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The parity-nonconservation (PNC) effect on the laser-induced 2 3S1–2 1S0 transition in heavy heliumlike ions
is considered. A simple analytical formula for the PNC correction to the cross section is derived for the case,
when the opposite-parity 2 1S0 and 2 3P0 states are almost degenerate and, therefore, the PNC effect is strongly
enhanced. Numerical results are presented for heliumlike gadolinium and thorium, which seem the most promising
candidates for such experiments. In both Gd and Th cases the photon energy required will be anticipated with a
high-energy laser built at GSI. Alternatively, it can be gained with ultraviolet lasers utilizing relativistic Doppler
tuning at FAIR facilities in Darmstadt.
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I. INTRODUCTION

Measurements of parity-nonconservation (PNC) effects
with heavy few-electron ions can provide new opportunities for
tests of the Standard Model in the low-energy regime. This is
mainly because, in contrast to neutral atoms (see Refs. [1–10]),
in highly charged ions the electron-correlation effects, being
suppressed by a factor 1/Z (where Z is the nuclear charge
number), can be accounted for by perturbation theory to a very
high accuracy. The simple atomic structure of such ions allows
also one to calculate the QED contributions to the required
accuracy.

PNC experiments with highly charged ions were first
discussed in Ref. [11]. There it was proposed to use close
opposite-parity levels 2 1S0 and 23P1 in He-like ions for Z ≈ 6
and Z ≈ 29, where the PNC effect is strongly enhanced. Later,
various scenarios for PNC experiments with heavy H- and
He-like ions were considered in a number of papers [12–21].
In particular, in Ref. [13] it was proposed to study the induced
2 3S1–2 1S0 transition in He-like ions with Z ≈ 6 in the pres-
ence of electric and magnetic fields. Possibilities of investigat-
ing PNC effects in H-like ions at high-energy ion storage rings
utilizing relativistic Doppler tuning and laser cooling were
considered in Ref. [17]. Most of the works [12,14,16,18,21]
exploited, however, the near degeneracy of the 2 1S0 and 2 3P0

states in He-like ions at Z ≈ 64 and Z ≈ 90. For overviews
of the schemes suggested we refer to Refs. [20,21].

In the present paper, we evaluate the PNC effect on the
laser-induced 2 3S1–2 1S0 transition in heavy heliumlike ions
nearby Z = 64 (transition energy of about 114 eV) and Z = 90
(transition energy of about 240 eV), where the PNC effect
is strongly enhanced. Such experiments seem to be feasible
in the near future in view of recent developments in high-
energy lasers for heavy-ion experiments (PHELIX project)
[22,23]. As an alternative, one may consider employment of
relativistic Doppler tuning at FAIR facilities in Darmstadt
[24,25]. With ion energies up to 10.7 GeV/u, as anticipated
at the FAIR facilities, the Doppler effect can be utilized for
tuning ultraviolet laser light with photon energies in the range

from 4 to 10 eV in resonance with the transition energies under
consideration.

The paper is organized as follows. In Sec. II, the basic
formulas for the 2 3S1–2 1S0 transition amplitude are presented.
The admixture of the opposite-parity states 2 1S0 and 2 3P0 is
taken into account and, as a result, the PNC correction to
the cross section is derived. It is shown that accounting for
the first-order interelectronic-interaction and QED corrections
in the velocity gauge can be easily done within the zeroth-
order approximation in the length gauge. In Sec. III, numerical
results for the PNC correction in heliumlike gadolinium and
thorium are presented and possible scenarios for experiments
are discussed.

Relativistic units (h̄ = c = 1) and the Heaviside charge unit
[α = e2/(4π ), e < 0] are used throughout the paper.

II. BASIC FORMULAS

We consider the absorption of a photon with energy
ω ≈ E2 1S0 − E2 3S1 and circular polarization λ = ±1 by a
heavy heliumlike ion being initially prepared in the 2 3S1

state. If the weak electron-nucleus interaction is ignored,
the absorption cross section is completely determined by the
magnetic-dipole transition amplitude. For such a transition the
interelectronic-interaction effects are suppressed by a factor
1/Z and, to zeroth order, we assume that the electrons interact
only with the Coulomb field of the nucleus. Then, the wave
functions of the initial (2 3S1) and the final (2 1S0) state are
given by

uJM (x1,x2) = 1√
2

∑
m1,m2

CJM
j1 m1,j2 m2

[
ψj1 m1 (x1)ψj2 m2 (x2)

−ψj1 m1 (x2)ψj2 m2 (x1)
]
, (1)

where ψj1 m1 (x) is the one-electron 1s wave function, ψj2 m2 (x)
is the one-electron 2s wave function, and CJM

j1 m1,j2 m2
is the

Clebsch-Gordan coefficient. In what follows, we assume that
the laser spectral width and the width due to a finite ion-laser
interaction time can be neglected. If, for a moment, we further
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neglect the width of the initial state, the cross section in the
resonant approximation is given by (see, e.g., Refs. [26–28])

σ = (2π )3 �b|〈b|[R(1) + R(2)]|a〉|2
(Ea + ω − Eb)2 + �2

b

/
4

. (2)

Here |a〉 ≡ |2 3S1〉 and |b〉 ≡ |2 1S0〉 are the initial and final
states, respectively, �b is the width of the final state, and R(i)
is the transition operator acting on variables of the ith electron.
In the transverse gauge, R = −eα · A, where

A(x) = ε exp (ik · x)√
2ω(2π )3

(3)

is the wave function of the absorbed photon and α is the
vector incorporating the Dirac matrices. In order to account
for the width of the initial state a in Eq. (2), we simply replace
Ea → E and

|a〉〈a| →
∫

dE
�a/(2π )

(E − Ea)2 + �2
a

/
4
|a〉〈a|. (4)

In a more rigorous approach, one should consider the prepa-
ration of the state a as a part of the whole process [27]. With
the substitution (4), we get

σ = (2π )3

×
∫

dE
�b�a|〈b|[R(1) + R(2)]|a〉|2

2π
[
(E +ω − Eb)2 + �2

b

/
4
][

(E − Ea)2 + �2
a

/
4
] .

(5)

Integrating over E, we obtain

σ = (2π )3 �a + �b

[ω − (Eb − Ea)]2 + (�a + �b)2/4

×|〈b|[R(1) + R(2)]|a〉|2. (6)

In the resonance case, ω = Eb − Ea , we have

σ = 4(2π )3 |〈b|[R(1) + R(2)]|a〉|2
�a + �b

. (7)

Finally, averaging over the angular momentum projection of
the initial state, we obtain

σ = 4(2π )3 1

2Ja + 1

∑
Ma

|〈b|[R(1) + R(2)]|a〉|2
�a + �b

. (8)

In what follows, because of the smallness of the transition
energy, we can write

R = −eα · A = −e(α · ε)
exp (ik · x)√

2ω(2π )3

≈ −e
(α · ε)√
2ω(2π )3

(1 + ik · x). (9)

For the transition Ja = 1 → Jb = 0 we can restrict ourselves
to the dipole approximation and, therefore, represent the
transition operator as the sum

R = Re + Rm, (10)

where

Re = −e
(ε · α)√
2ω(2π )3

(11)

is the electric-dipole transition operator in the velocity gauge,

Rm = i
([ε × k] · µ)√

2ω(2π )3
(12)

is the magnetic-dipole transition operator, and
µ = (e/2)[x × α] is the operator of the magnetic moment of
electron. If we neglect the weak interaction, the 2 3S1–2 1S0

transition amplitude is the pure magnetic-dipole one. Then,
evaluating the matrix elements in Eq. (8), we obtain

σ
(2 3S1→2 1S0)
0 = 1

9

ω

�2 3S1 + �2 1S0

|〈2s||µ||2s〉 − 〈1s||µ||1s〉|2,
(13)

where 〈ns||µ||ns〉 is the reduced matrix element of the
magnetic-dipole-moment operator and the subscript “0” stays
for the zeroth-order approximation.

To account for the weak interaction we have to first modify
the wave function of the 2 1S0 state due to the admixture of the
2 3P0 state:

|2 1S0〉 → |2 1S0〉 + 〈2 3P0|[HW (1) + HW (2)]|2 1S0〉
E2 1S0 − E2 3P0

|2 3P0〉.
(14)

Here

HW = −(GF /
√

8)QWρN (r)γ5 (15)

is the spin-independent part of the effective nuclear weak-
interaction Hamiltonian [29]. GF denotes the Fermi constant,
QW ≈ −N + Z(1 − 4sin2θW ) is the weak charge of the
nucleus (which is related to the Weinberg angle θW ), γ5 is
the Dirac matrix, and ρN is the effective nuclear weak-charge
density normalized to unity. A simple evaluation of the
weak-interaction matrix element yields

〈2 3P0|[HW (1) + HW (2)]|2 1S0〉
= 〈2p1/2|HW |2s〉
= i

GF

2
√

2
QW

∫ ∞

0
dr r2ρN (r)

[
g2p1/2f2s − f2p1/2g2s

]
, (16)

where the large and small radial components of the Dirac wave
function are defined by

ψnκm(r) =
(

gnκ (r)�κm(n)

ifnκ (r)�−κm(n)

)
(17)

and κ = (−1)j+l+1/2(j + 1/2) is the Dirac quantum number.
Then formula (14) can be written as

|2 1S0〉 → |2 1S0〉 + iξ |2 3P0〉, (18)

where

ξ = GF

2
√

2

QW

E2 1S0 − E2 3P0

×
∫ ∞

0
dr r2ρN (r)

[
g2p1/2f2s − f2p1/2g2s

]
. (19)

The admixture of the 2 3P0 state enables the 2 3S1–2 3P0 tran-
sition, which is determined by the electric-dipole amplitude.
Since the electric-dipole transition operator depends on the
gauge employed, the results may differ in the different gauges,
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FIG. 1. The absorption of a photon by a heliumlike ion to the
zeroth-order approximation (noninteracting electrons).

if the calculations are restricted to a given approximation. The
difference can be especially large for a transition between
the states having the same (or close) zeroth-order energies, as
in the case under consideration. In Ref. [30] it was shown that
using the length gauge in the calculation of the zeroth-order
2s–2p1/2 transition amplitude in H-like ions is equivalent to
accounting for the one-loop QED corrections in the velocity-
gauge calculation, provided the transition energy in the length-
gauge calculation includes the corresponding corrections. Let
us show that accounting for the one-photon exchange and one-
loop QED corrections to the 2 3S1–2 3P0 transition amplitude
in the velocity gauge can be performed equivalently within the
zeroth-order approximation in the length gauge by employing
the transition energy which includes the related corrections.

With this in mind, we consider first the evaluation of
the 2 3S1–2 3P0 transition amplitude in the velocity gauge to
zeroth and first orders in 1/Z. The corresponding diagrams are
presented in Figs. 1 and 2, respectively. Formal expressions for
these diagrams can be derived by using the two-time Green
function method [27]. Such a derivation was considered in
detail in Ref. [31]. To simplify the analysis, we consider

(a)

(b)

FIG. 2. One-photon exchange corrections to the absorption of a
photon by a heliumlike ion.

the matrix elements of the electric-dipole transition operator
between the one-determinant wave functions,

ua(x1,x2) = 1√
2

∑
P

(−1)P ψPa1 (x1)ψPa2 (x2), (20)

ub(x1,x2) = 1√
2

∑
P

(−1)P ψPb1 (x1)ψPb2 (x2), (21)

where it is assumed that a1 = b1 = 1s, a2 = 2s, b2 = 2p1/2,
P is the permutation operator, and (−1)P is the sign of the
permutation. Then, to zeroth order we obtain for the transition
amplitude:

τ (0) = −〈b|[Re(1) + Re(2)]|a〉
= −〈b1|Re(1)|a1〉δa2 b2 − 〈b2|Re(2)|a2〉δa1 b1

= −〈2p1/2|Re|2s〉. (22)

Employing the identity

α = i[H,r], (23)

where H is the one-electron Dirac Hamiltonian, one obtains

τ (0) = i
e√

2ω(2π )3
〈2p1/2|(ε · r)|2s〉(ε2p1/2 − ε2s), (24)

where ε2s and ε2p1/2 are the one-electron Dirac energies of the
2s and 2p1/2 states, respectively. In particular, it follows that
for the pure Coulomb field (ε2s = ε2p1/2 ) in the velocity gauge
the zeroth-order 2 3S1–2 3P0 transition amplitude is equal to
zero.

The interelectronic-interaction corrections, defined by the
diagrams depicted in Fig. 2, consist of irreducible and
reducible contributions [27,31]. Since, to good accuracy, these
corrections can be treated with the pure Coulomb field of the
nucleus, in what follows, we restrict our consideration to this
approximation. Then, according to Ref. [31] we find that for
the 2 3S1–2 3P0 transition the reducible contribution vanishes.
As for the irreducible contribution, it can be expressed as the
sum [31]

τirr = τ (a)
irr + τ (b)

irr , (25)

where

τ (a)
irr = e√

2ω(2π )3

∑
P

(−1)P
{ εPb2 +εn �=E

(0)
a∑

n

〈Pb1|(ε · α)|n〉

× 1

E
(0)
a − εPb2 − εn

〈nPb2|I
(
εPb2 − εa2

)|a1a2〉

+
εPb1 +εn �=E

(0)
a∑

n

〈Pb2|(ε · α)|n〉 1

E
(0)
a − εPb1 − εn

×〈Pb1n|I(
εPb1 − εa1

)|a1a2〉
}

, (26)

τ (b)
irr = e√

2ω(2π )3

×
∑
P

(−1)P
{ εa2 +εn �=E

(0)
b∑

n

〈Pb1Pb2|I
(
εPb2 − εa2

)|na2〉
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× 1

E
(0)
b − εa2 − εn

〈n|(ε · α)|a1〉

+
εa1 +εn �=E

(0)
b∑

n

〈Pb1Pb2|I
(
εPb1 − εa1

)|a1n〉

× 1

E
(0)
b − εa1 − εn

〈n|(ε · α)|a2〉
}

. (27)

Here I (ω) = e2αµανDµν(ω),

Dρσ (ω,x − y) = −gρσ

∫
dk

(2π )3

exp [ik · (x − y)]

ω2 − k2 + i0
(28)

is the photon propagator in the Feynman gauge, αρ ≡ γ 0γ ρ =
(1,α), E(0)

a = εa1 + εa2 , and E
(0)
b = εb1 + εb2 . Taking into

account that E(0)
a = E

(0)
b and using the identity (23), we get

τ (a)
irr = i

e√
2ω(2π )3

∑
P

(−1)P
{ εn �=εPb1∑

n

〈Pb1|(ε · r)|n〉

× 〈nPb2|I
(
εPb2 − εa2

)|a1a2〉

+
εn �=εPb2∑

n

〈Pb2|(ε · r)|n〉〈Pb1n|I(
εPb1 − εa1

)|a1a2〉
}

,

(29)

τ (b)
irr = −i

e√
2ω(2π )3

∑
P

(−1)P

×
{ εn �=εa1∑

n

〈Pb1Pb2|I
(
εPb2 − εa2

)|na2〉〈n|(ε · r)|a1〉

+
εn �=εa2∑

n

〈Pb1Pb2|I
(
εPb1 − εa1

)|a1n〉〈n|(ε · r)|a2〉
}

.

(30)

With the aid of the completeness condition∑
n

|n〉〈n| = 1, (31)

we find for the sum of the expressions (29) and (30)

τirr = i
e√

2ω(2π )3
〈2p1/2|(ε · r)|2s〉(�Eb − �Ea), (32)

where

�Ea =
∑
P

(−1)P 〈Pa1Pa2|I
(
εPa1 − εa1

)|a1a2〉, (33)

�Eb =
∑
P

(−1)P 〈Pb1Pb2|I
(
εPb1 − εb1

)|b1b2〉 (34)

are the first-order interelectronic-interaction corrections to
the initial and final states, respectively. The same relation
holds if one includes the one-loop QED corrections. The
corresponding proof, which was given first in Ref. [30], is
presented in the Appendix. Summing the zeroth- and first-

order contributions yields

τ = i
e√

2ω(2π )3
〈2p1/2|(ε · r)|2s〉(Eb − Ea)

= i
ω√

2ω(2π )3
〈2p1/2|(ε · d)|2s〉, (35)

where d = er is the operator of the electric-dipole moment
and Ea and Eb are the total binding energies of the initial and
final states, respectively. It is evident that similar equations
can be derived involving two-electron wave functions (1).
Consequently, in what follows, we will use the electric-dipole
transition operator in the length gauge

R(l)
e = −i

ω(ε · d)√
2ω(2π )3

. (36)

Substituting the two-electron wave function (18) into
Eq. (8) and performing the calculation, we obtain for the PNC
contribution to the cross section

σ
(2 3S1→2 1S0)
PNC = 1

9

ω

�2 3S1 + �2 1S0

2λξ 〈2p1/2||d||2s〉(〈2s||µ||2s〉
−〈1s||µ||1s〉), (37)

where 〈2p1/2||d||2s〉 is the reduced matrix element of the
electric-dipole-moment operator and λ = ±1 is the photon
polarization. Integrating over the angular variables in the
reduced matrix elements yields

〈ns||µ||ns〉 = −2e
√

2/3
∫ ∞

0
dr r3gns(r)fns(r), (38)

〈np1/2||d||ns〉
= −e

√
2/3

∫ ∞

0
dr r3

[
gnp1/2 (r)gns(r) + fnp1/2 (r)fns(r)

]
.

(39)

These integrals are easily evaluated by employing the virial
relations for the Dirac equation (see, e.g., Refs. [32–34]). For
the case of interest here, one derives

2
∫ ∞

0
dr r3 [g2s(r)f2s(r) − g1s(r)f1s(r)] = γ −

√
(1 + γ )/2,

(40)

∫ ∞

0
dr r3

[
g2p1/2 (r)g2s(r) + f2p1/2 (r)f2s(r)

]
= 3(1 + γ )

√
1 + 2γ

2αZ
, (41)

where γ =
√

1 − (αZ)2. By substituting these expressions
into Eq. (13) and Eq. (37) leads to

σ
(2 3S1→2 1S0)
0 = 2

27

παω

�2 3S1 + �2 1S0

[
√

2(1 + γ ) − 2γ ]2, (42)

σ (2 3S1→2 1S0) = σ
(2 3S1→2 1S0)
0 + σ

(2 3S1→2 1S0)
PNC

= (1 + λε)σ (2 3S1→2 1S0)
0 , (43)
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TABLE I. The zeroth-order cross section σ
(2 3S1→2 1S0)
0 , the PNC correction σ

(2 3S1→2 1S0)
PNC , and the parameter ε, defined by Eq. (43), for the

laser-induced 2 3S1 → 2 1S0 transition in He-like Gd and Th. The 2 3S1–2 1S0 transition energies are taken from Ref. [35], while the 2 3P0–2 1S0

energy difference is chosen as discussed in the text.

Ion (E2 3P0
–E2 1S0

) (eV) (E2 1S0
–E2 3S1

) (eV) σ
(2 3S1→2 1S0)
0 (b) σ

(2 3S1→2 1S0)
PNC (b) ε

158Gd62+ 0.074(74) 114.0 4084.1 ±2.1 −0.000 51
232Th88+ 0.44(40) 240.1 1217.6 ±0.6 −0.000 53

where

ε = 2ξ
〈2p1/2||d||2s〉

〈2s||µ||2s〉 − 〈1s||µ||1s〉
= −2ξ

3(1 + γ )
√

1 + 2γ

αZ(
√

2(1 + γ ) − 2γ )
(44)

is a parameter which characterizes the relative value of the
PNC effect. The second term on the right-hand side of Eq. (43)
represents the PNC contribution, which changes sign under
the replacement λ → −λ. The PNC parameter can also be
represented as

ε = −2ξ

√√√√�2 3S1 + �2 3P0

�2 3S1 + �2 1S0

σ
(2 3S1→2 3P0)
0

σ
(2 3S1→2 1S0)
0

, (45)

where σ
(2 3S1→2 3P0)
0 is the cross section of the resonant

absorption into the 2 3P0 state and �2 3P0 is the total width
of this state.

III. RESULTS AND DISCUSSION

The formulas (42)–(44) allow one to evaluate the cross
section and the corresponding PNC effect. The most promising
situation for observing the PNC effect occurs in cases where
the levels 2 1S0 and 2 3P0 are almost degenerate. According
to the most to-date elaborated calculations [35–38] (see also
the related table in Ref. [21]) such cases are gadolinium
(Z = 64) and thorium (Z = 90), where the levels 2 1S0 and
2 3P0 are nearly crossing. For Gd the energy interval amounts
to −0.023(74) eV, while in case of Th it is 0.44(40) eV
[38]. Since the uncertainties are comparable to the energy
differences, to estimate the PNC effect we take the values
0.074 eV and 0.44 eV for the 2 3P0–2 1S0 energy difference
in Gd and Th, respectively. The widths of the 2 3S1 and
2 1S0 states, which enter formula (42), are mainly defined
by the one-photon M1 and two-photon E1E1 transitions,
respectively. We evaluate the decay rate of the M1 transition
2 3S1 → 1 1S0 employing the transition energy taken from
Ref. [35]. The interelectronic-interaction corrections to the
transition amplitude are calculated to first order in 1/Z within
a systematic QED approach (for details see Ref. [31]). As

the result, we obtain decay rates w
(2 3S1→1 1S0)
M1 = 2.301 ×

1012 s−1 for Gd and w
(2 3S1→1 1S0)
M1 = 9.470 × 1013 s−1 for

Th. These values are in fair agreement with those from
Refs. [31,39,40]. The two-photon decays 2 3S1 → 1 1S0 and
2 1S0 → 1 1S0 are calculated in the length gauge with the
transition energies taken from Ref. [35]. The interelectronic-
interaction effects are approximately accounted for by means
of a Kohn-Sham potential. The calculated transition rates

are w
(23S1→11S0)
2γ = 8.74 × 108 s−1 and w

(21S0→11S0)
2γ = 9.04 ×

1011 s−1 for Gd and w
(2 3S1→1 1S0)
2γ = 2.07 × 1010 s−1 and

w
(2 1S0→1 1S0)
2γ = 6.25 × 1012 s−1 for Th. These values together

with the E1E1 channel also include higher multipole con-
tributions, such as M1M1 etc. For Th the dominant E1E1
decay channel yields w

(2 3S1→1 1S0)
E1E1 = 1.62 × 1010 s−1 and

w
(2 1S0→1 1S0)
E1E1 = 6.25 × 1012 s−1. It is worth noticing that for

the 2 3S1 state the higher multipoles contribute up to 20% to the
total two-photon decay rate. Comparing the E1E1 decay rates
with the results of Ref. [41], we find excellent agreement for
the 2 3S1 state and a slight deviation for the 2 1S0 state, which is
mainly due to employing the more accurate transition energies
in our calculations. Finally, the total widths are �2 3S1 = 1.515
meV and �2 1S0 = 0.595 meV for Gd and �2 3S1 = 62.35 meV
and �2 1S0 = 4.11 meV for Th. The results of the calculations
of the PNC effect by formulas (42)–(44) for Gd and Th are
presented in Table I.

As one can see from the table, in both Gd and Th cases
the PNC effect amounts to about 0.05%, which is a rather
large value for parity-violation experiments. Moreover, one
may expect that the PNC effect can be further increased, at
least, by an order of magnitude by choosing proper isotopes,
provided the 2 1S0–2 3P0 energy difference is known to a
higher accuracy. With the current experimental techniques
[42], accurate measurements of the difference considered seem
feasible.

Because of a large transition energy (>100 eV), until
recently experimental scenarios with laser-induced 2 3S1–2 1S0

transition in heavy He-like ions were far from being possible.
However, the situation has changed in view of the very
significant progress in x-ray laser development. Such lasers
will be available in the near future with a high repetition
rate [43]. Already now, there is such an x-ray laser available
at the heavy-ion facility GSI (PHELIX facility) where photon
energies of up to 200 eV have been reached [22,23]. As an
alternative scenario, the excitation energy can be obtained by
counter-propagating the ultraviolet laser beam with the photon
energy in the range from 4 to 10 eV and the He-like ion
beam with energy up to 10.7 GeV/u, which will be available
at the FAIR facility in Darmstadt [24,25]. The population
of the 2 1S0 level can be measured by observing the E1E1
decay to the ground state. In the second scenario, due to
the strong Lorentz boosting, the decay photons are emitted
at the forward direction, which considerably simplifies their
detection.

The next problem to be addressed is the preparation of ions
in the 2 3S1 state that is required in both scenarios considered.
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As follows from the study presented in Refs. [44,45], in
collisions with gas atoms one can produce selectively both
the 2 1S0 state and the 2 3S1 one [46]. However, it would be
of great importance to populate exclusively only the 2 3S1

state. The only way to accomplish this is to first form the
doubly excited (2s2p1/2)0 state via dielectronic recombination
of an electron with a H-like ion. Since the main decay
channel of the (2s2p1/2)0 state is the transition into the 2 3S1

state, this enables selective production of ions in the 2 3S1

state.
The PNC effect is to be measured by counting the intensity

difference in the E1E1 decay of the 2 1S0 state for polar-
izations λ = ±1. The background emission can be separated
by switching off the laser light. Changing the photon energy
allows one to eliminate the interference with a nonresonant
transition via the 2 3P0 state, which could also be evaluated
to good accuracy if necessary. Moreover, since the E1E1
emission can be measured relative to the intensity of the M1
x-ray line (decay of the 2 3S1 state), such an experimental
scenario appears to be quite realistic.

IV. CONCLUSION

In this paper we have studied the PNC effect with laser-
induced 2 3S1–2 1S0 transition in heavy heliumlike ions. A
simple analytical formula for the photon-absorption cross
section derived enables easy evaluation of the PNC effect for
ions near Z = 64 and Z = 90, where the effect is strongly
enhanced due to the near crossing of the opposite-parity 2 1S0

and 2 3P0 levels. The calculations performed showed that the
effect can amount to about 0.05% and even more for the ions
of interest. Prospects for the corresponding PNC experiments
have been discussed. It is found that the desired photon energy
can be achieved either by x-ray lasers that are presently
getting developed at GSI (PHELIX project) as well as at the
Helmholtz-Institute in Jena [47] or by counter-propagating the
ultraviolet laser beam and the He-like ion beam at the FAIR
facility in Darmstadt.
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APPENDIX: QED CORRECTIONS TO THE TRANSITION
AMPLITUDE

The one-electron QED corrections to the 2 3S1–2 3P0

transition amplitude are determined by the corresponding
contributions to the 2s–2p1/2 amplitude in one-electron
ions as defined by the diagrams shown in Fig. 3. Formal
expressions for these corrections are almost the same as

(a) (b) (c)

(d) (e) (f)

FIG. 3. One-loop QED corrections to the photon absorption.

for the corresponding corrections to the emission amplitude
[27]. Let us consider the one-loop self-energy correction.
According to formulas provided in Ref. [27], it is given by
the sum of the irreducible, reducible, and vertex contribu-
tions. For an electron interacting with a pure Coulomb field
together with the dipole approximation exp (ik · x) → 1, the
reducible contribution vanishes. The irreducible contribution is
given by

τ (SE)
irr = −〈2p1/2|R|ξ2s〉 − 〈

ξ2p1/2

∣∣R|2s〉
= e√

2ω(2π )3

[〈2p1/2|(ε · α)|ξ2s〉 + 〈
ξ2p1/2

∣∣(ε · α)|2s〉],
(A1)

where

|ξa〉 =
n�=a∑
n

|n〉〈n|�(εa)|a〉
εa − εn

, (A2)

〈ξb| =
n�=b∑
n

〈b|�(εb)|n〉〈n|
εb − εn

, (A3)

and

〈a|�(ε)|b〉 = i

2π

∫ ∞

−∞
dω

∑
n

〈an|e2αρασ Dρσ (ω)|nb〉
ε − ω − εn(1 − i0)

.

(A4)

By means of the identity (23) and the completeness relation
(31), we obtain

τ (SE)
irr = i

e√
2ω(2π )3

{〈2p1/2|(ε·r)|2s〉(〈2p1/2|�(ε2p1/2 )|2p1/2〉

− 〈2s|�(ε2s)|2s〉) + 〈2p1/2|[(ε · r),�(ε2s)]|2s〉}.
(A5)
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For the vertex contribution one derives

τ (SE)
ver = −e2 i

2π

∫ ∞

−∞
dω

∫
dk

(2π )3

1

ω2 − k2 + i0

×
∑
n1,n2

〈2p1/2|αρ exp (ik · y)|n1〉

× 1

ε2p1/2 − ω − εn1 (1 − i0)
〈n1| e(ε · α)√

2ω(2π )3
|n2〉

× 1

ε2s − ω − εn2 (1 − i0)
〈n2|αρ exp (−ik · x)|2s〉.

(A6)

Transforming

1

ε2p1/2 − ω − εn1 (1 − i0)

1

ε2s − ω − εn2 (1 − i0)

= 1

εn1 − εn2

(
1

ε2p1/2 − ω − εn1 (1 − i0)

− 1

ε2s − ω − εn2 (1 − i0)

)
, (A7)

〈n1|(ε · α)|n2〉 = i〈n1|[H,(ε · r)]|n2〉
= i(εn1 − εn2 )〈n1|(ε · r)|n2〉, (A8)

we get

τ (SE)
ver = − e√

2ω(2π )3
e2 i

2π

∫ ∞

−∞
dω

∫
dk

(2π )3

1

ω2 − k2 + i0

×
εn1 �=εn2∑
n1,n2

〈2p1/2|αρ exp (ik · y)|n1〉

× i

(
1

ε2p1/2 − ω − εn1 (1 − i0)

− 1

ε2s − ω − εn2 (1 − i0)

)
〈n1|(ε · r)|n2〉

× 〈n2|αρ exp (−ik · x)|2s〉
= −i

e√
2ω(2π )3

e2 i

2π

∫ ∞

−∞
dω

∫
dk

(2π )3

1

ω2 − k2 + i0

×
{∑

n1

〈2p1/2|αρ exp (ik · y)|n1〉

× 1

ε2p1/2 − ω − εn1 (1 − i0)

×
[
〈n1|(ε · x)αρ exp (−ik · x)|2s〉

−
εn1 =εn2∑

n2

〈n1|(ε · r)|n2〉〈n2|αρ exp (−ik · x)|2s〉
]

−
∑
n2

[
〈2p1/2|(ε · y)αρ exp (ik · y)|n2〉

−
εn1 =εn2∑

n1

〈2p1/2|αρ exp (ik · y)|n1〉〈n1|(ε · r)|n2〉
]

× 1

ε2s − ω − εn2 (1 − i0)
〈n2|αρ exp (−ik · x)|2s〉

}

= −i
e√

2ω(2π )3
〈2p1/2|[(ε · r),�(ε2s)]|2s〉. (A9)

The sum of both irreducible and vertex contributions yields
[30]

τ
(SE)
tot = i

e√
2ω(2π )3

〈2p1/2|(ε · r)|2s〉(〈2p1/2|�(ε2p1/2 )|2p1/2〉

− 〈2s|�(ε2s)|2s〉). (A10)

A similar equation can be derived for the vacuum-polarization
contribution.

[1] V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys. Lett.
A 141, 147 (1989).

[2] S. A. Blundell, J. Sapirstein, and W. R. Johnson, Phys. Rev. D
45, 1602 (1992).

[3] V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys. Rev. A
51, 3454 (1995).

[4] M. S. Safronova and W. R. Johnson, Phys. Rev. A 62, 022112
(2000).

[5] A. Derevianko, Phys. Rev. A 65, 012106 (2001).
[6] M. G. Kozlov, S. G. Porsev, and I. I. Tupitsyn, Phys. Rev. Lett.

86, 3260 (2001).
[7] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev.

D 66, 076013 (2002).
[8] J. S. M. Ginges and V. V. Flambaum, Phys. Rep. 397, 63

(2004).
[9] V. M. Shabaev, I. I. Tupitsyn, K. Pachucki, G. Plunien, and

V. A. Yerokhin, Phys. Rev. A 72, 062105 (2005).
[10] S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev. Lett. 102,

181601 (2009).

[11] V. G. Gorshkov and L. N. Labzowsky, Zh. Eksp. Teor. Fiz.
Pis’ma 19, 768 (1974) [JETP Lett. 19, 394 (1974)]; Zh.
Eksp. Teor. Fiz. 69, 1141 (1975) [Sov. Phys. JETP 42, 581
(1975)].
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[44] Th. Stöhlker, D. C. Ionescu, P. Rymuza, F. Bosch, H. Geissel,
C. Kozhuharov, T. Ludziejewski, P. H. Mokler,
C. Scheidenberger, Z. Stachura, A. Warczak, and R. W.
Dunford, Phys. Rev. A 57, 845 (1998).
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H. Bräuning, S. Fritzsche, A. Gumberidze, S. Hagmann, S. Hess,
P. Jagodzinski, C. Kozhuharov, R. Reuschl, S. Salem, A. Simon,
U. Spillmann, M. Trassinelli, L. C. Tribedi, G. Weber,
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