effect can account for the anomalous exponent
in our electrostatic calibrations, at least in the ones performed
by maintaining the electric-field approximately constant in the
explored distance range.

V. MINIMIZING POTENTIAL IN THE PARALLEL
PLATES GEOMETRY

We have also performed in the same experimental con-
ditions measurements in the plane-plane configuration using
flat coated mirrors facing the resonator. Considering that
the sphere-plane geometry has been the subject of former
work [38,39], this allows us to complete the picture on
the relationship between the distance-dependent minimizing
potential and the specific geometrical configuration. Three
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FIG. 18. (Color online) Plots of the minimizing potential V0 vs. curvature coefficient Kel from various runs in plane-plane geometry with
three different coatings of the mirror, Au (left), Ag (middle), and Al (right), all facing the Au-coated resonator.

mirrors with different coatings (Au, Ag, and Al) were used
to also investigate the possible relationship between V0 and
the nature of the substrate. Although the parallelization is
obtainable with a good level of approximation in one direction
only, we can introduce an off-line parallelization correction
in the data fitting. We analyze separately in the following
results on the three substrates. The data of V0 from four runs
were merged in the same plot for each of the three mirrors
as shown in Fig. 18 where they appear versus the curvature
coefficient Kel instead of the distance. This is because the
range of Kel achieved is not very large especially in the case
of aluminum mirrors due to limited parallelization and smaller
conductivity from oxide layers on the surface of the mirror, and
consequently the usual fitting procedure to find the absolute
distance would produce rather unstable and inaccurate results.
Since there is a one to one mapping between Kel and the
distance, Kel is used here as a fair indicator of the distance for
all runs.

In the case of Au mirrors, V0 fluctuates around 100 mV
without any noticeable trend. The fluctuation is bigger at large
distance partly because the frequency shifts tend to be small
also for relatively larger bias voltage, this being reflected in the
error bars in the fitting procedure. As the distance gets smaller,
V0 seems to converge to a constant value. The minimizing
potential V0 shows a similar behavior in all runs, and the
values of V0 are also comparable, with runs 1, 2, and 4 all
around 0.1 V, and run 3 slightly lower at around 0.4 V. In

Table III, the average value and the standard deviation of V0

for each run is obtained using the six data points with largest
Kel value from each run. We see that the standard deviation is
reasonably small indicating that V0 is mostly constant.

Using Ag mirrors instead, a noticeable difference evident
from the electrostatic measurement is that we achieve values
of Kel smaller than in the case of Au mirrors. This is possibly
due to the fact that Ag is easily oxidized once exposed in air
prior to the insertion into the vacuum chamber. Of course, we
cannot rule out the possibility that this could also be partly due
to slightly different parallelization configurations. In terms of
residual potential V0, the Ag mirror shares the same behavior
as the Au mirror, as V0 fluctuates randomly remaining constant
especially at a small separation gap. However, in this case the
V0 value is noticeably higher that that of the Au mirror.

Finally, with an Al coating, the lowest value of Kel achieved
is much smaller than that of the Au and Ag mirrors. This may
be due to the easiness to form oxide layers, and it could also
be related to the smaller conductivity with respect to Ag and
Au. In this case the residual potential V0 is also constant at
small separation gaps as it can be seen in Fig. 18, and it is
manifest that V0 is significantly larger than that for Au and
Ag mirrors. A more quantitative analysis is precluded by the
strong dependence of the work function of Al on the exposure
time in air [78].

A comparison among the various minimizing potentials
V0 and physical parameters of the substrate is shown in

TABLE III. Average measured value of V0 for mirrors made of various substrates, weighted average
value of V0, and comparison with tabulated data for the work function W and the Fermi energy EF .

Run V0 (V) σV0 (V ) 〈V0〉 (V) W (eV) EF (eV) EF –W (eV)

Au 1 0.113 0.025 0.048 5.1–5.47 5.53 0.06–0.43
2 0.089 0.017
3 0.041 0.006
4 0.113 0.008

Ag 1 0.145 0.017 0.194 4.52–4.74 5.49 0.75–0.97
2 0.182 0.044
3 0.264 0.044
4 0.264 0.023

Al 1 1.177 0.033 1.151 4.06–4.26 11.7 7.44–7.64
2 1.169 0.097
3 1.118 0.036
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the second part of Table III. The average values of V0 are
obtained by averaging three runs from each mirror weighted
by their variance. From the table it is clear that V0 for mirrors
coated with Au, Ag, and Al are significantly different. For a
rough theoretical comparison, the work function and the Fermi
energy as well as their difference are also listed in the table. The
work function of a metal is closely related to its Fermi energy,
but due to the presence of defects and impurities on the surface
these two quantities do not coincide, with their difference
largely due to the surface charge distribution and surface
dipole distribution. From Table III we can see that Au has
the smallest difference between its work function and Fermi
energy while Al has the largest. Since this difference indicates
the magnitude of the surface charge and dipole distribution
which may be directly related to the residual potential V0, it
could be used to explain the different value of V0 measured
using mirror with different coatings. In fact, the average V0

values for Au, Ag, and Al mirrors is consistent with the order
of this difference. Regarding the best fitting exponent for the
scaling of the curvature coefficient with distance, we have
obtained the expected one from the Coulomb force, although
it should be noticed that the range of distances was limited to
a minimum value of about 3 µm.

VI. ON THE IMPORTANCE OF THE MEASUREMENT
AND THE MODELIZATION OF THE MINIMIZING

POTENTIAL IN CASIMIR FORCE MEASUREMENTS

Our emphasis on measuring the minimizing potential at
all the explored distances for the sphere-plane configuration
[38,39], and for the cylinder-plane and parallel-planes config-
urations described here is due to the fact that the understanding
of the minimizing potential dependence on distance and time is
crucial for the assessment of the accuracy of the Casimir force
measurements at small (below � 1 µm) distances, and for
determining the thermal contribution at large (in the 1–5 µm
range) distances. In Table IV we report the formulas for
the ideal (perfect reflectors, zero temperature) Casimir force
and for the Coulomb force in the three different geometries.
Following [79], let us define the equivalent Casimir voltage as
the external bias voltage that can simulate the ideal Casimir
force. Due to the different scalings with distance of Casimir
and Coulomb forces, this equivalent Casimir voltage must be
specified at each distance. It is, however, important to point

out that the difference between the various geometries is just
a numerical factor which makes this equivalent voltage for the
sphere-plane configuration about half the value of the parallel
plane case (with the cylinder-plane, as is customary, in between
the two extreme cases even from this point of view). The
formula for the equivalent Casimir voltage is

V
eq

Cas(d) =
(

π2

ξ

)1/2 (
h̄c

ε0

)1/2 1

d
, (17)

where ξ = 360, 192, and 120 for the sphere-plane, cylinder-
plane, and parallel-plate configurations, respectively.

In the numerical example presented in the last raw of
Table IV, at a distance of 1 µm, which can be considered
the borderline between the short-distance regime and the
long-distance regime in which the thermal contribution starts
to play a significant role, this equivalent Casimir voltage
ranges between 10 and 17 mV depending on the geometry.
At 3 µm, where the thermal contribution is expected to
contribute as 10–20% of the total force signal, with an absolute
value still large enough to be detectable in various apparata, the
equivalent Casimir voltage is three times smaller, (i.e., between
3 and 6 mV). This voltage is of the same order of magnitude
of the variation of the minimizing potential in a range of few
micrometers. To take into account this contribution to properly
subtract it from the data, it is therefore necessary to model
the minimizing potential at the few percent level accuracy.
Unfortunately, such stringent theoretical characterization of
the minimizing potential is not yet available.

A further degree of uncertainty is also related to the fact
that, as pointed out in [39], the minimizing potential may
depend on time, a fact that, for instance, could be attributed to
temperature drifts. It has been experimentally shown in [80]
using a heated atomic force microscope tip that the contact
potential depends on temperature, with a slope estimated to be
of the order of 4 mV/0C. To perform high-precision tests of
the Casimir force, one therefore needs a stringent temperature
stability of the apparatus during the entire measurement run.
In [43], the observation of fast changes in the contact potential
have been conjectured as due to the effect of background
cosmic rays impinging on the apparatus. For a release of about
10−11 C/cm2 through ionization by cosmic rays at sea level,
and considering the small values of the capacitances (order
of hundreds pF), sudden changes of order 0.1–1 mV could
be expected (see [81] for a related discussion). A careful

TABLE IV. Summary of relevant formulas for the ideal Casimir force and the Coulomb force in
the cases of the sphere-plane, cylinder-plane, and parallel plane geometries, with both forces in the
first two geometries evaluated using the PFA. In the third row the equivalent Casimir voltage (i.e.,
the voltage which needs to be applied to simulate the Casimir force at a given distance d) is reported.
In the last row the concrete value of the equivalent Casimir voltage is reported in the case of a typical
gap distance of 1 µm.

Sphere-Plane Cylinder-Plane Parallel Planes

Casimir π3

360h̄c R

d3
π3

384
√

2
h̄c La1/2

d7/2
π2

240h̄c S

d4

Coulomb πε0
R

d
V 2 πε0

2
√

2
La1/2

d3/2 V 2 ε0
2

S

d2 V 2

V
eq

Cas(d) ( π2

360 )1/2( h̄c

ε0
)1/2 1

d
( π2

192 )1/2( h̄c

ε0
)1/2 1

d
( π2

120 )1/2( h̄c

ε0
)1/2 1

d

V
eq

Cas (1 µm) 9.85 mV 13.5 mV 17.1 mV
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control of the minimizing potential will then require also
surrounding the apparatus with lead shields to reduce the
radiation background or particle detectors to veto the apparatus
during large ionization events, especially for apparata using
microspheres.

VII. CONCLUSION

In this paper we have summarized the main outcomes from
our effort to measure the Casimir force in the cylinder-plane
configuration. The presence of uncontrollable frequency shifts
of electric origin at the smallest explored gaps, evidenced
both from the analysis of the residuals of the electrostatic
calibrations and a fast-approach technique, prevent us from
identifying a Casimir-like contribution at small distance.
At large distances thermal drifts are large, if compared to
the expected Casimir force, and a careful control of the
dependence of the minimizing potential on distance is also
required to extract meaningful information about the Casimir
force and its thermal corrections. While unsuccessful, our
search for the Casimir force in this geometry, apart from
the development of some data taking and analysis techniques
applicable elsewhere, has evidenced a number of features
which may be of more general interest, as we try to summarize
in the following.

First, we have observed anomalous behavior for the best
fitting exponent with which the electrostatic coefficient is
scaling as a function of the cylinder-plane separation. The
exponent is significantly smaller than the Coulombian one at
small distances, while it retains its expected value at the largest
explored gaps. In the case of the sphere-plane measurements,
the exponent was slightly smaller than the expected value, but
it retained its value in the entire explored range of distances,
this last being smaller than in the cylinder-plane case due to
the smaller electrostatic signal available in the sphere-plane
configuration [38].

Second, we have observed a dependence of the minimizing
potential on the cylinder-plane distance, similarly to the
sphere-plane case. Although its dependence is milder at small
distances, it still retains a strong dependence on distance at

larger gaps, and this requires a careful modeling to subtract
its contribution when studying forces in the 1–5 µm range of
interest to discriminate among the various models proposed to
incorporate the thermal contribution.

Finally, we have also explored the case of flat surfaces
with a rough parallelization and we have found that in this
case no anomalous behavior is observed for both the scaling
exponent and the minimizing potential, even using different
substrates for the surfaces. The range of explored distances
is definitely limited by the approximate two-dimensional
parallelism achievable with our setup, and it is therefore
unclear if anomalous scaling could be instead observed as
in the case of the smaller explored gaps in the sphere-plane
and cylinder-plane configurations. Both apparata built to study
the Casimir forces in a parallel-plane configuration have not
observed dependence of the minimizing potential on distance
[3,64].

Our findings should be then related to recent outcomes from
various experiments confirming the presence of nontrivial,
formerly unidentified systematic effects in the electrostatic
calibrations [38,39,41,42]. Several recent experiments are also
showing that the observation of Casimir or Casimir-Polder
forces is less trivial than previously stated, for instance,
with regards to the dependence on the optical properties
of the substrates [82] and the presence of dielectric layers
on the substrates [83]. Theoretical arguments have been
recently provided for the nontrivial interplay between thermal
fluctuations and geometry [84], thermal, conductivity, and
roughness corrections [85,86] and the role of the statistical
properties of the conducting surfaces [24]. Deviations from
the pure Coulombian contribution and from the hypothesis of
a constant minimizing potential have also been observed in
atomic force microscopy for sharp tips, for instance, due to
capillary forces [87,88].
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