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Non-Markovian dynamics of quantum discord
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We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian
environments. We compare the dynamics of entanglement with that of quantum discord. For independent
reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during
a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently
with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics
presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its
behavior at discrete instants of time.
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I. INTRODUCTION

Entanglement is a kind of quantum correlation (QC) that
has been playing a central role in quantum information and
communication theory [1]. However, there are other nonclas-
sical correlations apart from entanglement [2–4] that can be
of great importance to these fields. In order to characterize
all nonclassical correlations, Ollivier and Zurek introduced
what they called quantum discord [2]. This measure of quan-
tum correlations captures a fundamental feature of classical
bipartite states—when the discord is zero the information is
locally accessible and can be obtained by distant independent
observers without perturbing the bipartite state. Although a
vast literature exists on the study of entanglement, just recently
the other quantum correlations received due attention [4–12].
A motivation for the study of these correlations, for example, is
the recent discovery that nonclassical correlations other than
entanglement can be responsible for the quantum computa-
tional efficiency of deterministic quantum computation with
one pure qubit (DQC1) [5,6]. In this context, the quantum
discord could be a new resource for quantum computation.

However, realistic quantum systems are not closed and
therefore it is of fundamental importance to study the quantum
correlations when the system loses its coherence due to
interactions with the environment [13]. The entanglement
dynamics in open quantum systems was broadly studied
in the literature but not much exists about the effect of
the environment on quantum discord [10–12]. A peculiar
aspect of the entanglement dynamics is the well-known
“entanglement sudden death” (ESD) phenomenon [14,15].
This process described the finite-time disentanglement of two
parts that interact with either independent [15–17] or common
environments [18–20]. In a previous work [10] we observed
that, even at finite temperatures, under a dissipative Markovian
process, the quantum discord is immune to “sudden death.”

Despite the term “entanglement sudden death” sounding
mysterious, it is important to note that there is no dynamical
distinction between separable and entangled states, since the
quantum states can, in general, evolve back and forth across
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the boundary between distinct full-dimensional subsets of the
space of the density matrices which contain separable and
entangled states.

Studies on the entanglement dynamics, which initially
were restricted to Markovian approximations, have recently
been extended to consider non-Markovian environments
[17,19–21]. In this case, given the memory stored in the
environment, some of the initial entanglement that is lost
during the dissipative dynamics can return to the qubits. This
phenomenon is known as “sudden birth of entanglement”
(SBE), which in the light of what has been said in the
previous paragraph should not present much of a surprise to
us. Nevertheless a question still remains; what happens to
the quantum discord in this situation? Since quantum discord
exists even without entanglement, does it present sudden death
or even sudden birth? In order to answer these questions
we study the quantum discord of two qubits coupled to
non-Markovian dissipative environments.

In this paper we evaluate the quantum discord dynamics
for a dissipative non-Markovian process. For independent
environments, when the qubits are subject to amplitude
damping, we show that it only vanishes at discrete instants
of time, each within the time interval when the reduced
quantum state becomes pure and separable, and, consequently,
the entanglement vanishes. For a common reservoir the
quantum discord behavior can be very different from that of
the entanglement. While the entanglement dynamics presents
damped oscillations with or without sudden death, the quantum
discord is almost always positive and presents isolated kinks
(cuspids) at which there is a jump in its derivatives. The
latter behavior is at clear variance with what happens to the
entanglement.

II. QUANTUM DISCORD

Entanglement is not the only measure of quantum corre-
lations and therefore an interesting approach was introduced
in [2,3] to attempt to quantify all the nonclassical correla-
tions present in a system besides entanglement. The defined
quantity—the quantum discord—is given by the difference
between two expressions of mutual information (MI) extended
from classical to quantum system.
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The total correlation between two classical systems A and
B, whose state is described by a joint probability distribution
p(A,B), can be obtained by a measure of the MI, I(A : B) =
H (A) + H (B) − H (A,B), where H (·) denotes the Shannon
entropy H (p) = −∑

jk pjk log2 pjk [1]. This classical MI can
be rewritten as the equivalent expressionJ (A : B) = H (A) −
H (A|B) through the Bayes rule [22], where the conditional
entropy H (A|B) quantifies the ignorance about the state of
A when one knows the state of B. For a quantum system
represented by a bipartite density operator ρ, the Shannon
entropy functional is replaced by the von Neumann entropy,
S(ρ) = −Tr(ρ log2 ρ), which is the first quantum extension of
the classical MI. We denote it I(ρ).

Another route to generalizing the classical MI to the
quantum case is to use a measurement-based conditional
density operator [2]. If we restrict ourselves to projective mea-
surements performed locally only on system B described by a
complete set of orthogonal projectors, {�k}, corresponding to
outcomes k, the quantum state after a measurement changes to
ρk = [(I ⊗ �k) ρ (I ⊗ �k)] /Tr (I ⊗ �k) ρ (I ⊗ �k), where I
is the identity operator for system A. With this conditional
density operator, a quantum analog of the conditional entropy
can then be defined as S (ρ| {�k}) = ∑

k pkS (ρk), and the
second quantum extension of the classical MI may be found,
J (ρ|{�k}) = S(ρA) − S(ρ|{�k}). Projective measurements
on system B remove all nonclassical correlations between A
and B, but the value of J (ρ| {�k}) depends on the choice
of {�k}. Therefore, to ensure that it captures all classical
correlations, we need to maximize J over all {�k}. This
quantity, Q (ρ) = sup{�k} J (ρ| {�k}), is interpreted explicitly
by Henderson and Vedral [3] as a measure of classical
correlations. The quantum discord is then defined as

D (ρ) = I (ρ) − Q (ρ) (1)

and provides us with information on the quantum nature of
the correlations between two systems, such that it is zero only
for states with classical correlations [2,3] and nonzero for
states with quantum correlations. Although quantum discord
is equal to the entanglement of formation for pure states, it
is not true for mixed states, since some states present finite
quantum discord even without entanglement [2].

It is important to note that to calculate the classical
correlations one can consider arbitrary positive operator valued
measure (POVM) measurements as done by Henderson and
Vedral [3]. However, for two qubits, which is our case, Hamieh
et al. [23] show that the projective measurement is the POVM
which maximizes the classical correlations.

A. Analytical expression for quantum discord

To evaluate the quantum discord dynamics presented in this
article we determine an analytical expression for a subclass of
the X structured density operator. We consider a density matrix
as given by

ρ(t) =

⎛
⎜⎜⎜⎝

a 0 0 w

0 b z 0

0 z b 0

w 0 0 d

⎞
⎟⎟⎟⎠ . (2)

where the coherences are real numbers and the element
ρ22 = ρ33. It is easy to see that for this expression of ρ(t)
the condition S(ρA) = S(ρB) is satisfied and therefore the
measurement of classical correlations assumes equal values,
irrespective of whether the measurement is performed on the
subsystem A or B [3]. To reduce the difficulty to compute the
quantum discord we need to be able to maximize the classical
correlation Q(ρ). This can be done analytically if one notes
that a general one-qubit projector can be written as a function
of two angles, since

Q(ρ) = S(ρA) − F (θ,φ), (3)

where

F (θ,φ) = inf
{θ,φ}

[ ∑
k=1,2

pk(θ,φ)S

(
�B

k (θ,φ)ρAB�B
k (θ,φ)

pk(θ,φ)

)]
,

(4)

with pk(θ,φ) = Tr{�B
k (θ,φ)ρAB�B

k (θ,φ)} and the projectors
�B

k (θ,φ) = I ⊗ |k〉 〈k| (k = 1,2) defined by the orthogonal
states

|1〉 = cos θ |↑〉 + eiφ sin θ |↓〉 ,
(5)

|2〉 = sin θ |↑〉 − eiφ cos θ |↓〉 .

We begin noting some peculiar properties of F (θ,φ) when
ρAB is given by Eq. (2). Given the structure of the density
matrix the critical points of F (θ,φ) [i.e., the set of values
of θ and φ such that ∂F (θ,φ)

∂θ
= 0 and ∂F (θ,φ)

∂φ
= 0] do not

depend on the elements of the density matrix. For θ = nπ
2

with n ∈ Z we have a set of critical points and in this case the
function F (θ,φ) does not depend on the angle φ. Another set
is given by θ = mπ

4 and φ = nπ
2 with m,n ∈ Z. Thus, with

this observation, by using the quantum version of the mutual
information I and Eq. (1), it is straightforward to compute an
analytical expression for the quantum discord:

D (ρ) = min {D1,D2} , (6)

where

D1 = S(ρA) − S(ρAB) − a log2

(
a

a + b

)
− b log2

(
b

a + b

)

− d log2

(
d

b + d

)
− b log2

(
b

d + b

)
(7)

and

D2 = S(ρA) − S(ρAB) − �+ log2 �+ − �− log2 �−, (8)

with �± = 1
2 (1 ± �) and �2 = (a − d)2 + 4 (|z| + |w|)2,

which has been numerically verified for any density operator
with the same structure as in Eq. (2).

III. EXACT DISSIPATIVE DYNAMICS OF
QUANTUM DISCORD

In this article we study a system whose dynamics is de-
scribed by the well-known damped Jaynes-Cummings model.
We consider two distinct situations, the independent and
common environment. In the former, each qubit is coupled
to its own reservoir since the dissipative processes occur
independently. In the common environment case, on the other
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hand, we consider only one bath for both qubits. We suppose
that the qubits are coupled to a single cavity mode, which in
turn is coupled to a non-Markovian environment that initially
is in the vacuum state. In this case we can say that the
interaction Hamiltonian reduces the amplitude of motion of
each qubit state, and this justifies why such a process is
known in the literature as the amplitude damping channel.
The solutions of these simple models have recently been
used to study the non-Markovian effects on the dynamics of
entanglement [17,20]. The environments are represented by a
bath of harmonic oscillators, and the spectral density is of the
form

J (ω) = 1

2π

γ0λ
2

(ω0 − ω)2 + λ2
, (9)

where λ is connected to the reservoir correlation time τB by
the relation τB ≈ 1/λ, and γ0 is related to the time scale τR

over which the state of the system changes, τR ≈ 1/γ0. Here
we will consider the strong coupling limit (i.e., τR < 2τB).

For independent amplitude-damping channels the two-
qubit Hamiltonian can be written as

H = ω
(i)
0 σ

(i)
+ σ

(i)
− +

∑
k

ω
(i)
k a

(i)
k

†
a

(i)
k + (σ (i)

+ B(i) + σ
(i)
− B(i)†),

(10)

where B(i) = ∑
k g

(i)
k a

(i)
k with g

(i)
k being the coupling constant,

ω
(i)
0 is the transition frequency of the ith qubit, and σ

(i)
± are the

system raising and lowering operators of the ith qubit. Here the
index k labels the reservoir field modes with frequencies ω

(i)
k ,

and a
(i)
k

†
(a(i)

k ) is their usual creation (annihilation) operator.
Here and in the following the Einstein convention sum is
adopted.

For common environments, on the other hand, we have that
the system raising (lowering) operator of each qubit is coupled
to the same environment operator B (B†). In this case we have
one bath coupled to both qubits, and the Hamiltonian is given
by

H = ω
(i)
0 σ

(i)
+ σ

(i)
− +

∑
k

ωkak
†ak + (σ (i)

+ B + σ
(i)
− B†). (11)

We have considered two identical atoms equally coupled to
the reservoir. In this case, the dynamics of the two qubits
occurs in two completely decoupled subspaces, generated
by {|00〉,|+〉 = (|10〉 + |01〉)/√2,|11〉} and {|−〉 = (|10〉 −
|01〉)/√2}. Using this fact, Mazzola et al. [20] connect the
problem with a three-level ladder system [24] and, through the
pseudomode approach [25], the dynamics can be evaluated
without any approximations.

The initial state considered in this paper is the Bell-like
state

|ψ〉 = α |00〉 +
√

1 − α2 |11〉 , (12)

and thus the density matrix of the atomic system has the form of
Eq. (2) with the dynamics of its matrix elements given in [17]
for independent reservoir and [20,26] for common reservoir.

In Fig. 1 we plot the quantum discord as a function of the
scaled time γ0t in the strong coupling regime, with λ = 0.1γ0

for the common reservoir case and λ = 0.01γ0 for independent
reservoirs. The initial state used in Fig. 1 is given by Eq. (12)

FIG. 1. (Color online) Analytical (D1, squares; D2, circles) and
numerical (solid line) dynamics of discord as a function of the
scaled time γ0t for (a) a common reservoir with λ = 0.1γ0 and
(b) independent reservoirs with λ = 0.01γ0. The dotted lines in
(a) indicate the value of γ0t where the sudden change occurs. The
two-qubit initial state used here is given in Eq. (12) with α2 = 1/3.

with α2 = 1/3. The analytical solution of the quantum discord
is the minimum value assumed by the functions D1 (squares)
and D2 (circles), given by Eqs. (7) and (8), respectively. In
Fig. 1 it is represented by the black (solid) line.

We have observed that, for the values of γ0t indicated
by the doted lines in Fig 1, the angles that minimize the
discord change, pointing to a “sudden change” of discord as
previously noted in [11] for Markovian environments. In the
region between two consecutive dotted lines the angles remain
unchanged. As shown in Fig. 1(b), the same analysis applies
to independent reservoirs, but no “sudden change” is observed
in this case. Here it should be emphasized that what we are
calling “sudden change of discord” is actually a signature of a
jump of the time derivatives of that function at specific instants.

In order to compare the discord dynamics with the entangle-
ment dynamics we used the entanglement of formation (EOF)
[27] as a measure of entanglement. For two qubits, the EOF
dynamics can be written as a function of the concurrence [28]
and is given by

E(t) = −�(t) log2 �(t) − [1 − �(t)] log2[1 − �(t)] (13)

where �(t) = 1
2 [1 +

√
1 − C(t)2] with C(t) being the time

dependent concurrence. For a density matrix with a structure
defined as in Eq. (2) we have that C(t) = 2max{0,�1(t),�2(t)}
with �1(t) = z(t) − √

a(t)d(t) and �2(t) = w(t) − b(t).
We begin analyzing the entanglement and quantum dis-

cord dynamics for independent reservoirs. The entanglement
dynamics, for example, shows different behaviors depending
on the initial state of the two-qubit system [17]. In the
case where α2 � 1/2 the EOF periodically vanishes for the
discrete times defined by tn = 2 [nπ − arctan d/λ] /d with
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FIG. 2. (Color online) Dynamics of discord (solid line) and EOF
(dashed line) as a function of the scaled time for independent
reservoirs with λ = 0.01γ0 and the two qubits initially prepared
in the state of Eq. (12) with (a) α2 = 1/10, (b) α2 = 1/3, and
(c) α2 = 1/2.

d =
√

2γ0λ − λ2 and n an integer [17]. This behavior is
illustrated in Fig. 2(c) (dashed line) where we observe that the
amplitude of oscillation undergoes a decay after each revival.
However, when α2 > 1/2 the behavior of the EOF presents
two different features: (i) ESD because the EOF permanently
vanishes within finite time intervals [see Fig. 2(a), dashed line]
and (ii) the revival of entanglement after these intervals when
the two qubits are fully disentangled [see Fig. 2(b), dashed
line].

The discord dynamics for all initial entangled states (0 <

α2 < 1) is similar to the EOF for α2 � 1/2 (i.e., the discord
vanishes only at tn when the two-qubit state becomes the
separable pure state |00〉) [see Figs. 2(a)–2(c), solid line].
The nonclassical correlations are mediated by the reservoir,
since there is no interaction between the qubits. Further-
more, whereas the entanglement may reappear after a time
interval within which the EOF is zero, the discord is almost
always nonzero. This result indicates that the discord under
non-Markovian dissipative dynamics, and likewise for the
Markovian case, vanishes only at discrete instants. This point
agrees with the results presented in [12], where the authors
show that the states with zero QD form a set of measure zero.

In the case where the two qubits interact with the same
environment the entanglement dynamics presents two regimes
[20]: For α2 >∼ 1/4 damped oscillations of entanglement are
observed [see Fig. 3(d), dashed line], and for α2 <∼ 1/4
finite time intervals of complete disentanglement are followed
by entanglement revivals [see Figs. 3(b) and 3(c), dashed
line]. However, while for independent reservoirs the discord

FIG. 3. (Color online) Dynamics of discord (solid line) and
EOF (dashed line) as a function of the scaled time for common
reservoirs with λ = 0.1γ0 and two qubits initially prepared in the
state of Eq. (12) with (a) α2 = 0, (b) α2 = 1/10, (c) α2 = 1/5, and
(d) α2 = 1/2.

and entanglement behaviors are similar to each other, for
common environment they behave very differently, as shown
in Figs. 3(a)–3(d). For α2 = 1/2 both the discord and entangle-
ment dynamics present the same behavior, but as α2 decreases
the discord exhibits very complicated damped oscillations with
sudden changes more evident. The difference between these
two measures is even more drastic when α2 = 0, where the
two-qubit state is initially the separable state |11〉. In this case
the interaction between the qubits mediated by a common
reservoir does not lead to the generation of entanglement
between them [20]. On the other hand, the reservoir-mediated
interaction leads to the generation of nonclassical correlations
as exposed in Fig. 3(a), showing a “sudden birth” of discord but
not of entanglement. Moreover, since the reservoir is initially
in the vacuum state, when the initial state is |00〉, obtained
from Eq. (12) with α2 = 1, no correlation is created since the
composite system is in its ground state. It is also interesting to
note in Figs. 3(b) and 3(c) that the decrease of entanglement
is accompanied by the increase of discord in some regions.

In Fig. 4 we plotted the discord (solid line) and the EOF
(dashed line) as a function of the scaled time γ0t for a
common reservoir with (a) λ = 0.1γ0, (b) λ = γ0, and (c)
λ = 10γ0. The two qubits are initially in the state (12) with
α2 = 1/3. These results show that the entanglement decays
almost exponentially for λ = 10γ0, as in the case of Markovian
reservoirs. This is expected because in this regime λ > 2γ0 and
therefore the qubit-reservoir coupling is weak. In this same
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FIG. 4. (Color online) Dynamics of discord (solid line) and EOF
(dashed line) as a function of the scaled time for a common reservoir
with (a) λ = 0.1γ0, (b) λ = γ0, and (c) λ = 10γ0. The two-qubit initial
state is given by Eq. (12) with α2 = 1/3.

weak coupling regime the discord has a similar behavior and
we note that the number of points where the sudden change
occurs also tends to decrease. Besides, as the effective coupling
between the two qubits is due to the action of the common
reservoir, the quantum correlations created tend to decrease.

It is worth mentioning that results very similar to ours, for
the case of independent environments, have been numerically
studied in [29].

IV. CONCLUSION

We have studied the quantum discord dynamics of two
qubits coupled to common and independent non-Markovian
environments. We have used the exactly solvable damped
Jaynes-Cummings model for zero-temperature environments.
We have observed that even when the entanglement suddenly
disappears and reappears after finite time intervals, the quan-
tum discord vanishes only at discrete times. For a common
environment we have observed what is called the sudden
change phenomenon. Actually, the quantum discord between
the qubits suddenly changes depending on the maximization
process of the amount of classical correlations between them.
This fact indicates that this phenomenon could be universal,
which means that, for general initial conditions and interaction
Hamiltonians, we expect that the POVM that maximizes the
classical correlations would abruptly change from one time
interval to the other. This point will be studied in a future work
where more general Hamiltonians and initial conditions will be
considered. Furthermore, we have observed that, in the case of
common environments, the very different behavior of discord
and entanglement can arise even for initially separated states.
Finally, we have also noticed that, even without entanglement,
the correlations introduced by the environment are transferred
to the two qubits, producing a finite quantum discord.
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Fundação de Amparo à Pesquisa de São Paulo (FAPESP)
and Conselho Nacional de Desenvolvimento Cientı́fico Tec-
nológico (CNPq). We thank Adriana Auyuanet for pointing
out a mistake in an early draft. AOC also acknowledges his
participation as a member of the Instituto Nacional de Ciência
e Tecnologia em Informaçãao Quântica (INCT-IQ).
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