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Born-Oppenheimer approximation for open quantum systems within
the quantum trajectory approach
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Using the quantum trajectory approach, we extend the Born-Oppenheimer (BO) approximation from closed to
open quantum systems, where the open quantum system is described by a master equation in Lindblad form. The
BO approximation is defined and the validity condition is derived. We find that the dissipation in fast variables
improves the BO approximation, unlike the dissipation in slow variables. A detailed comparison is presented
between this extension and our previous approximation based on the effective Hamiltonian approach [X. L. Huang
and X. X. Yi, Phys. Rev. A 80, 032108 (2009)]. Several additional features and advantages are analyzed, which
show that the two approximations are complementary to each other. Two examples are described to illustrate our
method.
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I. INTRODUCTION

The adiabatic and Born-Oppenheimer (BO) approxima-
tions are among the oldest approaches in quantum mechanics
[1,2]. The adiabatic approximation [3–8] tells us that, for a
time-dependent system governed by the Hamiltonian H (t), if
the system is prepared in one of the eigenstates |n(t = 0)〉
of H (t = 0) at t = 0, it will remain in that eigenstate |n(t)〉
of H (t) at arbitrary time t > 0 provided the Hamiltonian
H (t) is changed slowly enough. The Born-Oppenheimer
approximation was first given by Born and Oppenheimer
in 1927 [2] and can be formulated as follows [9]: Treating
the slow variables as parameters, we first solve for the fast
variables with fixed slow variables. Using these solutions, we
obtain an effective Hamiltonian for the slow variables. This
effective Hamiltonian contains an effective vector potential
induced by the fast variables. Based on this Hamiltonian we
can obtain a wave function with the slow variables. Thus
the total wave function can be factorized into a product
of two wave functions corresponding to the fast and slow
variables. This method has been widely used in physics and
quantum chemistry and has become a fundamental tool in these
fields [10–22].

Because of the unavoidable coupling of a quantum system
to its environment, most quantum systems are open and
dissipative [23]. The dynamics of an open quantum system
can be described by a master equation [24,25]. It is then
natural to ask how these approximations can be extended
from closed to open systems. The adiabatic approximation has
been extended to open systems in different ways, including
the Jordan block method in Liouville space [26,27], the
effective Hamiltonian approach [28–30], and in the weak-
dissipation limit [31]. Although the approximation based on
the effective Hamiltonian approach is equivalent to the Jordan
block method [28], the effective Hamiltonian approach has
the advantages that the extension is straightforward and the
effective Hamiltonian is easy to obtain. The BO approximation
was extended based on the effective Hamiltonian approach in
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Ref. [32]. In this paper, we shall extend the BO approximation
in a different way, based on the quantum trajectory approach.
Compared with our previous work, this extension exhibits
the following additional features and advantages. (1) We
do not need to extend the Hilbert space. This will save
CPU (computing) time and memory. (2) All eigenstates of
the effective Hamiltonian in the method are physical states.
(3) The eigenstates are easy to obtain. (4) The jump terms can
be more accurately treated in the master equation than in our
previous method. This paper is organized as follows. In Sec. II,
we present a general description about our extension and then
two examples are given in Sec. III. A detailed comparison
between this extension and our previous paper [32] and the
conclusions are presented in Sec. IV.

II. GENERAL TREATMENT

Consider a quantum system with two types of variable, a
slow one �X and a fast one �Y . Then we can divide the total
Hamiltonian of the system H into two parts

H = Hs( �X) + Hf ( �X, �Y ), (1)

where Hs( �X) contains only the slow variables �X. The two types
of degrees of freedom are coupled together through Hf ( �X, �Y ).
We start by considering dissipation in the fast variables first.
The case of decoherence in the slow variables will be discussed
later. Assuming the dissipation is in the Lindblad form, the
dynamics for such a system can be described by

∂

∂t
ρ = − i

h̄
[H,ρ] + Lρ, (2)

where the first term on the right-hand side represents a unitary
evolution while the second term denotes the dissipation. Here
we assume that the dissipative term can be arranged into the
Lindblad form as

Lρ = 1

2

∑
k

(2LkρL
†
k − ρL

†
kLk − L

†
kLkρ), (3)

where Lk = Lk( �Y ) is the Lindblad operator relevant to the fast
variables �Y . LkρL

†
k denotes the jump term. Within the frame
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of the quantum trajectory approach, for an initial state |φ(t0)〉,
one can write the state after an infinitesimal time dt as

ρ(t0 + dt) =
(

1 −
∑

k

dpk

)
|φ0〉〈φ0| +

∑
k

dpk|φk〉〈φk|,

(4)

where dpk = 〈φ(t0)|L†
kLk|φ(t0)〉dt , and the new states are

defined by

|φ0〉 = (1 − iHeffdt/h̄)|φ(t0)〉√
1 − ∑

k dpk

,

(5)
|φk〉 = Lk|φ(t0)〉

||Lk|φ(t0)〉|| ,

with the non-Hermitian effective Hamiltonian defined by
Heff = H − (i/2)h̄

∑
k L

†
kLk . In this description, the system

will jump into the state |φk〉 with probability dpk , and evolve
according to the non-Hermitian effective Hamiltonian Heff

with probability 1 − ∑
k dpk . This unraveling is the so-called

Monte Carlo wave function method [33–35]. The difficulty
here is that the non-Hermitian Hamiltonian Heff contains two
types of variable; we will solve this problem by applying
the BO approximation in the no-jump trajectory only. For
the no-jump evolution |φ0〉, the time evolution is given
by

ih̄
d

dt
|�(t)〉 = Heff|�(t)〉. (6)

Our aim is to solve this equation with the help of the
BO approximation. To this end, we first rewrite Heff

as Heff = Hs( �X) + H ′
f ( �X, �Y ) with H ′

f ( �X, �Y ) = Hf ( �X, �Y ) −
(i/2)

∑
k L

†
kLk . Obviously, H ′

f ( �X, �Y ) is not Hermitian and
it includes all non-Hermitian parts of Heff . Taking the slow
variables �X as parameters, we can solve for the eigenstates
of H ′

f ( �X, �Y ). We denote its right eigenstates by |ψR
n ( �X)〉 and

the corresponding left eigenstates by 〈ψL
n ( �X)| with complex

eigenvalues En( �X). These eigenstates satisfy the relations
〈ψL

m|ψR
n 〉 = δmn and 〈ψR

n |ψR
n 〉 = 1 for fixed �X. We also restrict

our discussion to the nondegenerate case. In order to solve
Eq. (6), we expand the eigenstate of Heff in terms of |ψR

n ( �X)〉
as

|�〉 =
N∑

n=1

cn|ϕn( �X)〉∣∣ψR
n ( �X, �Y )

〉
, (7)

where N is the dimension of the fast variables �Y and cn (n =
1,2,3, . . . ,N ) are the expansion coefficients. Substituting
Eq. (7) into the eigenvalue equation Heff|�〉 = E|�〉, after
simple calculation, we obtain an equation for the wave function
of the slow variables:∑

m

〈
ψL

n

∣∣Hs( �X)
∣∣ψR

m

〉|ϕm( �X)〉 + En( �X)|ϕn( �X)〉 = E|ϕn( �X)〉.

(8)

Defining Hn,m( �X) = 〈ψL
n |Hs( �X)|ψR

m 〉, we can rewrite Eq. (8)
in matrix form as

(H0 + HP )ϕ = Eϕ, (9)

where H0,HP , and ϕ are defined by

H0 =

⎡⎢⎢⎢⎢⎣
H1+E1( �X) 0 · · · 0

0 H2+E2( �X) · · · 0
...

...
. . .

...

0 0 · · · HN+EN ( �X)

⎤⎥⎥⎥⎥⎦ ,

(10)

HP =

⎡⎢⎢⎢⎢⎢⎣
0 H1,2 · · · H1,N

H2,1 0 · · · H2,N

...
...

. . .
...

HN,1 HN,2 · · · 0

⎤⎥⎥⎥⎥⎥⎦ , ϕ =

⎡⎢⎢⎢⎣
|ϕ1〉
|ϕ2〉

...
|ϕn〉

⎤⎥⎥⎥⎦ .

Here we have omitted repeated subscripts for simplicity.
Treating HP as a perturbation, we can solve Eq. (9) by virtue
of the standard time-independent perturbation theory. The
solution to zero order,

ϕ̃
R[0]
1,k =

⎡⎢⎢⎢⎢⎣
∣∣ϕR[0]

1,k

〉
0
...
0

⎤⎥⎥⎥⎥⎦ , ϕ̃
R[0]
2,k =

⎡⎢⎢⎢⎢⎣
0∣∣ϕR[0]
2,k

〉
...
0

⎤⎥⎥⎥⎥⎦ ,

(11)

· · · , · · · , ϕ̃
R[0]
N,k =

⎡⎢⎢⎢⎢⎣
0
0
...∣∣ϕR[0]

N,k

〉

⎤⎥⎥⎥⎥⎦ ,

can be obtained by the eigenvalue equation

Hn

∣∣ϕR[0]
n,k

〉 = E
[0]
n,k

∣∣ϕR[0]
n,k

〉
, (12)

where Hn = Hn( �X) + En( �X) is the zero-order effective
Hamiltonian for the slow variables. From these zeroth-order
solutions, one can obtain the higher-order correction. The con-
dition with which we can neglect the higher-order correction
safely is∣∣∣∣∣

〈
ϕ

L[0]
n′,k′

∣∣Hn′,n
∣∣ϕR[0]

n,k

〉
E

[0]
n′,k′ − E

[0]
n,k

∣∣∣∣∣ � 1 for all k′,n′ �= k,n, (13)

where 〈ϕL[0]
n′,k′ | is the left eigenstate of the non-Hermitian

Hamiltonian Hn.
Next we consider the dissipation of the slow variables. The

method used in this case is very similar to the discussion
given above. In this case, the Lindblad operator is replaced
by Xk and it is a function of slow variables only, that is,
Xk = Xk( �X). In the no-jump trajectory, we divide the non-
Hermitian Hamiltonian as Heff = H ′

s( �X) + Hf ( �X, �Y ), where
H ′

s( �X) = Hs( �X) − (i/2)
∑

k X
†
kXk . The method used to find

the eigenstates and eigenvalues for Hf is the same as for
a closed system. These eigenstates are denoted by |ψn( �X)〉
with corresponding eigenvalues En( �X). We can handle the
slow variables in the same way. The only difference is
Hn,m( �X) in Eq. (8), defined as Hn,m( �X) = 〈ψn|[Hs( �X) −
(i/2)

∑
k X

†
kXk]|ψm〉. The zero-order effective Hamiltonian

Hn for slow variables in the no-jump trajectory can be similarly
obtained. Compared with the closed system, this Hamiltonian
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includes a non-Hermitian (usually anti-Hermitian) correc-
tion 〈ψn| − (i/2)

∑
k X

†
kXk|ψn〉, which comes from the

dissipation.
According to the previous discussion, we can solve the

dynamics governed by the non-Hermitian Hamiltonian Heff

via expanding the total state as |�〉 = ∑
n,k cn,k|ϕ[0]

n,k〉|ψ (R)
n 〉.

Then the Monte Carlo simulation for Eq. (2) is the following.
We divide the total evolution time T into several steps. The
interval of each step is dt . In each step, a random number
ε that is distributed uniformly in the unit interval [0,1] is
chosen to determine the jump process. If ε �

∑
k dpk , the

total state jumps into the corresponding state according to the
corresponding Lindblad operator, that is, for ε � dp1, it jumps
to |φ1〉, for dp1 < ε � dp1 + dp2, it jumps to |φ2〉, and so on.
If ε >

∑
k dpk , it is a no-jump process. The system evolves

according to the non-Hermitian Hamiltonian Heff , and the BO
approximation is used. This process is repeated as many time
as nstep = T/dt , and this single evolution gives a quantum
trajectory. We can recover the final state of the system by
averaging over different quantum trajectories.

III. EXAMPLES

In this section, we shall present two examples to illustrate
our method. After these two examples, we will give a detailed
comparison with our previous work [32]. First, we consider
a Fabry-Perot (FP) cavity with an oscillating mirror at one
end, acting as a quantum-mechanical harmonic oscillator (see
Fig. 1). Such a system can be described by the
Hamiltonian

H = h̄ωa†a − h̄χa†ax + p2

2m
+ 1

2
m�2x2, (14)

where ω is the frequency of the cavity field with the creation
and annihilation operators a† and a, respectively. m, �, x, and
p denote the mass, frequency, displacement, and momentum of
the oscillating mirror, respectively. χ = ω/L is the coupling
constant between the cavity field and the mirror. L denotes
the length of the cavity. When the cavity dissipation is taken
into account, the Lindblad operator in this example is L1 =√

γ a. The non-Hermitian effective Hamiltonian for the no-
jump trajectory can be written as

Heff = h̄

(
ω − i

2
γ

)
a†a − h̄ga†a(b + b†) + h̄�

(
b†b + 1

2

)
,

(15)

where b = √
m�/2h̄(x + ip/m�) and g = χ

√
h̄/2m�.

Usually, the characteristic frequency of the cavity field can

x

FIG. 1. (Color online) Schematic illustration of a Fabry-Perot
cavity with an oscillating mirror at the right end.

reach the order of about 1014 Hz, which is much higher than
the nanomechanical resonator frequency 109 Hz achieved in
current experiments [12]. Under this condition, we can divide
this Hamiltonian into two parts as Heff = Hs + Hf , with
Hs = h̄�(b†b + 1

2 ) and Hf = h̄(ω − 1
2 iγ )a†a − h̄ga†a(b +

b†). The eigenstate for the fast variables Hf is |ψR
na

〉 = |na〉,
where |na〉 is the Fock state for the mode a, and the corre-
sponding left eigenstate 〈ψL

na
| = 〈na| and eigenvalue Ena

=
h̄(ω − iγ )na − h̄gna(b + b†). Putting these into Eq. (12)
and following the BO approximation process, we obtain the
Hamiltonian for the slow variables as

Hna
= h̄�

(
b†b+ 1

2

) − h̄gna(b + b†) + h̄
(
ω − 1

2 iγ
)
na. (16)

This Hamiltonian can be solved by a displacement of the Fock
state [12] as ∣∣ϕR

na,nb

〉 = D(α(na))|nb〉,

Ena,nb
= h̄�

(
nb + 1

2

)
+ h̄

(
ω − 1

2
iγ

)
na − h̄g2

�
n2

a,

where D(α) = eA†α−Aα∗
is the displacement operator with

A = b − α, α(na) = nag/�, and |nb〉 is the Fock state for
mode b. Note that, in this model, the off-diagonal elements
of the perturbation HP are zero, so the BO solution |ϕR

na,nb
〉

for the no-jump trajectory is an exact solution. We study the
dynamics for such a Hamiltonian according to the method
given above and compare this solution to the solution obtained
by the Runge-Kutta method in Fig. 2. We choose |�(0)〉 =
1
2 (|0〉 + |1〉)(|0〉 + |1〉) as the initial state. To make the effects
of dissipation more striking, we choose the parameters as
ω = 100�, g = 0.1� in the simulation. In Fig. 2(a) we study
the entanglement between the vibration of the mirror and the
cavity field. We choose negativity [36] as the measure of entan-
glement for mixed states. In the simulation, the density matrix
is calculated by averaging over different runs, that is, from the
state vectors |ψi(t)〉 for the different trajectories, the density
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FIG. 2. (Color online) (a) Entanglement measured by the negativ-
ity as a function of �t . (b) Average value of the coordinate 〈x〉 (in units
of

√
h̄/2m�) as a function of �t . (c),(d) Fidelity between the quantum

trajectory solution and numerical simulation (Runge-Kutta method).
Other parameters in the simulation are ω = 100� and g = 0.1�. The
results are obtained by averaging over N = 150 runs.
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matrix can be constructed as ρ(t) = (1/N )
∑N

i |ψi(t)〉〈ψi(t)|.
Then we can calculate the negativity for ρ(t). We find that
the Hamiltonian Eq. (14) can produce entanglement. The
dissipation decreases the entanglement gradually, and the
larger is the dissipation, the more quickly the entanglement
decays. In Fig. 2(b) we plot the average value of the coordinate
x for the oscillating mirror as a function of �t . From the figure,
we see that when the system is closed, the average value of the
coordinate for the mirror oscillates with time. The dissipation
moves the curve left. Similarly, the strength of the dissipation
determines the displacement. In our simulation, we average
our results over N = 150 runs. To check the validity of our
method, we compare our results with the results from the
Runge-Kutta method. We use the fidelity [37] as the measure
of the difference between two density matrices. For a mixed
state, the fidelity is defined as F (ρ1,ρ2) = Tr

√√
ρ1ρ2

√
ρ1.

This fidelity reaches 1 when the two states are the same. In
Figs. 2(c) and 2(d), we plot the fidelity between the BO
solution and the Runge-Kutta solution as a function of �t

for different γ . It is obvious that the fidelities are always larger
than 99.9% in our simulation for N = 150 trajectories.1 The
error is smaller than 0.1%. This confirms that our method
can reproduce the dissipation dynamics for open systems
efficiently.

Next we briefly discuss the dissipation in the slow variables
for this model. In this case, we also assume that the dissipation
is in the Lindblad form; the Lindblad operator reads X1 =√

κb, and the non-Hermitian effective Hamiltonian for the
no-jump trajectory is

Heff = h̄ωa†a − h̄ga†a(b + b†) + h̄�
(
b†b + 1

2

) − 1
2 ih̄κb†b.

(17)

We divide it into two parts as Heff = Hs + Hf with Hs =
h̄�(b†b + 1

2 ) − 1
2 ih̄κb†b and Hf = h̄ωa†a − h̄ga†a(b + b†).

The eigenstates for the fast variables are |ψ〉 = |na〉 with
eigenvalues Ena

= h̄ωna − h̄gna(b + b†). With this knowl-
edge, we obtain the zero-order effective Hamiltonian for the
slow variables as

Hna
= h̄�0

(
b†b + 1

2

) − h̄gna(b + b†) + h̄ωna + 1
2 ih̄κ (18)

with h̄�0 = h̄� − 1
2 ih̄κ . This Hamiltonian can be solved

in a similar way with the displacement α0 = nag/�0. The
calculations are similar to the process where the dissipation
in fast variables is taken into account. The numerical results

1The convergence velocity of the Monte Carlo wave function
method depends on the problem considered, that is, the number of
jump operators. Moreover, for different operators, the number of runs
N with which we can get a good result depends on the properties
of the operators themselves. For global operators, we can get good
results with a relatively small number of runs. This is discussed in
detail in Ref. [34]. In our example, the time for the Runge-Kutta
solution is as much as about N = 50 runs for the Monte Carlo wave
function method. In our simulation, if N = 25, the fidelity can reach
99%; if N = 50, that is, the times for both methods are equivalent,
the fidelity is higher than 99.5%. The reason for setting N = 150 in
our simulation is to get a fidelity higher than 99.9%.
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FIG. 3. (Color online) As Fig. 2 for dissipation in slow variables.

for this case is shown in Fig. 3. Two differences can be seen
from the figure: (1) When the dissipation in slow variables is
taken into account, the entanglement never disappears. (2) The
amplitude for the average value of the coordinate 〈x〉 decreases
strikingly because of dissipation. We should note that in this
model, the perturbation HP is zero in the dissipation of both
the slow and fast variables. In general, this condition cannot
be satisfied [see the second example and Eq. (23)]; thus we
need to restrict the dissipation in slow variables to be weak,
because strong dissipation in the slow variables enlarges the
perturbation HP , which breaks the BO condition. This can be
understood as follows: a large dissipation rate may accelerate
the change of slow variables, so that it is hard to distinguish
which are the fast variables.

In the second example, we consider a neutron moving in a
static helical magnetic field,

�B = �B(z) = B

(
sin θ cos

2πz

L
, sin θ sin

2πz

L
, cos θ

)
. (19)

The Hamiltonian for such a system is

H = H (z) = �p2

2M
+ µ �B · �σ = HK + HS, (20)

where �σ = (σx,σ y,σ z) are the Pauli operators. Taking the spin
relaxation into account, the Lindblad operator is L2 = √

κσ−.
If the coordinate is treated as a parameter, the non-Hermitian
Hamiltonian for the no-jump trajectory can be written as

Heff = µ �B · �σ − 1

2
ih̄κσ+σ−

= µB

(
cos θ − 1

2 ig sin θe−2πzi/L

sin θe2πzi/L − cos θ

)
, (21)

where g = κh̄/µB is the dimensionless dissipation rate. For
each fixed z, this non-Hermitian Hamiltonian has two right
eigenstates,

|ψR
+〉 = 1

N

(
cos

α

2
|1〉 + sin

α

2
e2πzi/L|0〉

)
,

|ψR
−〉 = 1

N

(
sin

α

2
|1〉 − cos

α

2
e2πzi/L|0〉

)
,
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two left eigenstates

〈ψL
+| = N

(
cos

α

2
〈1| + sin

α

2
e−2πzi/L〈0|

)
,

〈ψL
−| = N

(
sin

α

2
〈1| − cos

α

2
e−2πzi/L〈0|

)
,

and corresponding eigenvalues (in units of µB)

E± = −1

2
ig ± 1

2

√
16 − g2 − 8ig cos θ.

In these expressions, the angle α is defined as

tan α = 4 sin θ

4 cos θ − ig
,

and the normalized coefficient N is

N =
√∣∣∣cos

α

2

∣∣∣2
+

∣∣∣sin
α

2

∣∣∣2
.

Note that, for a nonzero dimensionless dissipation rate g, α

is a complex number. In this case, the relation sin2(α/2) +
cos2(α/2) = 1 holds while | sin(α/2)|2 + | cos(α/2)|2 = 1
does not. Putting these eigenstates and eigenvalues into
Eq. (12), we obtain the zero-order Hamiltonian for the spatial
variables as

Hn = − h̄2

2M
( �∇ − i �An)2 + En,

(22)�An = i
〈
ψL

n

∣∣ �∇∣∣ψR
n

〉
, n = +, − .

With this knowledge, we study the population transfer among
the internal states for the quantum system. Suppose that we
prepare the spin of the neutron in the state |+ 1

2 〉 initially
and manipulate the particle, moving it from z = 0 to z = L

in a fixed time interval T = 3 (in units of πh̄/µB). Setting
θ = π/4, we study the polarization of the neutron along the
z axis versus time t with different dimensionless dissipation
rate g; the results are shown in Fig. 4. In the simulation we
take N = 400 trajectories. Some features can be seen from the
figure: When dissipation is absent, the polarization along the
z axis oscillates between 0 and 1 as a cosine function of
time. The dissipation leads the polarization damping to −1

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

t

P
z

g=0 g=0.1 g=0.2 g=0.3 g=0.4

FIG. 4. (Color online) Polarization of the neutron along the z axis
as a function of time t (in units of πh̄/µB) for different dimensionless
dissipation rates g. We have set θ = π/4 and initially the spin is in
the state |+1/2〉.
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(0

)

FIG. 5. (Color online) Validity measure �(g) as a function of the
dimensionless dissipation rate g. The results have been normalized
in units of �(g = 0). Other parameters in the figure are set to satisfy
h̄/µBM2L = 10−6 and h̄kz/µBML = 2 × 10−4.

in an oscillating fashion. The stronger is the dissipation, the
faster is the damping. To measure the validity condition, we
define a function

�(g) = max

(∣∣∣∣∣
〈
ϕ

L[0]
n′,k′

∣∣On′,n
∣∣ϕR[0]

n,k

〉
E

[0]
n′,k′ − E

[0]
n,k

∣∣∣∣∣
)

, (23)

where On′,n = −(h̄/2M)(2〈ψL
n′ | �∇|ψR

n 〉 · �∇ + 〈ψL
n′ |∇2|ψR

n 〉),
to characterize the violation of the BO condition. From Fig. 5
we can see that the spin relaxation improves the approximation.
This is the same result as that in our previous work [28,32],
and it can also be understood in that dissipation in the fast
variables improves the approximation, because it accelerates
the movement of fast variables, and the difference between the
two types of variable becomes more evident.

IV. DISCUSSIONS AND CONCLUSIONS

It is time to give a detailed comparison between this
method and our previous approach [32]. We note that the
differences come from the two methods themselves. These
lead to the following distinct features: (1) In Ref. [32], the
extension is done by an effective Hamiltonian approach, which
requires extension of the Hilbert space. In the present paper,
the extension is done according to the quantum trajectory
approach which does not require extension of the Hilbert
space. In addition, in the present paper, if the initial state is
pure, the state will always be pure in its evolution. (2) In the
effective Hamiltonian approach, the extension is simple and
straightforward; however, the eigenstates of the Hamiltonian,
including the fast variables, may not be physical states,
although it gives the correct dynamics. For example, the
last three eigenstates of H T

S in Ref. [32] are not physical
states. In the quantum trajectory approach, the eigenstates
are all physical states. (3) The complexity is different. The
analytical solution for the no-jump trajectory is easier than
the effective Hamiltonian solution. For example, the last three
eigenstates for the fast variables H T

S [32] are a cubic equation,
whose solution is complicated. For a high-dimensional open
system, the problem become more complicated. But it is
relatively easy to solve for the eigenstates in this paper, that
is, the non-Hermitian Hamiltonian in the no-jump trajectory
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can be solved more easily than the effective Hamiltonian
in Ref. [32]. (4) The method in the present paper is more
accurate in treating the jump term in the master equation.
This can be understood as follows. When the dissipation in
slow variables is considered, the nondiagonal elements of the
perturbation HP can be divided into two parts as Hn,m =
〈ψn|Hs |ψm〉 − 1

2 i
∑

k〈ψn|X†
kXk|ψm〉. The first part is the same

as in a closed system while the second part contains only a term
of dissipation. The other part of the dissipation is recovered
via the jump process. The quantum trajectory solution is
more exact than the effective Hamiltonian solution, in which
the perturbation includes all parts of the dissipation, Before
closing this paper, we emphasize that all the discussions of both
methods are restricted to nondegenerate energy levels, that is,
we assume the closed-system Hamiltonian is nondegenerate.
However, when the dissipation is taken into account, new
degeneracy is introduced [38] in both methods. Thus, in
the second example in this paper, even though the original
system is nondegenerate, the non-Hermitian Hamiltonian Heff

can be degenerate at θ = π/2 and g = 4. In Ref. [32] the

degeneracy occurs at θ = π/2, z = zA, and g = 8. Obviously,
the degenerate points in the two methods are different, so these
two methods are complementary in this sense; in other words,
when one method is not available because of degeneracy, we
can choose the other method.

In summary, we have extended the BO approximation from
a closed to an open system using the quantum trajectory
approach. An assumption that the dissipation is in Lindblad
form is required. The BO approximation is used in the no-jump
trajectory, and the dynamics can be recovered by the Monte
Carlo wave function method. As illustrations, we give two
examples to detail our method. The results show that our
method can reproduce the dissipation dynamics for such
systems efficiently. A detailed comparison with our previous
work is also given and discussed.
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